univ.lektor, docent, vice ordförande



Relevanta dokument
LTH:s remissvar - Rättigheter för studenter vid LU

Världsledande transportforskning i. Vicerektor Anna Dubois Chalmers Tekniska Högskola

Den föreslagna dagordningen fastställdes med följande punkter som tillkommit: Hedersdoktorer.

Akademins bidrag till framtida innovationer. Annika Stensson Trigell Professor i Fordonsdynamik

Vätgas och bränsleceller!

Bilaga 1: Uppföljning av de strategiska forskningsområdena 2010

LTH:s strategiska forskningssatsningar

Ceebels verksamhet idag och i framtiden

LIGHTer PhD network Uppstartsprojekt för doktorandnätverk och forskarskola

Centrum för energieffektiv belysning. Thorbjörn Laike, föreståndare LTH, LU Roy Holmberg, bitr. föreståndare, JTH

KTH Global Development Hub to build Mutual Innovation Capacity. Challenge Driven Education For Global Impact

HR i en internationell organisation, några tankar av P-O Nyquist. Göteborg

Lunds Tekniska Högskola LUNDS UNIVERSITET

I Sverige finns flera världsledande fordonstillverkare

Centre for Environmental and Resource Economics

Solcellsanläggningar i världsklass en workshop om prestanda och tillförlitlighet

Anmälan av avsiktsförklaring om samarbete med AstraZeneca AB

Kompetenscentrum - Några kommentarer och reflektioner kring start och drift. Lars Ekedahl.

Kursplan. FÖ3032 Redovisning och styrning av internationellt verksamma företag. 15 högskolepoäng, Avancerad nivå 1

Linnéstöd. Pär Omling. GD Vetenskapsrådet

Innovation Enabled by ICT A proposal for a Vinnova national Strategic innovation Program

Mål och strategi för Internet of Things Sverige

Lunds Tekniska Högskola LUNDS UNIVERSITET

HÅLLBAR STADSBYGGNAD. Hur gör man - och var gör man vad?

Arrowhead - Process- och energisystem- automation

Industriell plattform för leverantörer

(O)strategisk kommunikation?

Kraftsamling inom Hållbar utveckling på LiU. Mats Eklund Professor Industriell miljöteknik Linköpings Universitet

Innovation och produktutveckling. Joakim Lilliesköld & Liv Gingnell

Uppdrag att etablera en funktion för Testbädd Sverige

Lunds Tekniska Högskola 2015 LUNDS UNIVERSITET

UU Innovation FÅR SAMARBETEN ATT VÄXA; IDÉER ATT BLI VERKLIGHET. Cecilia Gullberg Anette Persson Stache

Strategiska innovationsområden. Vilgot Claesson, programledning VINNOVA (Peter Åslund och Christina Kvarnström)

Goals for third cycle studies according to the Higher Education Ordinance of Sweden (Sw. "Högskoleförordningen")

Forskningsprogram. Energieffektivisering inom belysningsområdet EELys. Belysningsdag med Energimyndigheten Anders Hallberg

CHALMERS FÖR EN HÅLLBAR FRAMTID VÅR VISION: Visionen genomsyrar all verksamhet inom forskning, utbildning och innovation

Linnéuniversitetets mål och strategier med relevans för Familjen Kamprads stiftelse

Handläggningsordning gällande universitetsgemensam finansiering av forskningsinfrastruktur vid Lunds universitet

ÅRSKURS 1, civilingenjörsprogrammet i teknisk fysik med materialvetenskap, lå 2018/2019

Europeiska EU-Kommissionen GD Energi och Transport B-1049 Bryssel Belgien

Strategic Research Area 1

WermTec Industriteknik din kompletta leverantör av industriell teknik.

Norrbottens resurser vad gäller förnybar energi ur ett EU perspektiv. Sabine Mayer

Rekommendationer för introduktion av nya doktorander till forskarutbildningen och SLU

TOUCH POINTS AND PRACTICES IN THE SMART GRID

Program Energieffektivisering för Belysning. Innovation, forskning, utveckling, demonstration och marknadsintroduktion (IFUDeMI)

Bedömningskriterier för finansiering av forskning vid HKR

ELVÄGAR. För ett hållbart och konkurrenskraftigt Sverige Martin Gustavsson & Conny Börjesson 20 januari RISE IKT RISE Viktoria

Utveckling av energimarknader i EU. politik och framgångsrika medlemsstater

THE GROWSMARTER PROJECT

SOUTHWESTERN BALTIC SEA TRANSNATIONAL AREA IMPLEMENTING NEW GEOGRAPHY

Transkript:

