Kursdelen Foto & Bild (ca. 3p)

Storlek: px
Starta visningen från sidan:

Download "Kursdelen Foto & Bild (ca. 3p)"

Transkript

1 Kursdelen Foto & Bild (ca. 3p) Mera info på kursens hemsida! Kompendium: Carlsson, K. Teknisk Fotografi, 4:e upplagan, :- (Kontant eller kontokort med PIN-kod) Laborationsanvisningar: Finns tillgängliga som pdf-filer på kurswebben. Varje student ska inför varje laboration skriva ut ett exemplar av aktuell laborationsanvisning och ta med denna till laborationen. OBS! Laborationerna innehåller läsanvisningar och förberedelseuppgifter som ska vara gjorda innan laborationen påbörjas. Var går labbarna? Var köper vi kompendiet?

2 Jo, i Albanova! Maskin Här är vi nu Länk till kartan finns på kurshemsidan!

3 Var i Albanova? Till fotolabben i AlbaNova: Kursexp. Fysik (i entréplanet) säljer komp. Öppet Gå in genom huvudentrén vid Roslagstullsbacken 21. Gå sedan rakt fram nedför tre trappavsatser. Sväng vänster två gånger, sedan rakt fram så långt man kommer och in genom dörren till höger.

4 Fotografi, något om kursinnehållet Kamerans uppbyggnad och funktion Fotografiska objektiv Sensorer (film & CCD/CMOS) Filmframkallning, kopiering Digital bildframställning Tonreproduktion Färglära & färgbilder Kvalitetsmått (jämförelse film & digitalfoto) Hands on experience på laborationerna!

5 Fotolabbar: Lab. 1: Svartvit fotografering och framkallning Lab. 2: Svartvitt kopieringsarbete, tonreproduktion Lab. 3: Fotografering med digitalkamera. Framställning av pappersbilder Lab. 4: Utvärdering av bildkvalitet. Jämförelse mellan filmbaserad fotografi och digitalfotografi

6 Camera obscura Hålkamera anno 1544

7 Transportabel camera obscura för turister (1700-tal) Användes som rithjälpmedel Utrustad med lins = Ljusstarkare bild

8 The world s first photograph (Nicéphore Niepce, 1827)

9 The first Kodak camera was introduced by George Eastman in August 1888.

10 The world s first color photograph (James Clerk Maxwell, 1861)

11 Kamera Sökare Kamerahus Lins Slutare Sensor: film eller CCD Bländare Film Framkallning CCD Datorbearbetning Kopiering Skrivare Pappersbild Pappersbild

12 Strålgång i tunn lins a = objekt (motiv-) avstånd f = brännvidd A Bild Objekt (motiv) B Linsformeln: = a b 1 f b = bildavstånd Avbildningsskala, B b M = = {om a >> f b f } A a f a

13 Hemövning: Visa att allmängiltiga uttrycket är f M = a f

14

15 Linssystem (objektiv) 1:a linsytan Kan brytas många gånger H H Sista linsytan f n 2 n 1 f Brytn. index Huvudplan Om n 1 = n 2 f = f (därav följer inte att huvudplanen sammanfaller)

16 Avbildning i objektiv H H f a b Linsformeln gäller, liksom uttryck för avbildningsskala mm.

17 Normalobjektiv, vidvinkel & tele Sensorformat Objektiv d f om a stort Inte så precisa gränser Normal: Vidvinkel: Tele: f d f > 1. 4d f < 0. 9d

18 Zoomobjektiv har variabel brännvidd. Zoomfaktor = f f max min ofta ca Zoom-objektivets princip Huvudplan Sensorplan f tele Huvudplan f wide

19 Varför använda olika brännvidder? Jo, man får olika avbildningsskala. Inte bara avbildningsskalan påverkas av f utan även djupintrycket, dvs perspektivet. Blanda inte ihop perspektiv och skärpedjup! Stort skärpedjup: Litet skärpedjup: Både förgrund och bakgrund skarp samtidigt. Bara motivdelar inom ett litet avståndsintervall är skarpa.

20 Perspektiv Fotograferingssituationen: Objektiv ff Filmplan β α α β h 1 h 2 Betraktningssituationen: Öga h 2 α β h 1 ff Framkallad film

21 Korrekt betraktningsavstånd = M x f Förstoring sensor - slutbild Objektivbrännvidd För stort avst. = Överdrivet djup För kort avst. = Underdrivet djup

22 Bländartalets inverkan på skärpedjupet Bländartal: 2 Bländartal: 16

23 Skärpedjup vid stor & liten bländaröppning Stor öppning Inställt avstånd Max. oskärpecirkel Fjärrgräns Närgräns Skärpedjup Objektiv Film (sensor) plan Liten öppning Inställt avstånd Skärpedjup Närgräns Fjärrgräns Bländaröppning Objektiv Max. oskärpecirkel Film (sensor) plan

24 Fotografisk film (svartvit) Tvärsnitt: Gelatin + kristaller (< 1 µm) av silversalter (AgBr, AgCl, AgI) AgHal Ljus 5-20 µm Emulsion µm Bas Transparent plastmaterial µm Antireflexskikt Fotografiskt papper har likartad uppbyggnad, men basen utgörs av papper.

25 Vid exponering bildas en latent bild. På de silversaltkorn som träffas av fotoner bildas liten klump (några tiotal atomer) av silveratomer = Framkallningsbar grodd Emulsion Vid framkallningen kommer de korn som har en framkallningsbar grodd att omvandlas till metalliskt silver (ger svärta). I fixerbadet löses icke framkallade silversalter ut (mörknar annars med tiden). Slutresultat = fotografiskt negativ (Lab. 1) Vid kopieringen erhålls en positiv pappersbild (Lab. 2)

26 Fotometri Begrepp inom foto: Ljusflöde, Belysning & Luminans Ljusflöde = Strålningseffekt viktad m.a.p. ögats spektrala känslighet. Belysning = Infallande ljusflöde per ytenhet Luminans = Utsänt ljusflöde per ytenhet och rymdvinkelenhet (ett kvantitativt mått på hur starkt motivet lyser) Ω Ω Ljuskälla Liten rymdvinkel Ljuskälla Stor rymdvinkel 4π är maximal rymdvinkel (Mycket mer detaljer finns i kompendiet) Handlar om hur stor kon man samlar upp ljus inom

27 Radiometriska och fotometriska storheter Nedanstående lilla sammanställning innehåller endast de absolut mest grundläggande och viktiga begreppen som behövs i samband med fotografi. De är uppdelade på radiometriska storheter och fotometriska storheter. Radiometriska storheter används för att beskriva strålande energi, effekt, effekttäthet mm. De grundläggande fysikaliska enheterna joule, watt etc. används. Vi ska i detta sammanhang enbart erinra om de tre olika storheter som anges i tabellen nedan. Storhet Enhet Strålningsflöde (-effekt) W Radians W m -2 sr -1 Irradians W m -2 Storheten strålningsflöde talar om hur mycket energi som per tidsenhet förmedlas via strålning. Radians handlar om utstrålning (från t.ex. en glödtråd). Denna storhet talar om (vilket syns av enheten) hur mycket effekt som per yt- och rymdvinkelenhet strålar ut. Irradians handlar om instrålning. Det talar om hur mycket effekt som strålar in per ytenhet (mot t.ex. en yta). Fotometriska storheter motsvarar de radiometriska. Enda skillnaden är att de fotometriska storheterna är viktade med avseende på det mänskliga ögats spektrala känslighetskurva. Sålunda kommer våglängder runt 550 nm att ha den högsta viktfaktorn, medan kortare och längre våglängder får en lägre faktor (ju längre bort från 550 nm desto lägre). Våglängder utanför det synliga området får viktfaktorn noll. De fotometriska storheter som svarar mot de tre radiometriska ovan ges av nedanstående tabell. Storhet Enhet Ljusflöde lm (lumen) Luminans lm m -2 sr -1 Belysning lm m -2 (lux) Inom fotografin använder man som regel fotometriska storheter.

