Till dig som är fastighetsägare En kort introduktion till projektet EnergiKompetent Gävleborg fastighetssektorn, och energianvändning i flerbostadshus. Ingen vill betala för energi som varken behövs eller används! Det går att spara mycket pengar på att investera i energibesparande åtgärder bara man vet hur. Det här är en kort introduktion till grundläggande begrepp inom energianvändning i byggnader. Om projektet EnergiKompetent Gävleborg fastighetssektorn (EKG-F) Projektet EnergiKompetent Gävleborg fastighetssektorn drivs av Länsstyrelsen i Gävleborg i nära samarbete med Högskolan i Gävle med medel från bl.a. Energimyndigheten. Projektet pågår under 2012 och syftet är att ta fram förslag på energi och kostnadseffektiva renoveringslösningar av tio flerbostadshus spridda i länets kommuner. EKG-F ska bidra till att öka den praktiska kunskapen i regionen för en fortsatt energieffektivisering i fastighetssektorn. Grundläggande om energianvändning i byggnader Husen vi bor i kräver en hel del energi för sin drift. Både i form av uppvärmning av rummen vi vistas i och av vårt varmvatten, men också i form av el för att driva all vår elektriska utrustning som till exempel belysning, kyl och frys, TV och datorer. Av all energi som vi använder i Sverige går nästan 40 % till våra bostäder. Effekt och energi Skillnaden mellan begreppen effekt och energi är viktig att känna till. Effekten kan beskrivas som styrkan på en apparat som använder eller genererar någon form av energi. Exempelvis ett värmeelement, brödrost eller en motor. Energi är effekten gånger den tid som effekten verkar. Effekt mäts oftast i enheten watt (W) eller kilowatt (kw). En kilowatt är tusen watt. Energi mäts vanligen i enheten kilowattimmar eller förkortat: kwh. I stora byggnader med hög energianvändning kan det bli aktuellt att använda megawattimmar i stället, förkortat MWh. En megawattimme är tusen kilowattimmar. En kilowattimme motsvarar exempelvis energin som åtgår för att ha en hårtork igång i en timme. Enheten kwh används oavsett om det handlar om energi i form av el eller energi i form av värme. 1
Leverantörer av el och värme tar betalt för antalet förbrukade kilowattimmar, och priset varierar beroende på vilken källa som genererar energin. Energi förekommer i flera olika skepnader, energiformer. De vanligaste energiformerna som förekommer när det gäller byggnader är värmeenergi och elektrisk energi. Man brukar också tala om energikvalité. Energiformer med hög energikvalité är energi som lätt kan omvandlas till en annan energiform. Elektrisk energi har hög energikvalité eftersom den enkelt kan göras om till exempelvis värmeenergi eller mekanisk energi med små förluster. Värmeenergi har låg energikvalité den är svår att omvandla till någon annan energiform. Energin i balans Energi kan inte skapas eller förstöras, utan bara omsättas i andra energiformer. Den totala mängden energin i ett system bevaras. Vad som är systemet i detta fall väljer man oftast själv, men det faller sig ganska naturligt att se en hel byggnad som ett system när man studerar energianvändning i hus. Vad ovanstående princip egentligen säger är att all tillförd energi är lika med all energianvändning i en byggnad. Det betyder att man med kännedom om den energi som tillförs en byggnad i form av värme och el, kan man ta reda på var energi tar vägen i form av förluster. Förluster sker genom att värme överförs till omgivningen via byggnadens väggar, tak, fönster, dörrar och golv. Dessutom försvinner en del av värmen med ventilationsluften, otätheter i byggnaden och med avloppsvattnet. Den största drivkraften som bestämmer hur stora förlusterna blir, är skillnaden mellan inne och utetemperatur. Byggnadens värmesystem Den energi som vi tillför byggnaden kommer från husets värmesystem. Det kan vara via t.ex. fjärrvärme, eldning av olja eller pellets i en panna, eller en värmepump. 2