PROTOKOLL - FN3 Sammanträdesdatum 2013-05-24 Forskningsnämnd 3 Närvarande ledamöter: Lars J Nilsson Maria Johansson Mats Bohgard Lena Hiselius Jens Klingman Magnus Larson Thomas Lindhqvist Jan Olhager Per Tunestål professor, ordförande univ.lektor, docent, vice ordförande professor univ.lektor professor professor professor professor professor Övriga närvarande: Anna Trosslöv protokollförare Reine Karlsson Ljusportalen, 31 Thorbjörn Laike Ljusportalen, 31 Frånvarande ledamöter/suppleanter: Matti Ristinmaa professor Jan-Eric Ståhl professor Nils Johansson doktorand Christina Windmark doktorand 29 MÖTETS ÖPPNANDE Ordförande förklarade sammanträdet öppet. 30 FASTSTÄLLANDE AV DAGORDNING Beslut: Den föreslagna dagordningen fastställdes. Inbjudna gäster för presentation av forskningsportal: Reine Karlsson och Thorbjörn Laike. 31 PRESENTATION AV FORSKNINGSPORTALERNAS VERKSAMHET Thorbjörn Laike och Reine Karlsson presenterade Ljusportalen. Portalens fokus ligger på så kallad smart lighting. Portalansvarig är Lars Montelius och Reine Karlsson ansvarar för den operativa ledningen. Äskar medel om 150.000 kr för portalen. www.lth.se/lli Bilaga 31: Ljusportalen 1

LUNDS UNIVERSITET PROTOKOLL Lunds Tekniska Högskola Forskningsnämnd 3 2013-05-24 32 PROTOKOLL FRÅN FÖREGÅENDE SAMMANTRÄDE Nyckeltal i relation till FN:s uppgift och LTH:s strategiska plan. Information om LTH:s alumniverksamhet. Maria Johansson kommer att rapportera om Formas utvärdering av samhällsbyggnadsforskning på augustimötet. Hållbarhetsfrågor Mats Bohgard skickar ut ett förslag till nämnden. Information om det pågående arbetet med fördelning av medel till forskningsportaler. Beslut: Protokollet lades ad acta. Bilaga 32: FN3 protokoll, 2013-04-19 33 MEDDELANDE Rektorns meddelanden. Studierektor informerar: Studiehandboken är reviderad och lanserad på LTHs hemsida; Introduktionskurs för nyantagna doktorander har genomförts för vårterminen. Besök från Tampere 27-28 maj, Smart City. Besök från Zhejiang University 3-4 juni. Järnvägsskolan kvar i Trafikverket. Ny professor, Sören Vang Andersen, professor i tillämpad matematik med inriktning mot Audio och video. Invigning produktionsportalen 28/5. Bilaga 33A: Bilaga 33B: Rektorns meddelanden Invigning Produktionsportalen 34 DELEGATIONSBESLUT Beslut: Delegationsbeslut gällande disputationsärenden med dnr LTH 2013/706; LTH 2013/716, LTH 2013/747 och LTH 2013/748 läggs ad acta. Delegationsbeslut gällande fastställda kursplaner (LTH 2013/847) läggs ad acta. Bilaga 34A: Bilaga 34B: Disputationsärenden Fastställda kursplaner 35 RAPPORT OCH UPPDRAG FRÅN FORSKNINGSBEREDNINGEN Ordföranden informerade om rapport och uppdrag från forskningsberedningen. Nästa årsrapport ska lämnas in våren 2014. Uppdrag till FN3 att ta fram riktlinjer för LTH gällande betygsnämndssammansättning. Diskussion kring förslag från ordföranden. Betygsnämnden kan bestå av 3 eller 5 ledamöter. En majoritet av ledamöterna bör, och minst en skall, ha lärar- och handledarkompetens (docent) (eller två skall vara?). (Ledamöter från näringsliv och myndigheter behöver inte ha lärarkompetens). 2

LUNDS UNIVERSITET PROTOKOLL Lunds Tekniska Högskola Forskningsnämnd 3 2013-05-24 Forts. 35 Minst en lärare skall vara från ett annat lärosäte (eller minst två skall ha annan huvudman än LU). Minst en ledamot bör vara av samma kön. 36 PRIORITERING AV FORSKNINGSOMRÅDEN FÖR YNGRE FORSKARE FN3 hade fått 12 ansökningar för yngre forskare. Beslut: Bilaga 36: Ledamöterna finner att förslagen Sustainable urban mobility transition och Experimental in-operandi micromechanics of Lion batteries är högst rankade och rekommenderar att dessa beviljas stöd. Även ansökan Industriell värmning har fått hög ranking och har FN3:s rekommendation att beviljas stöd. FN3 vill samråda ytterligare med FN1 om hur ansökan Universal Design with a focus on Tangible Embedded and Embodied Interaction ska prioriteras. Ansökningar 37 STIA RESEARCH THEMES Ordföranden informerade om Stellenbosch Institute for Advanced Study STIAS i Sydafrika, fellowships för svenska forskare. Fellows ska vistas vid STIAS minst en månad, gärna 3 månader eller mer, men det behöver inte vara sammanhängande. Bidraget för vistelsen täcker flygresa, kost och logi. 38 DONATIONSKAMPANJ Information om donationskampanj. Bilaga 38: Donationskampanj Diskussion kring att det inte enbart behöver vara ämnen, utan att det även kan vara gästprofessorer. Det föreslogs breda satsningar så donatorn själv kan bestämma inriktningen. Förslag från FN3: Rent vatten Miljö Hälsa Medicin Ljus Luft ren energi industriell utveckling Life science Ordföranden föreslog att ärendet skulle delegeras till LTH:s ledning. 3