28 Begreppet rymdvinkel Sfärisk yta Godtyckligt föremål som svävar i rymden (t.ex. en potatis) R P Ω Randstrålar från föremålet skär igenom sfäriska ytan, varvid en area A (streckade ytan) avgränsas på sfärens yta. Den rymdvinkel, Ω, under vilken vi från punkten P ser föremålet definieras genom A formeln Ω =. 2 R Största möjliga rymdvinkel är 4π. Enhet: steradian (sr).

29 Exponering, H = E t (sort luxsekunder) Belysningen i sensorplanet. Regleras med bländaren Exponeringstiden (den tid sensorn utsätts för belysningen E). Regleras med slutaren.

30 IRIS-bländare Metall-lameller Öppning som släpper in ljus. Diametern kan varieras.

31 Bländarplacering

32 Bländartal, F = f D Brännvidd Bländaröppningens diameter f Ljusstyrka, = = lägsta bländartal D max Skrivs t.ex. 1.8/50 Ljusstyrka Brännvidd i mm

33 Hur beror belysningen, E, i sensorplanet på bländartalet? (Härlett i kompendiet) πl 4F Resultat (för motivavstånd >> f ): E = 2 L = motivluminans & F = bländartalet Bländartal som kan ställas in: Ett bländarsteg Ändring i sensorbelysning med faktor 2 (Dessutom kan ofta halva eller tredjedelssteg mellan dessa tal väljas) Vanliga slutartyper: Centralslutare & Ridåslutare

34 Centralslutare Används framförallt i kameror som ej har utbytbar optik. Sitter inbyggd i objektivet. Metall-lameller Öppningsförlopp Tidsaxel Lamellerna är utformade så att bländaröppningens storlek så lite som möjligt ska påverka effektiva exponeringstiden.

35 Ridåslutare Används framförallt i kameror som har utbytbar optik, typ spegelreflexkameror. Pentaprisma Bländare Mattskiva med fältlins Objektiv Rörlig spegel Ridåslutare Sensor PENTAX PENTAX PENTAX Ridå Stängd Kort slutartid Lång slutartid Kamerahus sett framifrån Hela filmrutan exponeras ej samtidigt distorsion vid snabbt rörligt motiv. Blixtfotografering kräver ofta lite längre slutartider.

36 Viktigt begrepp inom foto (både film- och digitalfoto): Svärtning (eng. Density) Fotografisk film: Infallande ljusflöde, Φ 0 Filmrutor ca. 1mm Transmitterat ljusflöde, Φ Ljustransmissionen, T = Φ Φ 0 Svärtningen, D = 10 1 log T dvs. T = 100% D = 0 T = 10% D = 1 etc. Vanligt omfång

37 Fotopapper (inkl. bläckstrålepapper): Infallande ljusflöde, Φ 0 Reflekterat ljusflöde, Φ Reflektansen, R = Φ Φ 0 Svärtningen, D = 10 1 log R Vanligt omfång Matt pappersyta ger lägre D max pga ljusspridning. (Belysnings- & mätgeometrier noga specade både i film- och pappersfallet)

38 Svärtningskurvan (svartvit negativfilm) D max 2.5 D Tå Rät del Skuldra D bas+slöja 0.3 α logh (luxs) Mörka motivdelar Ljusa motivdelar Korrekt del av kurvan att utnyttja Gammavärdet, γ = tanα ( ) mått på kontrasten (högt γ = hög kontrast). γ beror på filmtyp och framkallning.

39 Exponeringsmätare: Grundprincip för filmkamera : Ljus Batteri Fotomotstånd Mätare Handhållen eller inbyggd i kamerahuset Digitalkameror: CCD- eller CMOS-sensorn i kameran används för ljusmätning. Ingen separat mätare behövs.

40 OBS! många mätare kan ställas om mellan olika viktningsfunktioner, t.ex. Spot-mätmätning (bara litet område i bildcentrum mäts) Centrum-vägning (bildcentrum viktas högre än kanten) Multi-pattern (intelligent mode som man inte vet riktigt vad den gör) (Använd huvudet! T.ex. person som fotograferas i starkt motljus: använd spotmätning mot ansiktet. Men det finns motiv som ingen exp. mätning klarar av!) Generella tips ang. exponering. Vad händer om man följer exp. mätarens råd? Motiv Medelljust (betongvägg) Ljust (snölandskap) Mörkt (svart panter) Bildresultat Korrekt ljushet För mörkt För ljust

41 Automatik (exponering & skärpa) Exp: Aperture priority : Fotografen ställer in bländaren, kameran väljer lämplig tid. Bra för: Kontroll av skärpedjup. Shutter priority : Fotografen ställer in slutartid, kameran väljer lämplig bländaröppning. Bra för: Kontroll av rörelseoskärpa. Fully automatic : Kameran väljer allt fotografen har ingen kontroll. Bra för: Enkla standardbilder. Skärpa: Kameran prövar sig fram till den inställning som ger skarpast bild på sensorn (enl. någon algoritm)

42 Autofocus Idea: The lens is adjusted until adjacent pixels differ maximally in intensity Out-of-focus scene Intensity profile along red line In-focus scene Intensity profile along red line

43 Digital camera Circuit board Memory card Sensor

44 Detector element (pixel). Typical size: 3-5 µm square Typical number: 5-15M

45 Hur detekteras ljus i en pixel? Infallande foton slår loss elektron + Tunnfilmselektrod Isolerande skikt - Ju fler fotoner, desto fler elektroner Kiselsubstrat

46 I CCD och CMOS läses signalen ut på olika sätt. CCD (Charge Coupled Device) Charge is moved between pixels Read-out register (Covered pixels) To ADC (Analog-to- Digital Converter) Charge transfer efficiency, typ

47 CMOS (Complimentary Metal-Oxide Semiconductor) Individually addressable pixels. Full flexibility concerning which pixel values to read out. Row select register (choice: n) n Active pixels. Charge is transferred to voltage that can be read out m Column select register (choice: m) Output = pixel value (m,n)

48 Tonreproduktionsdiagram (svartvitt foto) Hur återges motivets gråtoner i bilden? D papper D max Verklig kurva Ideal kurva Skuggparti Ljust parti log(l) Motivluminans Kurvans utseende beror på film & fotopapper, framkallning mm. resp. digitalkameran, datorbearbetning & printer. 1. Negativ lutning innebär positiv bild. 2. Lutningen på kurvan beskriver kontrasten. Brant lutning = hög kontrast. 3. Högt D max ger god dynamik i bilden

49 Låg kontrast Medelkontrast Hög kontrast Hur mäta upp tonreproduktionskurva Fotografera känd gråskala, mät upp D papper i färdiga bilden. (Lab. 2)

50 FÄRGLÄRA Fysikalisk bakgrund Färgmätningar Färgtriangeln

51 Spektral känslighet för de 3 typerna av tappar i näthinnan. Känsl. λ (nm)

52 Additiv färgsyntes Röd B-tapp G-tapp R-tapp Grön Blå Öga 230 V Dimmer Lampor Mattskiva Variation av lampintensiteterna påverkar signalerna från de 3 tapp-typerna. Signalerna bestämmer färg- och ljushetsintrycket.