Används någon av dessa fördelas värmen ut i husets lägenheter via ett vattenburet radiatorsystem. Om man istället har direktverkande el är radiatorerna eldrivna. Vi får också energi som genereras inne i byggnaden. Personerna som bor i huset alstrar nämligen värme, liksom de apparater som finns i huset. Dessutom får vi ett visst tillskott av energi från solen när den lyser på byggnaden och in genom fönstren och då värmer upp huset. Dessa tillskott av energi, som inte kostar något, brukar man helt enkelt kalla för gratisenergi. Mängden energi som går åt för att värma upp ett hus beror bland annat på skillnaden mellan inom -och utomhustemperatur. Under vinterhalvåret när det är kallt ute kommer mer energi att överföras genom klimatskalet till omgivningen och alltså måste vi då tillföra mer energi till husets värmesystem för att kompensera för de ökade energiförlusterna. Det omvända gäller givetvis under sommarhalvåret, då husets värmesystem många gånger helt kan stängas av. Eftersom vårt klimat i landet skiljer sig en hel del åt i norr och söder, kommer ett hus i Kiruna behöva mer tillförd energi än samma hus i Malmö. För att få jämförbara siffror på energiförbrukningen som är oberoende av vilket klimat som råder under olika tidsperioder (det kan ju exempelvis vara betydligt kallare ett visst år än det normalt sett är), brukar man använda s.k. normalårskorrigering. Byggnadens klimatskal Med byggnadens klimatskal eller klimatskärm menar man dess ytterväggar, tak, golv, fönster och dörrar. Kort sagt de delar av huset som angränsar mot uteklimatet. Ett tätt och välisolerat klimatskal minskar värmeavgivningen från byggnaden till omgivningen. Denna typ av värmeförlust brukar kallas byggnadens transmissionsförluster. Klimatskalets förmåga att innesluta värme i byggnaden brukar man beskriva med ett U-värde. Ett lågt U-värde betyder att isoleringsförmågan är bra. Man eftersträvar alltså låga U-värden på de byggnadsdelar som utgör klimatskalet. Ett äldre 2-glas fönster har ett U-värde runt 3. Ett nytt 3-glas energifönster kanske har ett U-värde runt 1 och släpper alltså ut 70 % mindre värme än ett äldre fönster. En viktig aspekt att studera i klimatskalet är köldbryggor. Köldbryggor uppkommer där en konstruktionsdetalj, exempelvis en balk, har kontakt med den kalla utsidan utan att något isolerande material ligger emellan. Då leds värmen ut ur byggnaden via köldbryggan. Det är exempelvis vanligt att man får köldbryggor vid fönster och dörrar samt vid infästningar av balkonger. Ventilation Ventilation är viktigt för att få en god omsättning av luften i en byggnad. Det behövs för att bortföra luftföroreningar och fukt och att tillföra frisk luft in i huset. Ventilation kan utformas på olika sätt. De vanligaste typerna är självdrag (S), frånluft (F) och från och tilluftsventilation (FT). De två sista kan utföras med eller utan återvinning av värmen. Vilken typ av ventilation som finns i byggnaden påverkar också energianvändningen. Den vanligaste typen i äldre hus är självdragsventilation. Här används inga kanaler eller fläktar för att styra luftflödena, utan luften kommer in genom håligheter i klimatskalet och via särskilda luftdon. Nackdelarna med självdrag 3
är att luftflödet inte kan styras och är därför svårt att kontrollera. Luftmängden varierar mycket beroende på utetemperaturen och vindförhållanden. Dessutom har luften som kommer in samma temperatur som uteluften, vilket gör att den måste värmas till rumstemperatur. Det kräver energi. Däremot så kräver självdrag ingen elektrisk energi för att driva ventilationsfläktar. I de andra ventilationstyperna, F och FT, har man särskilda ventilationskanaler och fläktstyrda luftflöden. I F-ventilation suger man ut luft från rummet och ny frisk luft sugs då in genom tilluftsdon i klimatskalet hål i väggarna. I FT-ventilation suger man ut luft ur rummet samtidigt som man blåser in ny frisk luft via särskilda tilluftskanaler. Man får en god kontroll över ventilationen och luftomsättningen och luftflödet påverkas inte i samma grad av yttre förhållanden. Ofta kompletterar man FT-ventilationen med s.k. värmeväxlare i nyare installationer. Det innebär att man återvinner värmen som finns i rumsluften som sugs ut och för över den till den kalla, inkommande uteluften. Det gör att uteluften inte behöver värmas lika mycket och då sparar man energi. Varmvatten Det går åt en hel del energi för att värma