LUNDS UNIVERSITET PROTOKOLL Lunds Tekniska Högskola Forskningsnämnd 3 2013-05-24 39 REKTORSUPPDRAG Forskningsframsteg Rektorn önskar input till Ingenjörsvetenskapsakademien årliga högtidssammankomst om årets framsteg inom forskning och teknik. Vad har, det senaste året, varit allra mest intressant när det gäller forskning, i vid mening, på ditt lärosäte? Förslag skickas före 10 juni till Beatrice Nordlöf, LTH:s kansli. FN3 föreslår följande: 1. Solkartan över Lund (Brunnshög) som gjordes nyligen fick medialt genomslag. 2. LETS-programmet med intressanta resultat kring godstransporternas utveckling (i samarbete med ekonomisk geografi). 3. Nya viktiga diagnosmetoder för KOL (Kronisk Obstruktiv Lungsjukdom). Styrkeområden Uppdrag från rektor att identifiera styrkeområden/profilområden/karaktärsområden. Diskussion. Nämnden föreslog att förbränningsteknik och reglerteknik skulle strykas från listan med motiveringen att ämnena är för snäva. Områdena energiteknik, bebyggelse och arbetsmiljö skulle läggas till listan. Bilaga 39: Uppdrag 40 ÖVRIGT Ordföranden frågade om det finns intresse för samarbete med Jadavpur university. Nästa sammanträdesdatum: 23 augusti kl 13.15-15.00. 41 SAMMANTRÄDET AVSLUTADES Ordförande förklarade mötet avslutat. Vid protokollet Justeras Anna Trosslöv Lars J. Nilsson 4

Ljusportalen Smart Lighting

ESTETIK PSYKOLOGI BIOLOGI MEDICIN TEKNIK FYSIK

Växterna mår bättre om de får rätt ljus HPS lampa Heliospectra s LED lampa Heliospectra samarbetar med Swedeponic som odlar för varumärket Santa Maria.

Lunds universitet / Kompetenscentrum Ljus

Effekter av o ljus på hälsa Centrala nervsystemet Depression (Seasonal Affective Disorder) Endokrina systemet Neurohormonell balans Hjärtkärlsjukdomar Autoimmunitet Infektioner Lunds universitet / Kompetenscentrum Ljus

Funktionell energieffektiv belysning som befrämjar hälsa och välbefinnande Estetik Pedagogik Flervetenskap Medicin Teknik Biologi Psykologi Filosofi Materialvetenskap Fysik Lunds universitet / Kompetenscentrum Ljus

Den flervetenskapliga dialogen är en bra grund. Lund kan nu ta en ledande roll i utvecklingen av Smart Lighting. Smarta systemlösningar kan ge rätt ljus, på rätt plats, vid rätt tidpunkt.

Smart Lighting kan ge bättre ljusmiljöer, och samtidigt spara mycket energi. Det är många som satsar på Smart Lighting.

Innovativ teknikutveckling (1) möjliggör uppskattade dynamiska ljusmiljöer (2) och Societal Health (3). 1. Smarta systemlösningar, kring skärningspunkten mellan ICT, Telecom och smarta elnät, med LED, sensorer, hård- och mjukvara och användargränssnitt, och start via Smart Lighting, ger en helt ny form av affärsmöjlighet. 2. Dynamiskt ljus med naturljuskaraktär ger möjlighet till bättre upplevelse och mycket högre mervärde. 3. Societal Health Bättre livs- och arbetsmiljöer, t.ex. förskolor, skolor, äldre och sjukhus, genom fler gröna jobb.

Smart Lighting, www.lth.se/lli The Facilitating Dimension The Governing Dimension Smart Lighting CIRCLE Finansdepartementet Mobile Heights PhotonicSweden Socialdepartementet SIS Trafikverket Swedish ICT Malmö kommun ISO Näringsdepartementet SSLEC Lunds Kommun Trafikverket nmc@lu CIE Energimyndigheten Stockholm SP ELCA VINNOVA Young Master Program Göteborg Sustainable ceebel Energimyndigheten Malmö Kommun Development PremiumLight Lunds Kommun BOB-gruppen The Research Dimension Lighting Europe TNO Alto University LLI Charles Edqvist Bo Monemar Marie Lövegren Chalmers Bob Karlicek Lars Samuelson Dan Hessman Reine Karlsson KTH Tommy Govén Per Johnsson Elisabeth Nilsson Thorbjörn Laike Sven Huldt Pufendorf Marie-Claude Dubois Nils Svendenius Monica Billger Martin Lundmark Institute Jesper Arfvidsson Ivo Martinac Hillevi Hemphälä Lars-Henrik Ståhl Klas Sjöberg Conrad Thomas Lindhqvist Luttrop Arne Lowden Susanne Widell Allan Rasmusson Raul Carlson Johannes Persson Torbjörn Åkerstedt Dan-E Nilsson The Business Dimension Trafikverket Stockholm Göteborg IKEA SP Malmö Aura Light Lund Greinon Engineering AB Midroc ElektroLanz AB JM Bygg BrainLit AB glo aaxsus AB Ericsson AB EC Konsult AB Nordic LIGHTAB Heliospectra Light Fagerhult PhotonicSweden Dagsläget i utvecklingen av ett Svenskt innovationssystem för ICT-ljus, 2013-05-24.