53 Intensitet på näthinna Färgintryck I B G R Vitt λ (nm) I G R Gult λ I B R λ Magenta (blå-rött) I B G λ Cyan (blå-grönt)

54 Mättade, omättade och komplementfärger Exempel: I G R = Mättat gul λ (nm) Blå fattas blå är därför komplementfärg till gult I B G R = Omättat gul λ (nm) I B λ (nm) = Mättat blå I B G R λ (nm) = Omättat blå

55 Subtraktiv färgsyntes Vitt ljus G U L M A G E N T A Färgfilter Genom att variera mättnaden i 3 filter, kan vi skapa olika färg- och ljushetsintryck. C Y A N Öga Filtertransmissionskurvor T Mindre mättad G Mer mättad R λ Gul T B R λ Magenta (blå-röd) T B G λ Cyan (blå-grön)

56 Färgmätning Låt oss presentera: Normalobservatören Baserat på mätningar av många personers färgseende utvecklades CIE-systemet: z λ y λ 0.5 λ (nm) Color-matching functions, and

57 Exempel: Beskriv färgen för en spektralfördelning P λ Intensitet, P λ λ (nm) Definiera CIE tristimulus values XYZ, där Normera! Instrument kan byggas som mäter Chromaticity coordinates x, y och z.

58 Plotta x och y koordinater i en färgtriangel y Röd kurva = rena spektralfärger K 3000 K K K x 1.0

59 Ljuskällor för fotografi 1. Varma kroppar (svartkroppsstrålare). Ex. solen, glödlampa 2. Gasurladdningslampor. Ex. lysrör, gatubelysning 3. Andra typer. Ex. laser, lysdiod

60 Svartkroppsstrålare Exempel: Solen, glödlampa a) Dagsljus (5500 K) b) Fotolampa (3200 K) c) Stearinljus (1900 K) d) Människokropp (300 K) Spektralfördelningar för svartkroppsstrålare Färgtemperatur, T c Om, till exempel, T c = 5500 K, liknar spektralfördelningen den från en svartkroppsstrålare med T = 5500 K. Standardvärden för färgtemp. inom fotografi är 5500 K (dagsljus) och 3200 K (fotolampor).

61 Filmfoto: välj film med korrekt färgtemperatur. Digitalfoto: ställ in kameran på rätt värde) Felaktig färgtemperatur ger färgfel i bilderna (Lab. 3) Urladdningslampor kan ofta inte tilldelas färgtemperatur. Oftast olämpliga för färgfoto.

62 Urladdningslampor Lysrör Spektralfördelning: Vissa typer ganska OK för färgfoto, andra inte. Ofta svårt att förutsäga resultatet. Undvik om möjligt Fotoblixt Våglängd (nm) Spektralfördelning Lämplig för färgfoto. (Dagsljuskarakteristik)

63 Färgfilmens uppbyggnad i tvärsnitt: Gulfilter B G R Filmbas 3 emulsionsskikt känsliga för blått, grönt och rött ljus Vid exponering och framkallning bildas komplement-färgen till exponerande ljusets färg. Ju mer blåexponering, desto mer gult färg-ämne bildas. Gulfiltret försvinner vid framk. Filmbas Magenta färgämne Cyan färgämne Resultatet blir ett färgnegativ. Efter kopiering på fotopapper fås en pos. bild.

64 Color positive Color negative

65 Denna tomsida finns med därför att jag inte vet hur jag ska ta bort den i ordbehandlaren. Visst är det kul med datorer!

66 RGB Bayer pattern in digital camera Each pixel only detects one primary color. The other two primaries are obtained through interpolation

67 Effekter av färginterpolation Sned svart-vit kant Med färginterpolation Utan färginterpolation

68 Bildkvalitet (teknisk, inte konstnärlig) Skärpa Brus Dynamik Aliasing (pixelleringseffekt) Skärpa Optiken (avbildningsfel, diffraktion) Sensorn (pixelarea, laddningsdiffusion)

69 Ex. på optiska avbildningsfel (mer utförligt i kompendiet): Sfärisk aberration Kromatisk aberration Astigmatism Bildfältskrökning Koma Distorsion Avbildningsfelen yttrar sig i Oskärpa Geometrisk förvrängning Färgade kanter (t.ex. svart/vit övergång kan få regnbågens färger). De flesta felen minskar ju mindre bländaröppning man använder (högre bländartal) MEN: Diffraktionen ökar ju mindre bländaröppning man har

70 Aberrationer (exempel) Sfärisk: Kromatisk: Röd Vitt ljus Grön Blå Bildfältskrökning:

71 Diffraktion Intensitet R = radiellt avstånd till första minimat 2R

72 Skärpa I detta område dominerar aberrationer I detta område dominerar diffraktion Bländartal

73 Kvalitetsmått Skärpa: Upplösningstest: Hur täta streckmönster syns i bilden? Subjektivt, begänsad information. (Lab. 4) MTF: Fullständig information. (Lab. 4)

74 Upplösningstest med streckmönster M O T I V 1 linjepar B I L D Upplösningsgränsen anges som linjepar/mm i sensorplanet (oftast)

75 Upplösningsförmåga säger inte allt om bildkvalité. a) b) Vilken bild ser skarpast ut, a eller b?

76 Upplösningen är faktiskt 60 % högre i a än i b!! a) b) Du tror inte på det? Låt oss titta på hur testmönster avbildas med system a och b a) b)

77 MTF (Modulation Transfer Function) Fördelar: Objektiv, ger mycket information Nackdelar: Komplicerad, dyr Idé: Avbilda streckmönster med olika tätheter, och mät hur mycket lägre kontrasten är i bilden jämfört med motivet.

78 Sinusformigt varierande luminans s 0 Ortsfrekvens = linjetäthet = Enhet m -1 (el. mm -1 )

79 Luminans i motivet Max Min Koordinat i motivet Modulationsgrad, M = Max Max + Min Min Belysning i sensorplanet Max Min Koordinat i sensorplanet M bild < M motiv (kontrastförlust) MTF-värde = M bild /M motiv

80 MTF-kurva visar hur kontrastförsämringen varierar med mönstertätheten. 1 MTF-värde MTF(ν 1 ) Gränsfrekvens MTF(ν 2 ) 0 0 ν 1 ν 2 ν 3 ν (ortsfrekvens i sensorplanet) Motiv Bild M bild = M 1 x MTF(ν 1 ) ν 1 M = M 1 M bild = M 2 x MTF(ν 2 ) ν 2 M = M 2 M bild = M 3 x MTF(ν 3 ) = 0 ν 3 M = M 3

81 MTF optik MTF Idealt 1 Diffraktionsbegränsat objektiv (utan avbildningsfel) Verkligt objektiv Ortsfrekvens 1 Gränsfrekvens = λf Våglängd Vid F = 8 är gränsfrekv. 200 mm -1.

82 Vilken kurva ger bäst bildkvalitet? MTF 1 B A Ortsfrekv. Jo, B.

83 MTF för de två Albanovabilderna! b) a)

84 MTF kan mätas upp också för sensorer, t.ex. film och CCD/CMOS. (se komp.) Multiplikationsregeln: Fotometriskt kvalitetsmått: Signal/brus förhållande. SNR = Signal-to-Noise Ratio.