det varmvatten vi använder i hushållen. Varmvattnet ska hålla en temperatur i intervallet 50-65 C för att undvika risk för tillväxt av bakterier och risken för skållning. Det ska då värmas från kallvattentemperatur som kan vara i storleksordningen 4-20 C. Ju varmare kallvattnet är desto mindre energi går åt för att värma det. Sätten för hur varmvattnet värms upp varierar. Det kan vara via fjärrvärme, ackumulatortank kopplad till eldningspanna, eluppvärmd varmvattenberedare eller solfångare. El När det gäller användningen av el i flerbostadshus brukar man skilja på fastighetsel och hushållsel. Fastighetsel är den el som används till belysning i gemensamma utrymmen, exempelvis entré och trapphus, drift av cirkulationspumpar för värmesystemet och fläktar i ventilationssystemet. Hushållsel är den el som förbrukas i hushållen, dvs. kyl och frys, spis, TV m.m. Specifik energianvändning För att enkelt kunna jämföra olika byggnaders energiprestanda med varandra oavsett hur stor byggnaden är, brukar man använda måttet specifik energianvändning eller energiprestanda. Det är byggnadens energianvändning i kwh delat med byggnadens uppvärmda boarea i kvadratmeter. Enheten för specifik energianvändning blir alltså kwh/m 2. Boverket har i sina byggregler, BBR, satt upp krav för hur hög den specifika energianvändningen får vara när nya hus byggs idag. I Gävleborgs klimatzon får värdet numera vara högst 110 kwh per kvadratmeter. I den ändring av BBR som började gälla 1/1 2012 skärptes kraven på energiprestanda (var tidigare 130 kwh/m2) och dessutom har krav införts även vad gäller ombyggnationer. I genomsnitt används i Sveriges flerbostadshus 158 kwh per kvadratmeter för uppvärmning och varmvatten. I Gävleborg är siffran 164 kwh per kvadratmeter, vilket alltså innebär att vårt läns flerbostadshus har högre energiförbrukning än riksgenomsnittet. 4
Minska energianvändningen Det finns en hel del åtgärder som kan vidtas för att spara energi och pengar i flerbostadshus. Det är inte omöjligt att energiförbrukningen kan halveras med rätt åtgärder! Väl utförda åtgärder minskar också utsläppen av koldioxid som bidrar till växthuseffekten, så det finns även en miljömässig vinst i att energieffektivisera. Eftersom varje byggnad är unik så kan det vara svårt att säga generellt vilken sparpotential som finns i olika typer av åtgärder. Man måste bedöma varje byggnad individuellt för att kunna beräkna vilka åtgärder som lämpar sig för just den byggnaden. Det är också viktigt att åtgärder görs i rätt ordning. Det är till exempel ingen idé att först justera in värmesystemet om man planerar att tilläggsisolera. När vi besöker era fastigheter kommer vi se på möjligheterna att genomföra en rad olika åtgärder och dessutom bedöma hur åtgärderna samverkar med varandra. Vi kommer också räkna på de ekonomiska vinsterna av att genomföra åtgärderna. Vad gör vi på platsbesöken? Vid platsbesöken kommer vi mäta och observera en rad olika aspekter. Vi gör exempelvis: Mätning av inne och utetemperaturer Termografering med värmekamera för att upptäcka bristfällig isolering, köldbryggor m.m. Trycksättning av rum för att mäta otätheter i klimatskalet Mätning av luftflöden med hjälp av s.k. spårgasteknik Observationer av skick på fönster, dörrar, fasad, vinds -och markkonstruktion Observationer av ventilationssystem; kanaler, fläktar m.m. Observationer av skick på värmesystem; panna/undercentral, cirkulationspump, radiatorer och rördragning. Inför platsbesöken underlättar det om vi får information om byggnaden i form av: Ritningar Förbrukning av el och fjärrvärme de senaste två åren Förbrukning av olja/ved/pellets vid eldning i egen panna de senaste två åren Förbrukning av varmvatten de senaste två åren. Om det saknas: kallvattenförbrukning istället. Information om redan genomförda renoveringar Säkerställ tillgång till minst en lägenhet vid besöksdagen Mer information och lästips På nedanstående länkar finns mycket bra och nyttig information om energianvändning i byggnader. www.energimyndigheten.se www.energiaktiv.se www.boverket.se www.renoveraenergismart.se www.energiradgivarna.com www.energieffektivabyggnader.se 5