Målet för belysningsutveckling har hittills varit att producera mycket ljus, mycket lumen, mycket lm/w. Många föredrar dock glödlampsljus. Målet bör vara att skapa bra ljus Trivselkvalitet Glödlampa LED Lysrör 1940 2012 Lunds universitet / Kompetenscentrum Ljus

Dynamiskt ICT ljus kan ge lika stimulerande och lugnande upplevelse kvalitéer som naturens ljus, och ännu bättre Upplevelsekvalitet Naturens levande ljus Ljus som förfinar sinnesstimulansen Intressant utvecklingsområde Teaterljus Glödlampa 1900 Hittillsvarande statiska belysning Lysrör 1940 2013 Smart Lighting LED Det finns en enorm affärspotential för ICT-ljus som lyser upp vardagen för de många människorna.

LjusportalenSmartLighting Portalentydliggörvärdetavdenyamöjligheternaattskapasmartdynamiskbelysning somgerrättljuspårättplats,pårättsätt,vidrätttidpunkt.smartlightinggerväsentliga möjligheterattskapamänskligtbättreljusmiljöerochsamtidigtsparamycketenergi. Ansvarig: LarsMontelius Operativledning: ReineKarlsson Web redaktör: Vakant Ljusportalenärenlevandekontaktfunktionmellan: samhälletsbehovavfunktionelladynamiskaict,el ochljuslösningar, affärs ochsamhälls aktörersomverkarförförnyelseoch flervetenskapliginnovations ochljusforskning. Måletärattskapaintresseförsmartaljuslösningar.

Kontaktpersonerinomolikaområden: LU/SP, Nationell innovationsagenda Lars Montelius www.lth.se/lli EU projekt, grön affärsutveckling Reine Karlsson www.lth.se/lli Arkitektur, dagsljus Marie Claude Dubois www.edb.lth.se Hållbar stadsutveckling, IIIEE Lena Neij www.urban.lu.se, www.iiiee.lu.se IIIEE, styrmedel för hållbar utveckling Thomas Lindhqvist www.iiiee.lu.se Circle, innovativ upphandling Charles Edquist http://luis.lu.se/en/news/112 Entreprenörskap Marie Löwegren http://www.entrepreneur.lu.se Mobile Heights, affärsutveckling Mats Ekstrand http://mobileheights.org ICT utveckling, standardisering Tord Wingren http://www.lnc.ideon.se/tag/tord wingren/ Elektroniksystem, sensorer Viktor Öwall http://www.eit.lth.se LED/nanotrådar, SSL Research Center Lars Samuelson http://www.ftf.lth.se Fotonik, sensorik Dan Hessman http://www.nano.lth.se/ftf dhe Ljusmätning, teknisk provning Per Olof Hedekvist www.sp.se Nanometerkonsortiet (nmc@lu) Heiner Linke http://www.nano.lth.se/heiner.linke/my home Ceebel, miljöpsykologi Thorbjörn Laike http://mpe.arkitektur.lth.se/forskare/thorbjoern_laike/ Humanistlaboratoriet Marianne Gullberg http://www.humlab.lu.se Ljus för en åldrande befolkning Karin Wendin http://www.linkedin.com/pub/karin wendin/11/916/666 Medicin, ljus för hälsa Klas Sjöberg http://www.lu.se/lucat/group/013240600 Hälsomiljöer och ljus Matilda van den Bosch http://www.epochtimes.se/articles/2011/11/28/22394.html Oftalmologi, synergonomi Hillevi Hemphälä http://www.eat.lth.se Synsinnet hos djur och människor Dan E Nilsson http://www4.lu.se/o.o.i.s/7255 Molekylär cellbiologi Susanne Widell http://www4.lu.se/molecular plant biology

Viäskar150000krför20%finansieringavenweb redaktör, somarbetarmed: Kontinuerliguppdateringavwebsidor,baseratpå o Inkommandematerial,och o Vissförnyelseinriktadbevakning Redigeringochtydliggörandeillustrationer KontaktermedLU ochlth kommunikationsfunktioner Visskontaktmedlokalamedia

PROTOKOLL - FN3 Sammanträdesdatum 2013-04-19 1 Forskningsnämnd 3 Närvarande ledamöter: Lars J Nilsson Maria Johansson Mats Bohgard Lena Hiselius Jens Klingman Magnus Larson Thomas Lindhqvist Matti Ristinmaa Nils Johansson professor, ordförande univ.lektor, docent, vice ordförande professor univ.lektor professor professor professor professor doktorand Övriga närvarande: Anna Trosslöv protokollförare Peter Jonsson Havsportalen, 26 Andreas Larsson Innovationsportalen, 26 Max Åhman Energiportalen, 26 Frånvarande ledamöter/suppleanter: Jan Olhager professor Jan-Eric Ståhl professor Per Tunestål professor Christina Windmark doktorand 20 MÖTETS ÖPPNANDE Ordförande förklarade sammanträdet öppet. 21 FASTSTÄLLANDE AV DAGORDNING Beslut: Den föreslagna dagordningen fastställdes. Inbjudna gäster för presentation av forskningsportalerna: Peter Jonsson, Andreas Larsson, Max Åhman och Lena Hiselius. 22 PROTOKOLL FRÅN FÖREGÅENDE SAMMANTRÄDE Beslut: Protokollet lades ad acta. Bilaga 22: FN3 protokoll, 2013-02-11