85 Välj ut ett område med jämn gråton. Mät medelvärde och standardavvikelse. SNR = Medelvärde Standardavvikelse (Lab. 4)

86 Images with different signal-to-noise ratios

87 Dynamisk vidd, DR = Dynamic Range. Anger hur stort kontrastomfång hos motivet vi klarar av. En bra kamera har DR > 3000 Förhållandet mellan högsta och lägsta motivluminans

88 Pixelleringseffekt: Eng. : Aliasing Sv. : Vikningsdistortion (moiré-effekt)

89 Orientalisk matta?

90 Nej, moiré pga pixellering Linjemönster som blir tätare mot bildcentrum

91 Hur undvika moiré-effekter? Jo, uppfyll Sampling-kriteriet Pixeltätheten måste vara minst dubbelt så stor som mönstertätheten. Detta uppfylls precis i figuren nedan: Mönstertätheten = Ortsfrekvensen för mönstret (sort m -1 eller mm -1 ) Pixeltätheten = Samplingfrekvensen (antal pixlar per m eller mm) Samplingfrekvensen > 2 x Mönsterfrekvensen

SK1140, Fotografi för medieteknik, HT14

SK1140, Fotografi för medieteknik, HT14 SK1140, Fotografi för medieteknik, HT14 9 föreläsn. & 3 labbar Kjell Carlsson, föreläsn./kursansvarig kjellc@kth.se Anders Liljeborg, labhandledn. Simon Winter, labhandledn. Vi kommer från Tillämpad fysik,

Läs mer

Photometry is so confusing!!!

Photometry is so confusing!!! Photometry is so confusing!!! footlambert cd lux lumen stilb phot footcandle nit apostilb Don t Panic! There is The Hitchhiker s Guide to Radiometry & Photometry Finns på kurshemsidan. Utdelas på tentamen

Läs mer

Photometry is so confusing!!!

Photometry is so confusing!!! Photometry is so confusing!!! footlambert cd lux lumen stilb phot footcandle nit apostilb Don t Panic! There is The Hitchhiker s Guide to Radiometry & Photometry Finns på kurswebben. Utdelas på tentamen.

Läs mer

Exempel på tentamensfrågor i Kursdelen Fotografi och Bild. OBS! Såvida inte annat sägs, motivera alla svar och förklara alla införda beteckningar!

Exempel på tentamensfrågor i Kursdelen Fotografi och Bild. OBS! Såvida inte annat sägs, motivera alla svar och förklara alla införda beteckningar! Exempel på tentamensfrågor i Kursdelen Fotografi och Bild Uppgifterna kan ge max 10p vardera. Hjälpmedel: Formelblad "Radiometriska och fotometriska storheter." (bifogad med tentamen) Räknedosa Observera:

Läs mer

Kvalitetsmått: Skärpa

Kvalitetsmått: Skärpa Kvalitetsmått: Skärpa Metoder att mäta skärpa: Upplösningstest: Hur täta streckmönster syns i bilden? Subjektivt, begränsad information (Lab. 2) MTF: Fullständig information (Lab. 2) Upplösningstest med

Läs mer

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, 2012-08-14, 9-13, FB51

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, 2012-08-14, 9-13, FB51 KTH Tillämpad Fysik Tentamen i Teknisk Fotografi, SK380, 01-08-14, 9-13, FB1 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 0 % av. poängtalet. Hjälpmedel: Formelblad "Radiometriska och

Läs mer

KTH Tillämpad Fysik. Tentamen i. SK1140, Fotografi för medieteknik. SK2380, Teknisk fotografi 2015-08-18, 8-13, FA32

KTH Tillämpad Fysik. Tentamen i. SK1140, Fotografi för medieteknik. SK2380, Teknisk fotografi 2015-08-18, 8-13, FA32 KTH Tillämpad Fysik Tentamen i SK1140, Fotografi för medieteknik SK2380, Teknisk fotografi 2015-08-18, 8-13, FA32 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet.

Läs mer

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, 2014-06-04, 9-13, FB53

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, 2014-06-04, 9-13, FB53 KTH Tillämpad Fysik Tentamen i Teknisk Fotografi, SK380, 014-06-04, 9-13, FB53 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet. Hjälpmedel: Formelblad "Radiometriska

Läs mer

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, 2013-05-22, 9-13, FB52

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, 2013-05-22, 9-13, FB52 KTH Tillämpad Fysik Tentamen i Teknisk Fotografi, SK2380, 2013-05-22, 9-13, FB52 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet. Hjälpmedel: Formelblad "Radiometriska

Läs mer

Tentamen i kurs DM1574, Medieteknik, gk, 2007-10-26, kl. 8-13, sal E33-36. Uppgifter i kursdelen Fotografi och bild.

Tentamen i kurs DM1574, Medieteknik, gk, 2007-10-26, kl. 8-13, sal E33-36. Uppgifter i kursdelen Fotografi och bild. Tentamen i kurs DM1574, Medieteknik, gk, 2007-10-26, kl. 8-13, sal E33-36. Uppgifter i kursdelen Fotografi och bild. Varje uppgift kan ge maximalt 10 poäng Hjälpmedel: Miniräknare. Formelblad Radiometriska

Läs mer

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, 2012-05-29, 9-13, FB52

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, 2012-05-29, 9-13, FB52 KTH Tillämpad Fysik Tentamen i Teknisk Fotografi, SK380, 01-05-9, 9-13, FB5 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet. Hjälpmedel: Formelblad "Radiometriska

Läs mer

Kursdelen Fotografi. Mera info på kursens hemsida! Kompendium: Carlsson, K. Teknisk Fotografi, 6:e upplagan, ca. 150:-

Kursdelen Fotografi. Mera info på kursens hemsida! Kompendium: Carlsson, K. Teknisk Fotografi, 6:e upplagan, ca. 150:- Kursdelen Fotografi Mera info på kursens hemsida! Kompendium: Carlsson, K. Teknisk Fotografi, 6:e upplagan, 2008. ca. 150:- Laborationsanvisningar: Finns tillgängliga som pdf-filer på kurswebben. Var går

Läs mer

KTH Tillämpad Fysik. Tentamen i SK1140, Fotografi för medieteknik 2014-01-10, 8-13, FB54

KTH Tillämpad Fysik. Tentamen i SK1140, Fotografi för medieteknik 2014-01-10, 8-13, FB54 KTH Tillämpad Fysik Tentamen i SK1140, Fotografi för medieteknik 2014-01-10, 8-13, FB54 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet. Hjälpmedel: Formelblad

Läs mer

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, 2014-08-19, 9-13, FB51

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, 2014-08-19, 9-13, FB51 KTH Tillämpad Fysik Tentamen i Teknisk Fotografi, SK380, 014-08-19, 9-13, FB51 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet. Hjälpmedel: Formelblad "Radiometriska

Läs mer

Sensorer i digitalkameror

Sensorer i digitalkameror Sensorer i digitalkameror Kretskort Minneskort Sensor Detektorelement (pixel). Typisk storlek: 2-5 m Typiskt antal: 5-20M Sensortyper i digitalkameror CCD (Charge Coupled Device) CMOS (Complementary Metal