LUNDS UNIVERSITET PROTOKOLL Lunds Tekniska Högskola Forskningsnämnd 3 2013-04-19 23 MEDDELANDE 2 Rektorns meddelanden enligt utskick med kallelsen. Remiss: Rättigheter för studenter vid LU remissvar från LTH Slutrapport förstudien om forskningsinformationssystem för LU VinnVäxtansökan (sbhub, LU, SLU) Stadens försörjningssystem Sveriges Ingenjörer expertgrupp för kvalitetsmätning (inkl. samverkan) även utbildning Utlysningar på Formas och Vinnova Eriksson/Wallström vill synliggöra hållbar utveckling (Gröna Lund) Innovation in Mind Formas utvärdering av samhällsbyggnadsforskning VR-utvärdering tillämpad mekanik Bilaga 23: LTH:s remissvar - Rättigheter för studenter vid LU 24 DELEGATIONSBESLUT Beslut: Bilaga 24A: Bilaga 24B: Delegationsbeslut gällande disputationsärenden (LTH 2013/396, LTH 2013/499 och LTH 2013/618) lades ad acta. Delegationsbeslut gällande fastställda kursplaner (LTH 2013/454 och LTH 2013/515) läggs ad acta. FN3 önskar att kraven på betygsnämndskommittén förtydligas och kommer att föreslå på forskningsberedningens nästa möte att FN3 får i uppdrag att inkomma med ett förslag. Disputationsärenden Fastställda kursplaner 25 RAPPORT OCH UPPDRAG FRÅN FORSKNINGSBEREDNINGEN Ordföranden informerade om rapport och uppdrag från forskningsberedningen. Synpunkter på handläggnings- och beslutsordning. Inga synpunkter framfördes. Identifiering av lämpliga nyckeltal för forskningsnämnderna. Ordföranden föreslog att Christina Åkerman, kvalitetssamordnare, ska bjudas in till nästkommande sammanträde för en diskussion kring nyckeltal. Diskussion kring nyckeltal och hur fakultetsmedel delas ut. 26 PRESENTATION AV FORSKNINGSPORTALERNAS VERKSAMHET OCH ÄSKANDE AV MEDEL Havsportal Peter Jonsson Portalen omfattar 12 forskningstema, 16 institutioner, och 110 personer är involverade. Portalens fokuserar på att samverka (dela kunskap och kontaktnät), stimulera tvärvetenskap och informera. www.havsportalen.se Havsresan

LUNDS UNIVERSITET PROTOKOLL Lunds Tekniska Högskola Forskningsnämnd 3 2013-04-19 Planer för portalen: Utöka samarbete till andra högskolor i regionen Informera kommuner Fortsätt leta deltagare 3 Innovationsportal Andreas Larsson www.innovation.lth.se Pågående arbete: Nätverk Innovationsförmåga lunchträffar. Innovation in Mind konferenser och innovationsworkshops. Idéer för framtiden: Forskarmöte Öppet seminarium Q&A-intervju Djupintervju Studiebesök Innovation in Mind Resultatspridningsworkshops Energiportalen Max Åhman www.lth.se/energiportalen/ Idé: att det ska vara enkelt att hitta hemsidan LTH och energi. Pågående arbete: Aktivt driva nätverksfrågan Identifiera frågor som man kan anordna workshops om Transportportalen Lena Hiselius Idé: att skapa skyltfönster för transportforskning vid LU. Planer att göra en inventering över transportforskning vid LU. Funderingar på vilka ambitioner portalen ha? Transportportalen är tänkt som ett komplement till portalen Urban Arena där fokus ligger lite mer på samhällsbyggnad medan transportportalen har ett starkare tekniskt inslag. Nämnden diskuterade vikten av att forskningsportalerna drar lärdom från varandra. 27 ÖVRIGT Ledamöterna välkomnas att skicka in notiser som kan vara av intresse för alumner vid LU generellt vid LTH specifikt. Notiserna skickas till Beatrice Nordlöf vid LTH:s kansli. Nästa sammanträde kommer att behandla: yngre forskare nyckeltal information om LTH:s alumniverksamhet Maria Johansson kommer att rapportera om Formas utvärdering av samhällsbyggnadsforskning.

LUNDS UNIVERSITET PROTOKOLL Lunds Tekniska Högskola Forskningsnämnd 3 2013-04-19 4 Forts. 27 Representanter för forskningsportalen Lund Lighting Initiative kommer att få en ny inbjudan för presentation av sin forskningsportal. Mats Bohgard förbereder en eventuell skrivelse till ledningen om vår organisation kring hållbarhetsfrågor. Nästa sammanträdesdatum: 24 maj kl 13.15-15.00. 28 SAMMANTRÄDET AVSLUTADES Ordförande förklarade mötet avslutat. Vid protokollet Justeras Anna Trosslöv Lars J. Nilsson

2013-05-13 Presidium Anders Axelsson Rektor LTH ANMÄLNINGAR Järnvägsskolan blir kvar i Trafikverket Efter en längre tids arbete med att försöka hitta en ny ägare och verksamhetsform för Järnvägsskolan är det nu beslutat att skolan blir kvar som resultatenhet i Trafikverket. Under åren sedan Trafikverket bildades har dialog förts med många olika intressenter. Trafikverket har i dessa diskussioner varit mycket tydligt med att Järnvägsskolans möjligheter till långsiktig utveckling måste vara helt säkrad för att en överföring till en ny ägare skulle vara möjlig. Detta har inte lyckats fullt ut och därigenom återstod till slut endast möjligheten att fortsätta verksamheten inom ramen för Trafikverket. Vi välkomnar att ett beslut har tagits och ser med tillförsikt på framtiden. Att fortsätta som en resultatenhet inom Trafikverket ger oss mycket goda förutsättningar för att, tillsammans med våra kunder, fortsätta erbjuda förstklassig kompetensutveckling för den skandinaviska väg- och järnvägsmarknaden. Med vänlig hälsning Jan Nilsson, Skolchef Börschefen blir ny vd i Folksam Styrelserna i Folksam Liv och Folksam Sak utnämnde på tisdagen Jens Henriksson till ny koncernchef och vd i Folksam. Han efterträder Anders Sundström, som tidigare har meddelat att han avgår för att övergå till styrelsearbete. 46-årige Henriksson är i dag vd för Nasdaq OMX Stockholm. Han tillträder som koncernchef och vd i Folksam senast den 1 november, enligt ett pressmeddelande. "Med sin breda bakgrund från näringsliv och samhällsfrågor är Jens Henriksson sällsynt lämpad att vässa Folksam för framtiden", skriver Nina Jarlbäck, ordförande i rekryteringskommittén. Ny professor Sören Vang Andersen, professor i tillämpad matematik med inriktning mot Audio och video. Ny mark och mer pengar till Science Village Scandinavia (från Rapidas) Lunds kommun, Lunds universitet och Region Skåne är i färd med att skjuta till ytterligare mark och finansiering till bolaget Science Village Scandinavia, som ska exploatera ytan mellan Max IV och ESS. I dagarna presenterade bolaget ett ramprogram för området, som ska rymma allt från gästbostäder och konferensanläggning, till lokaler åt företag och universitetsfilialer. Postadress Box 118 Besöksadress John Ericssons väg 3 Telefon dir INT-46-46-222 3423, växel INT-46-46-222 00 00 Telefax INT-46-46-222 4531 E-post anders.axelsson@rektor.lth.se Internet http://www.lth.se

Enligt ett färskt styrelsebeslut ska Region Skåne och Lunds kommun skänka två angränsande markområden till Science Village Scandinavia AB, vilket ökar bolagets domäner från 17 till 24 hektar. Lunds universitet ska istället bidra med drygt fyra miljoner kronor i kontant finansiering. Fortfarande måste planen klubbas i bland annat kommun- och regionfullmäktige men det är mest en formalitet, uppger Science Village Scandinavias ordförande Bengt Holgersson. Ramprogrammet målar upp en grönskimrande vision där forsknings- och kontorslokaler kombineras med cykelbanor, spårväg, parkområden och till och med ett spa. Till hösten räknar Bengt Holgersson med att komma igång med detaljplansarbetet kring första etappen, byggnaderna närmast den planerade spårvägshållplatsen. När Max IV tas i drift 2015 ska helst faciliteter som korttidsboenden, laboratorier och verkstäder vara klara, säger han. I slutet av 2012 gick Lunds kommun, Region Skåne och Lunds universitet in med 25 miljoner kronor i Science Village Scandinavia. De tre ägarna beräknar dock att de totalt kommer behöva skjuta till uppåt 75 miljoner kronor innan de får tillbaka pengarna från sålda byggrätter. Science Village Scandinavia, som tidigare gick under namnet Lundamark, leds i dag av BG Svensson från Lunds universitets utvecklingsbolag Luis. Med som rådgivare är ESS tidigare direktör Colin Carlile. Bolaget är i färd med att rekrytera en ny vd då BG Svensson går i pension till hösten. 2 QS World University Ranking De klassiska elituniversiteten i USA och Storbritannien toppar listan över världens bästa universitet. Men även i Sverige har vi utbildning i världsklass - Karolinska institutet i Solna är världens fjärde bästa universitet i farmakologi och tionde bästa i medicin. QS World University Rankings by Subject rankar varje år världens 700 bästa universitet ämnesvis. Toppar gör universitetet i Harvard i flera ämnen, vilket gör det till världens främsta. Men även svenska universitet hamnar högt - Karolinska institutet i Solna placerar sig på fjärde plats i ämnet farmakologi. I medicin hamnar samma universitet på tionde plats. Andra svenska universitet i topp 50 i olika ämnen är Stockholms universitet, Lund Uppsala, Handelshögskolan, KTH, Chalmers och Sveriges lantbruksuniversitet. UTLYSNINGAR OCH SEMINARIER Har distribuerats VECKA 20-22 v. 20 13/5 Möte om Vattenhallen (8,30-9.30) Stabsmöte 9.30-10 Presidium (inleds med beslut kl 10) 10-12 Forskningsnämnd