Läs mer

KTH Tillämpad Fysik. Tentamen i SK1140, Fotografi för medieteknik , 8-13

KTH Tillämpad Fysik. Tentamen i SK1140, Fotografi för medieteknik , 8-13 KTH Tillämpad Fysik Tentamen i SK1140, Fotografi för medieteknik 014-10-8, 8-13 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet. Hjälpmedel: Formelblad "Radiometriska

Läs mer

Fotografering med digital systemkamera

Fotografering med digital systemkamera Fotografering med digital systemkamera Vad är en systemkamera? Som namnet antyder är det en kamera som ingår i ett system med t.ex. objektiv, filter, blixtar och mellanringar. Till skillnad från kompaktkameror,

Läs mer

Foto och Bild - Lab B

Foto och Bild - Lab B Biomedicinsk fysik & röntgenfysik Kjell Carlsson Foto och Bild - Lab B Svartvitt kopieringsarbete, tonreproduktion Kurs: 2D1574, Medieteknik grundkurs, moment: Foto och bild Kjell Carlsson & Hans Järling

Läs mer

Digitalkamera. Fördelar. Nackdelar. Digital fotografering. Kamerateknik Inställningar. Långsam. Vattenkänslig Behöver batteri Lagring av bilder

Digitalkamera. Fördelar. Nackdelar. Digital fotografering. Kamerateknik Inställningar. Långsam. Vattenkänslig Behöver batteri Lagring av bilder Digital fotografering Kamerateknik Inställningar Digitalkamera Samma optik som en analog kamera Byt ut filmen mot en sensor, CCD Bästa digitala sensorn ca 150 Mpixel Vanliga systemkameror mellan 8-12 Mpixel

Läs mer

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, 2015-06-03, 9-13, FB53

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, 2015-06-03, 9-13, FB53 KTH Tillämpad Fysik Tentamen i Teknisk Fotografi, SK2380, 2015-06-03, 9-13, FB53 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet. Hjälpmedel: Formelblad "Radiometriska

Läs mer

Tentamen i Teknisk Fotografi, SK2380, , 14-18, FB51

Tentamen i Teknisk Fotografi, SK2380, , 14-18, FB51 Tentamen i Teknisk Fotografi, SK380, 010-08-19, 14-18, FB51 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet. Hjälpmedel: Formelblad "Radiometriska och fotometriska

Läs mer

Introduktion till begreppet ortsfrekvens

Introduktion till begreppet ortsfrekvens Introduktion till begreppet ortsfrekvens Denna lilla skrift har tillkommit för att förklara begreppet ortsfrekvens, samt ge några exempel på beräkningar och omvandlingar som man kan behöva göra när man

Läs mer

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, , 14-18, FB51

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, , 14-18, FB51 KTH Tillämpad Fysik Tentamen i Teknisk Fotografi, SK2380, 2011-08-18, 14-18, FB51 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet. Hjälpmedel: Formelblad "Radiometriska

Läs mer

Bild- och Videoteknik

Bild- och Videoteknik Bild- och Videoteknik Av grupp F2: Ludvig Bowallius, Hazim Deirmenci, Charles Florman Lindeberg, Nils Gudmundsson (Optik och Fotometri), Olof Höjer, Stefan Knutas, Christian Konstenius KTH/Medieteknik

Läs mer

KTH Tillämpad Fysik. Tentamen i SK1140, Fotografi för medieteknik , 9-13, FB52-54

KTH Tillämpad Fysik. Tentamen i SK1140, Fotografi för medieteknik , 9-13, FB52-54 KTH Tillämpad Fysik Tentamen i SK1140, Fotografi för medieteknik 2013-10-30, 9-13, FB52-54 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet. Hjälpmedel: Formelblad

Läs mer

KTH Tillämpad Fysik. Tentamen i SK1140, Fotografi för medieteknik , 8-13

KTH Tillämpad Fysik. Tentamen i SK1140, Fotografi för medieteknik , 8-13 KTH Tillämpad Fysik Tentamen i SK1140, Fotografi för medieteknik 2015-01-08, 8-13 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet. Hjälpmedel: Formelblad "Radiometriska

Läs mer

KTH Teknikvetenskap. Foto-lab 1. Fotografering med ateljékamera. Kurs: SK2380, Teknisk Fotografi

KTH Teknikvetenskap. Foto-lab 1. Fotografering med ateljékamera. Kurs: SK2380, Teknisk Fotografi KTH Teknikvetenskap Foto-lab 1 Fotografering med ateljékamera Kurs: SK2380, Teknisk Fotografi Kjell Carlsson Tillämpad Fysik, KTH, 2010 2 För att uppnå en god förståelse och inlärning under laborationens

Läs mer

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, , 14-19, FB53

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, , 14-19, FB53 KTH Tillämpad Fysik Tentamen i Teknisk Fotografi, SK380, 016-05-31, 14-19, FB53 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet. Hjälpmedel: Formelblad "Radiometriska

Läs mer

KTH Tillämpad Fysik. Tentamen i. SK1140, Fotografi för medieteknik. SK2380, Teknisk fotografi , 8-13, FB52

KTH Tillämpad Fysik. Tentamen i. SK1140, Fotografi för medieteknik. SK2380, Teknisk fotografi , 8-13, FB52 KTH Tillämpad Fysik Tentamen i SK1140, Fotografi för medieteknik SK380, Teknisk fotografi 016-08-16, 8-13, FB5 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet.

Läs mer

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25 Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter

Läs mer

Räkneövning i fotografi

Räkneövning i fotografi SK380\Räkneövning.doc Räkneövning i fotografi Uppgift 1. Beskriv det matematiska sambandet (ex.vis proportionellt eller omvänt proportionellt) mellan belysningen i kamerans sensorplan och a) Bländartalet

Läs mer

Optik. Läran om ljuset

Optik. Läran om ljuset Optik Läran om ljuset Vad är ljus? Ljus är en form av energi. Ljus är elektromagnetisk strålning. Energi kan inte försvinna eller nyskapas. Ljuskälla Föremål som skickar ut ljus. I alla ljuskällor sker

Läs mer

Geometrisk optik. Laboration

Geometrisk optik. Laboration ... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Geometrisk optik Linser och optiska instrument Avsikten med laborationen är att du ska få träning i att bygga upp avbildande optiska

Läs mer

LJ-Teknik Bildskärpa

LJ-Teknik Bildskärpa Bildskärpa - Skärpedjup och fokus - Egen kontroll och fokusjustering - Extern kalibrering Bildskärpa, skärpedjup och fokus Brännpunkt och fokus Medan brännpunkt är en entydig term inom optiken, kan fokus

Läs mer

KTH Teknikvetenskap Fotografi-lab 3

KTH Teknikvetenskap Fotografi-lab 3 KTH Teknikvetenskap Fotografi-lab 3 Svartvitt kopieringsarbete, tonreproduktion Kurs: SK2380, Teknisk Fotografi Kjell Carlsson & Hans Järling Tillämpad Fysik, KTH, 2008 1 För att uppnå en god förståelse

Läs mer

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, , 9-13, FB51

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, , 9-13, FB51 KTH Tillämpad Fysik Tentamen i Teknisk Fotografi, SK380, 013-08-0, 9-13, FB51 Uppgifterna är lika mycket värda poängmässigt. För godkänt krävs 50 % av max. poängtalet. Hjälpmedel: Formelblad "adiometriska

Läs mer

Ljusflöde, källa viktad med ögats känslighetskurva. Mäts i lumen [lm] Ex 60W glödlampa => lm

Ljusflöde, källa viktad med ögats känslighetskurva. Mäts i lumen [lm] Ex 60W glödlampa => lm Fotometri Ljusflöde, Mängden strålningsenergi/tid [W] från en källa viktad med ögats känslighetskurva. Mäts i lumen [lm] Ex 60W glödlampa => 600-1000 lm Ögats känslighetsområde 1 0.8 Skotopisk V' Fotopisk

Läs mer

Lösningarna inlämnas renskrivna vid laborationens början till handledaren

Lösningarna inlämnas renskrivna vid laborationens början till handledaren Geometrisk optik Förberedelser Läs i vågläraboken om avbildning med linser (sid 227 241), ögat (sid 278 281), färg och färgseende (sid 281 285), glasögon (sid 287 290), kameran (sid 291 299), vinkelförstoring

Läs mer

Objektiv. Skillnad i egenskaper mellan objektiv med olika brännvidder (småbild)

Objektiv. Skillnad i egenskaper mellan objektiv med olika brännvidder (småbild) Håll kameran rätt! För att minimera risken för skakningsoskärpa bör man alltid hålla kameran så stadigt som möjligt. Oftast håller man kameran som i mitten och till höger, med höger hand i kamerans grepp

Läs mer

Färglära. Ljus är en blandning av färger som tillsammans upplevs som vitt. Färg är reflektion av ljus. I ett mörkt rum inga färger.

Färglära. Ljus är en blandning av färger som tillsammans upplevs som vitt. Färg är reflektion av ljus. I ett mörkt rum inga färger. Ljus är en blandning av färger som tillsammans upplevs som vitt. Färg är reflektion av ljus. I ett mörkt rum inga färger. Människans öga är känsligt för rött, grönt och blått ljus och det är kombinationer

Läs mer

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du:

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: A.Mer av dig själv. B.Mindre av dig själv. C.Lika mycket av dig själv. ⱱ Hur hög måste en spegel vara för att du ska

Läs mer

3 m 80 % av bildhöjden. 4 m 80 % av bildbredden

3 m 80 % av bildhöjden. 4 m 80 % av bildbredden Exempelsamling, SK1140, fotografi för medieteknik. (= typiska tentatal) Optisk avbildning, kap. 5 i kompendiet Uppgift 1. En digitalkamera har ett zoomobjektiv med brännviddsomfånget 8-24 mm. CCD-sensorn

Läs mer

KTH Teknikvetenskap Fotografi-lab 2

KTH Teknikvetenskap Fotografi-lab 2 KTH Teknikvetenskap Fotografi-lab 2 Svartvit fotografering och filmframkallning Kurs: SK2380, Teknisk Fotografi Kjell Carlsson & Hans Järling Tillämpad Fysik, KTH, 2008 1 För att uppnå en god förståelse

Läs mer

Vad skall vi gå igenom under denna period?

Vad skall vi gå igenom under denna period? Ljus/optik Vad skall vi gå igenom under denna period? Vad är ljus? Ljuskälla? Reflektionsvinklar/brytningsvinklar? Färger? Hur fungerar en kikare? Hur fungerar en kamera/ ögat? Var använder vi ljus i vardagen

Läs mer

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young

Läs mer

Ljusmätning 1 "Mäta i handen i skugga". Med handhållen ljusmätare för befintligt ljus så finns en metod som är mycket enkel, snabb och fungerar till de flesta genomsnittliga motiv: att "mäta i handen i

Läs mer

FÄRG DIGITAL FÄRGRASTRERING FÄRG. Ögats receptorer. SPD Exempel. Stavar och Tappar. Sasan Gooran (HT 2003) En blåaktig färg

FÄRG DIGITAL FÄRGRASTRERING FÄRG. Ögats receptorer. SPD Exempel. Stavar och Tappar. Sasan Gooran (HT 2003) En blåaktig färg FÄRG DIGITAL FÄRGRASTRERING Sasan Gooran (HT 2003) Newton: Indeed rays, properly expressed, are not colored. Han hade rätt. SPD existerar i den fysiska världen, men färg existerar bara i ögat och hjärnan.

Läs mer

Foto och Bild - Lab A

Foto och Bild - Lab A Biomedicinsk fysik & röntgenfysik Kjell Carlsson Foto och Bild - Lab A Svartvit fotografering och framkallning Kurs: 2D1574, Medieteknik grundkurs, moment: Foto och bild Kjell Carlsson & Hans Järling Fysikinst.,

Läs mer

FÄRG. Färg. SPD Exempel FÄRG. Stavar och Tappar. Ögats receptorer. Sasan Gooran (HT 2003) En blåaktig färg

FÄRG. Färg. SPD Exempel FÄRG. Stavar och Tappar. Ögats receptorer. Sasan Gooran (HT 2003) En blåaktig färg FÄRG Färg Sasan Gooran (HT 2003) Det mänskliga ögat kan uppfatta ljus, elektromagnetiska strålningar, med vågländer mellan 380 till 780 nm. Ett exempel: Spectral Power Distribution (SPD). Se nästa bild.

Läs mer

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva

Läs mer

Lär känna din kamera. Karl Mikaelsson Oscar Carlsson October 27, 2012

Lär känna din kamera. Karl Mikaelsson Oscar Carlsson October 27, 2012 Lär känna din kamera Karl Mikaelsson derfian@hamsterkollektivet.se Oscar Carlsson oscar.carlsson@gmail.com October 27, 2012 Vad är en exponering? Slutartid + Bländartal + ISO Slutartid 1 500s = 0.002s,

Läs mer

En samling exempelfoton SB-900

En samling exempelfoton SB-900 En samling exempelfoton SB-900 Det här häftet ger en översikt över olika funktioner för blixtfotografering som finns tillgängliga vid användning av SB-900, samt beskriver med hjälp av exempelfoton olika

Läs mer

Att behärska ljuset, är vägen till en bra bild..

Att behärska ljuset, är vägen till en bra bild.. Att behärska ljuset, är vägen till en bra bild.. 1. Inledning Som du kanske har märkt handlar mycket av fotografin om ljus. Det finns ganska mycket matematik och fysik involverat, inte minst kring hur

Läs mer

OPTIK läran om ljuset

OPTIK läran om ljuset OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte

Läs mer

Att måla med ljus - 3. Slutare och Bländare - 4. Balansen mellan bländare och slutartid - 6. Lär känna din kamera - 7. Objektiv - 9.