14/5 Malmö Högskola (Eva E) 3 15/5 AAx opponent i Luleå 16/5 AAx opponent i Luleå 17/5 Professorsinstallation SLU v. 21 20/5 Stabsmöte 9.30-10 Presidium (inleds med beslut kl 10) 10-12 Prefektråd 21/5 LU Biofuel research day SABID AFC Havsportalen 22/5 Norra Alliansen 23/5 Möte om bisysslor RLR 24/5 SLTH v.22 27/5 Stabsmöte 9.30-10 Presidium (inleds med beslutsmöte kl 10) 10-12 ESS WaxIV möte 28/5 Hedda days Linnemiljöutvärdering planering Besök från Leiden Infrastrukturberedning Arkitektskolans vårtställning Invigning av produktionsportalen

29/5 Sust Business Hub 4 30/5 Forskningberedning Utbildningsberedning Middag fr hedersdoktorer 31/5 Promotion

ProduktionsPortalen LTH Välkommen till invigning av ProduktionsPortalens laboratorieverksamhet i Maskinhuset, tisdag 28/5 och onsdag 29/5. LTH:s forskningsportaler är gränsöverskridande och tvärvetenskapliga mötesplatser för forskare och industri. Produktionsportalen är den senaste av LTH:s forskningsportaler och omfattar laborationsfaciliteter med avancerad utrustning i nyrenoverade lokaler. Vi inbjuder därför till invigning av vår laboratorieverksamhet. Hjärtligt välkommen! Tisdag 28/5, kl. 18.00 21.30 (Södra Apparthallen våning 1 i M-huset) Kl. 18.00 19.30 Mingel, förtäring och bubbel i laborationslokalerna Kl. 19.30 19.45 Invigningsceremoni med LTH:s rektor Anders Axelsson Kl. 19.45 20.45 Förevisning av laborationslokaler och utbildningsverkstad Kl. 20.45 21.30 Kaffe Onsdag 29/5 kl. 8.30 13.00 (M-husets foajé) Kl. 08.30 09.00 Rektor Per Eriksson LU hälsar välkommen Kl. 09.00 09.30 Presentation av Produktionsportalens verksamheter Kl. 09.30 09.50 Eva Wigren chef för Industriell utveckling, Teknikföretagen om näringslivets kompetensbehov inom produktion Kl. 09.50 10.10 Ulf Holmgren avdelningschef Produktion och Arbetsliv på VINNOVA om framtida produktionsforskning Kl. 10.10 10.30 Fika och utställning Kl. 10.30 12.10 Demonstrationer och nyttiggörande av forskning Kl. 12.15 13.00 Lunch Onsdag 29/5 kl. 13.00 15.00 Extra demonstrationer för intresserade deltagare. Avslutas med fika. Bearbetningslabbet Ny avancerad utrustning: Alicona optiskt precisionsmätning av form och yta www.alicona.com Micro materials nanohårdhetsmätare med högtemperaturkammare www.micromaterials.co.uk CEMEC-labbet Energieffektiv induktionsvärmning för industriella processer. Nya material för elektriska maskiner och induktorer. RobotLab Forskning kring skickliga och lättlärda robotar med öppna styrsystem för ny sensorik, nya typer av rörelsestyrning, nya sätt att få robotar att förstå sin uppgift, med fokus på prestanda och produktivitet. Arrangemanget är kostnadsfritt. Varmt välkomna! Anmälan till: Jan-Eric Ståhl / Jinming Zhou, Bearbetningslabbet Hans Walter via hans.walter@iprod.lth.se Klas Nilsson / Anders Robertsson / Rolf Johansson, RobotLab Ange vilka aktiviteter (tisdag kväll, onsdag förmiddag, Mats Andersson / Mats Alaküla, CEMEC-labbet onsdag eftermiddag) du vill delta i.

2013-05-13 1 Forskningsnämnd 3 FASTSTÄLLDA KURSPLANER FN3 (2013-01-01 2013-05-13) Dnr Kurskod Kursnamn LTH 2013/454 MVK015F Reagerande transportfenomen och modellering LTH 2013/454 MVK020F Motorstyrning LTH 2013/454 MVK161F Värme- och massöverföring LTH 2013/454 VTV005F Utvärdering av ITS applikationer LTH 2013/515 MIO005F Avancerad köteori med tillämpningar LTH 2013/515 VTV001F Kvalitativa metoder LTH 2013/515 MMV042F Numerisk värmeöverföring LTH 2013/515 MVK025F Bränslecellteknologi LTH 2013/515 MVKF15F Grundläggande fordonssystem LTH 2013/847 VBM001F Introduktion till isoterm kalorimetri