Att måla med ljus - 3. Slutare och Bländare - 4. Balansen mellan bländare och slutartid - 6. Lär känna din kamera - 7. Objektiv - 9. Av Gabriel Remäng Att måla med ljus - 3. Slutare och Bländare - 4. Balansen mellan bländare och slutartid - 6. Lär känna din kamera - 7. Objektiv - 9. ISO & Vitbalans - 10. Att måla med ljus Ordet fotografi

Läs mer

Grundläggande om kameran

Grundläggande om kameran Gatufotogruppen Sida 1 (5) Grundläggande om kameran De mest grundläggande principerna. Vilka typer av hänsyn som just gatufotografi kräver map kamerainställningar Christer Strömholm: Ögonblick kommer som

Läs mer

Geometrisk optik. Laboration FAFF25/FAFA60 Fotonik 2017

Geometrisk optik. Laboration FAFF25/FAFA60 Fotonik 2017 Avsikten med denna laboration är att du ska få träning i att bygga upp avbildande optiska system, såsom enkla kikare och mikroskop, och på så vis få en god förståelse för dessas funktion. Redogörelsen

Läs mer

Tillämpad fysik Kjell Carlsson Foto-Lab 4

Tillämpad fysik Kjell Carlsson Foto-Lab 4 Tillämpad fysik Kjell Carlsson Foto-Lab 4 Färgfotografering med digitalkamera Kurs: SK2380, Teknisk fotografi Kjell Carlsson Tillämpad Fysik, KTH, 2010 1 För att uppnå en god förståelse och inlärning under

Läs mer

Arbetsplatsoptometri för optiker

Arbetsplatsoptometri för optiker Arbetsplatsoptometri för optiker Peter Unsbo KTH Biomedical and x-ray physics Visual Optics God visuell kvalitet (Arbets-)uppgiftens/miljöns visuella krav

Läs mer

Fotografera mera! Carita Holmberg

Fotografera mera! Carita Holmberg Fotografera mera! Carita Holmberg Gyllene snittet - harmoni Gyllene snittet är ett sätt att dela in en sträcka eller en yta i harmoniska proportioner. Gyllene snittet: fi= φ = a/b = 1,618... En sträcka

Läs mer

Bättre ljus i bilderna. Ytterligare inställningar för en digital systemkamera

Bättre ljus i bilderna. Ytterligare inställningar för en digital systemkamera Bättre ljus i bilderna Ytterligare inställningar för en digital systemkamera Bättre ljus i bilderna Att göra rätt från början Blixtfotografering Ljusmätning Filter Vitbalans Bättre ljus i bilderna Att

Läs mer

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och

Läs mer

En överblick över tekniken bakom fotografering...

En överblick över tekniken bakom fotografering... En överblick över tekniken bakom fotografering... Av: Anders Oleander AFFE - akademiska fotoföreningen exponerarna // Högskolan i Kalmar 1 Innehåll: Sidnummer: Bilduppbyggnad svart/vit film 3 Kamerafunktion

Läs mer

Grundläggande om kameran

Grundläggande om kameran Gatufotogruppen Sida 1 (6) Grundläggande om kameran De mest grundläggande principerna. Vilka typer av hänsyn som just gatufotografi kräver map kamerainställningar Christer Strömholm: Ögonblick kommer som

Läs mer

Fotografera. Camera obscura (latin; mörkt rum) Camera Obscura

Fotografera. Camera obscura (latin; mörkt rum) Camera Obscura Fotografera Camera obscura (latin; mörkt rum) Camera Obscura Fransmannen Joseph Nicéphore Niépce var den förste som gjorde en kamera 1826 men det tog åtta timmar att exponera bilden och den blev väldigt

Läs mer

λ = T 2 g/(2π) 250/6 40 m

λ = T 2 g/(2π) 250/6 40 m Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten

Läs mer

Fotografera. Camera obscura (latin; mörkt rum) COPYRIGHT DAHLQVISTDESIGN 1. Camera Obscura

Fotografera. Camera obscura (latin; mörkt rum) COPYRIGHT DAHLQVISTDESIGN 1. Camera Obscura Fotografera Camera obscura (latin; mörkt rum) Camera Obscura COPYRIGHT DAHLQVISTDESIGN 1 Fransmannen Joseph Nicéphore Niépce var den förste som gjorde en kamera 1826 men det tog åtta timmar att exponera

Läs mer

Grunderna i. Digital kamerateknik. SM3GDT Hans Sodenkamp SK3BG 2014-01-29

Grunderna i. Digital kamerateknik. SM3GDT Hans Sodenkamp SK3BG 2014-01-29 Grunderna i SM3GDT Hans Sodenkamp SK3BG 2014-01-29 Min resa genom Mpixel världen 4000 3500 3000 2500 2000 1500 1000 500 0 1 3 2MP Nanozoomer 4 Scanner 1,5GP Kamera20,5MP Kamera 3,6GP5 Iphone 8MP Serie1

Läs mer

KAMERANS TEKNISKA DETALJER

KAMERANS TEKNISKA DETALJER KAMERANS TEKNISKA DETALJER Ljus & exponering Blinkningen Reglerar tiden slutaren är öppen. Styrs av ljustillgången & kontrolleras med hjälp av ljusmätaren. Pupillen Slutartid Bländare Reglerar mängden

Läs mer

Digital bild & sportfiske. Lektion 1:1/5 Kameran funktioner och hur man exponerar rätt

Digital bild & sportfiske. Lektion 1:1/5 Kameran funktioner och hur man exponerar rätt Digital bild & sportfiske Lektion 1:1/5 Kameran funktioner och hur man exponerar rätt Från exponering till bild Det finns grovt räknat endast tre faktorer som påverkar den slutliga exponeringen. Från exponering

Läs mer

Instuderingsfrågor extra allt

Instuderingsfrågor extra allt Instuderingsfrågor extra allt För dig som vill lära dig mer, alla svaren finns inte i häftet. Sök på nätet, fråga en kompis eller läs i en grundbok som du får låna på lektion. Testa dig själv 9.1 1 Vilken

Läs mer

Övningstal i Avbildningskvalitet för optikerstuderande. Rita figurer och motivera ordentligt!

Övningstal i Avbildningskvalitet för optikerstuderande. Rita figurer och motivera ordentligt! Övningstal i Avbildningskvalitet för optikerstuderande Rita figurer och motivera ordentligt! Repetition av geometrisk optik 1. Ett objekt i luft ligger 400 mm innan en sfärisk gränsyta med krökningsradien

Läs mer

Optik Samverkan mellan atomer/molekyler och ljus elektroner atomkärna Föreläsning 7/3 200 Elektronmolnet svänger i takt med ljuset och skickar ut nytt ljus Ljustransmission i material Absorption elektroner

Läs mer

Går det att göra vitt ljus koherent?

Går det att göra vitt ljus koherent? Går det att göra vitt ljus koherent? Marcin Swillo och Gunnar Björk Institutionen för Tillämpad Fysik AlbaNova Universitetscentrum, KTH 106 91 Stockholm I Fysikaktuellt nummer 4, 2011 skrev en av oss en

Läs mer

Gauss Linsformel (härledning)

Gauss Linsformel (härledning) α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a

Läs mer

Övningstal i Avbildningskvalitet för optikerstuderande. Rita figurer och motivera ordentligt!

Övningstal i Avbildningskvalitet för optikerstuderande. Rita figurer och motivera ordentligt! Övningstal i Avbildningskvalitet för optikerstuderande Rita figurer och motivera ordentligt! Repetition av geometrisk optik 1. Ett objekt i luft ligger 400 mm innan en sfärisk gränsyta med krökningsradien

Läs mer

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll.

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll. Vätespektrum Förberedelser Läs i Tillämpad atomfysik om atomspektroskopi (sid 147-149), empiriska samband (sid 151-154), och Bohrs atommodell (sid 154-165). Läs genom hela laborationsinstruktionen. Gör

Läs mer

1. Kameran 2. Ljus 3. Motiv 4. Kommunikation 5. Att ta bra bilder 6. Studio

1. Kameran 2. Ljus 3. Motiv 4. Kommunikation 5. Att ta bra bilder 6. Studio Jonas foto guide är din guide till att bli bättre fotograf. Den går igenom grunderna i fotografi, hur kameran fungerar och annat bra att veta. Denna guide är inriktad främst för fotografering med digital

Läs mer

Så skapas färgbilder i datorn

Så skapas färgbilder i datorn Så skapas färgbilder i datorn 31 I datorn skapas såväl text som bilder på skärmen av små fyrkantiga punkter, pixlar, som bygger upp bilden. Varje punkt har sin unika färg som erhålls genom blandning med

Läs mer

About the optics of the eye

About the optics of the eye About the optics of the eye Peter Unsbo Kungliga Tekniska Högskolan Biomedical and x-ray physics Visual Optics Innehåll Optiska begränsningar i ögat Hur mäter man ögats aberrationer? Hur skriver man vågfrontsrecept?

Läs mer

Fotovandring i Skuleskogen

Fotovandring i Skuleskogen Fotovandring i Skuleskogen 1 - En komprimerad kurs i komposition och ljussättning. Välkomna! Ljusmätaren och histogram Ljusmätare och histogram är våra två viktigaste hjälpmedel när vi vill kontrollera

Läs mer

Kristian Pettersson Feb 2016

Kristian Pettersson Feb 2016 Foto Manual Kristian Pettersson Feb 2016 1. Inledning Det viktigaste om vi vill bli bra fotografer är att vi tycker att det är kul att ta bilder och att vi gör det ofta och mycket. Vi kommer i denna kurs

Läs mer

LABORATION 2 MIKROSKOPET

LABORATION 2 MIKROSKOPET LABORATION 2 MIKROSKOPET Personnummer Namn Laborationen godkänd Datum Assistent Kungliga Tekniska högskolan BIOX (5) Att läsa före lab: LABORATION 2 MIKROSKOPET Synvinkel, vinkelförstoring, luppen och

Läs mer

LABORATION 5 Aberrationer

LABORATION 5 Aberrationer LABORATION 5 Aberrationer Personnuer Nan Laborationen godkänd Datu Assistent Kungliga Tekniska högskolan BIOX 1 (5) LABORATION 5: ABERRATIONER Att läsa i kursboken: sid. 233-248, 257-261, 470-472, 480-485,

Läs mer

Observera också att det inte går att både se kanten på fönstret och det där ute tydligt samtidigt.

Observera också att det inte går att både se kanten på fönstret och det där ute tydligt samtidigt. Om förstoringsglaset Du kan göra mycket med bara ett förstoringsglas! I många sammanhang i det dagliga livet förekommer linser. Den vanligast förekommande typen är den konvexa linsen, den kallas också

Läs mer

Dental digital röntgenteknik Vad ska vi tänka på?

Dental digital röntgenteknik Vad ska vi tänka på? Odontologiska fakulteten, Tandvårdshögskolan Malmö Dental digital röntgenteknik Vad ska vi tänka på? Kristina Hellén-Halme Avdelningen för Odontologisk röntgendiagnostik, Malmö högskola 1 Skillnad mellan

Läs mer

Föredrag om bildbehandling speciellt för astronomibilder. Del 1

Föredrag om bildbehandling speciellt för astronomibilder. Del 1 Sid 1 Föredrag om bildbehandling speciellt för astronomibilder Del 1 genomgång av hur man kalibrerar ett astrofoto eller den viktiga pre-processing av Lars Karlsson Sid 2 Föredragets innehåll Digitalkamerans

Läs mer

Fotovandring i Ho ga-kusten

Fotovandring i Ho ga-kusten Fotovandring i Ho ga-kusten Välkommen till en grundläggande kurs i naturfotografering. Lär dig mer om komposition och ljussättning av dina naturbilder i Höga Kustens fantastisk miljö. Fotovandring 2 Midnattsvadring,

Läs mer

Tillämpad fysik Kjell Carlsson Foto-Lab 4

Tillämpad fysik Kjell Carlsson Foto-Lab 4 Tillämpad fysik Kjell Carlsson Foto-Lab 4 Färgfotografering med digitalkamera Kurs: SK2380, Teknisk fotografi Kjell Carlsson Tillämpad Fysik, KTH, 2015 1 För att uppnå en god förståelse och inlärning under

Läs mer

Figur 6.1 ur Freeman & Hull, Optics

Figur 6.1 ur Freeman & Hull, Optics 1 Föreläsning 12 Kameran Figur 6.1 ur Freeman & Hull, Optics Kameran är ett instrument som till vissa delar fungerar mycket likt ett öga. Kamerans optik, det så kallade kameraobjektivet, motsvarar ögats

Läs mer

Ljuset påverkar människan på tre sätt:

Ljuset påverkar människan på tre sätt: Vad är ljus? Ljus är elektromagnetisk strålning inom ett våglängdsområde som ögat är känsligt för. Ljuset uppfattas först då det träffar en yta som återkastar vissa våglängder av strålningen. Men, vi kan

Läs mer

Fysik. Laboration 3. Ljusets vågnatur

Fysik. Laboration 3. Ljusets vågnatur Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall

Läs mer

Fotografera under vattnet. Likheter och olikheter

Fotografera under vattnet. Likheter och olikheter Fotografera under vattnet Likheter och olikheter Att dyka med kamera Visa hänsyn. Koraller mm är ömtåliga så bra avvägning är en förutsättning för att ta bilder under vatten. Lär dig kamerahuset på land,

Läs mer

KTH Teknikvetenskap. Fotografi-lab. Infrarödfotografi och Höghastighetsvideo

KTH Teknikvetenskap. Fotografi-lab. Infrarödfotografi och Höghastighetsvideo KTH Teknikvetenskap Fotografi-lab 6 Infrarödfotografi och Höghastighetsvideo Kurs: SK2380, Teknisk Fotografi Kjell Carlsson Tillämpad Fysik, KTH, 2008 2 Viktigt Laborationen börjar utan akademisk kvart.

Läs mer

Videosignalen. Blockdiagram över AD omvandling (analogt till digitalt)

Videosignalen. Blockdiagram över AD omvandling (analogt till digitalt) Videosignalen Analog/digital Även om vi idag övergår till digital teknik när vi ska insamla, bearbeta och spara videomaterial, så är dock vår omvärld analog. Det innebär att vi i videokameran och TV monitorn

Läs mer

Uppfinnande av kameran

Uppfinnande av kameran Uppfinnande av kameran Under 1500-talet upptäckte man ett fenomen som senare skulle leda till uppfinnandet av kameran. Man gjorde en upptäckt i ett rum som var helt mörklagt med ett litet hål i väggen.

Läs mer

Digital bildteknik. Thor Stone Education. Digital bildteknik. Copyright Torsten Nilsson

Digital bildteknik. Thor Stone Education. Digital bildteknik. Copyright Torsten Nilsson Thor Stone Education 1 Digitala bilder och upplösning Bildupplösning Upplösningen av en bild från en digitalkamera begränsas ofta av kamerans sensor (vanligen en CCD- eller CMOS-sensor) som omvandlar ljus

Läs mer

Grundläggande om kameran

Grundläggande om kameran Gatufotogruppen Sida 1 (6) Grundläggande om kameran De mest grundläggande principerna. Vilka typer av hänsyn som just gatufotografi kräver map kamerainställningar Christer Strömholm: Ögonblick kommer som

Läs mer

Studieanvisning i Optik, Fysik A enligt boken Quanta A

Studieanvisning i Optik, Fysik A enligt boken Quanta A Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande

Läs mer

Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013)

Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013) Grafisk Teknik Rastrering Övningar med lösningar/svar Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar. Uppgifterna är för det mesta hämtade

Läs mer