Yngre forskare LTH 2013 05 16/AT Ref.no Institution Inriktning Rangordning Kommentar FN 1 EIT Security in the cloud 1 Inst. har haft flera interna förslag. FN1 2 Elmät Joint Interpretation of Data for Groundwater, Environmental and Engineering Applications Rangordning kommer FN1 3 Elmät Resilient technical infrastructures Rangordning kommer FN1 4 Matematikcentrum Financial mathematics FN1 5 Kemiska Polymer technology directed towards polymer physics 1 FN2 6 Kemiska Växtbioteknik 3 FN2 7 Kemiska Biomolekylär simulering 2 FN2 8 Kemiska Industrial biotechnology with specialization in bioinformatics 4 FN2 9 Livsmedelsteknik Analytisk livsmedelskemi Ingen rangordning pga jäv FN2 10 Livsmedelsteknik Food Hygiene Ingen rangordning pga jäv FN2 11 Kemiteknik Optimization of chemical processes for flexible and robust production and production changes FN2 12 Immunteknologi Celluär immunteknologi 1 FN2 13 Immunteknologi Högupplöst proteinkvantifiering 2 FN2 14 Maskinteknologi Exotiska material 1 FN3 15 Maskinteknologi Industriell värmning 2 FN3 16 Teknik och samhälle Sustainable urban mobility transition FN3 Byggvetenskaper/ 17 Hållfasthetslära Experimental in operandi micromechanics of Li ion batteries Rangordning efterfrågad FN3 18 Byggvetenskaper Byggnadsakustik Rangordning efterfrågad FN3 Research on fire safety in high risk and critical electrical infrastructures 19 Bygg och miljöteknologi such ass ESS, MAX IV 1 FN3 20 Bygg och miljöteknologi Träs fuktegenskaper vid höga fuktnivåer för användning i modeller för dimensionering av livslängd 1 FN3 21 Bygg och miljöteknologi Sustainability of energy water ecosystem economy nexus in a future warmer climate 3 22 Designvetenskaper Universal Design with a focus on Tangible Embedded and Embodied Interaction Ansökan önskar behandlas av både FN1 och FN3. Ingen rangordning FN3, FN1 23 Designvetenskaper Indoor environment Ingen rangordning FN3 24 Energivetenskaper Experimental fluid mechanics FN3

130509 Institutionen för Maskinteknologi Mats Andersson, universitetslektor 2-årigt stöd till anställning av yngre forskare Industriell värmning och varmformningsprocesser 1. Introduction: Beskrivning av ämnet, begriplig för forskare utanför ämnesområdet. En effektivare användning av energi i samhälle och industri är en nödvändighet för att Sverige ska kunna uppnå de klimatmål som är uppsatta på nationell nivå, såväl som på EU-nivå. Speciellt inom industrin finns stora möjligheter till energibesparing genom att införa ny innovativ teknologi för uppvärmning i processer. Konventionell industriell uppvärmning, t.ex. med gas, kol, etc. måste ersättas med mera energieffektiv uppvärmning som genererar mindre CO 2. Direkt emission kan undvikas genom att värma elektriskt, t.ex. i ugn, men dessa lösningar innebär oftast mycket låg effektvitet och verkningsgrad. Induktionsvärmning karakteriseras av att energin överförs beröringsfritt till arbetsstycket vilket möjliggör snabb och styrbar värmning i en mängd applikationer. Metoden fungerar på alla elektriskt ledande material, dvs. metallföremål, kolfiberstrukturer etc., genom att elektriska strömmar induceras i arbetsstycket. Konventionell induktionsvärmning har till en begränsad del införts i industrin, men bristerna i denna teknik är bl.a. att den bygger på 50 år gammal kunskap, där verkningsgrad och energiutnyttjande är lågt. Genom att utveckla ingående material och konstruktionen av en induktionsvärmningsenhet kan användningsområdet för tekniken ökas markant, samtidigt som en betydligt högre verkningsgrad uppnås. Lösningen, som utvecklats under en mångårig satsning på induktionsvärmning på avdelningen för Industriell Produktion, förenar unika materialkombinationer med optimerade geometrier och avancerad styrning för att uppnå jämn och styrbar värmning. Grundforskningen inom induktionsteori och materialforskning har följts upp med prototyper och implementerats i testanläggningar hos olika företag med mycket goda resultat. Genom att endast värma arbetsstycket och inte onödig massa så kan stora vinster göras inte bara genom energibesparing utan minst lika viktigt i form av ökad produktivitet. På samma sätt uppnås stora besparingar med induktionsvärmda verktyg där endast ytan värms, istället för hela verktyget. Processer som inte tidigare varit aktuella för induktionsvärmning blir möjliga att realisera och nya, förbättrade produkter kan nå marknaden. Trots stora framgångar inom forskningen på induktionsvärmning och en världsledande ställning för LTH inom området så återstår det mycket arbete att anpassa och integrera tekniken i industriella processer. Industriell Produktion har genom åren både forskat som undervisat inom tillverkning av plastdetaljer och kompositer samt inom plåtformning och ser en stor potential i att integrera induktionsvärmning med dessa processer. Att länka sammas grundläggande induktionsteori med industriella processer innebär nya utmaningar så som interaktion mellan magnetfält och maskinkomponenter som i sin tur ställer krav på nya materialkombinationer och på verktygens utformning, tryckhållfasthetskrav på värmaren, etc., utmaningar som inte relaterar till områdena var för sig. Även att anpassa och optimera processer utifrån nya värmningsmöjligheter erbjuder nya alternativa tillverkningssätt. Att utnyttja teknologin maximalt och lösa dessa problem är helt nödvändigt för att industrin ska implementera tekniken i stor skala. Den potentiella industriella användningen är mycket stor, från värmebehandling inom verkstadsindustrin till processvärmning inom metall, plast-, gummi- och livsmedelsindustri såväl som golv- och laminatindustri. I många fall med energibesparingar i storleksordningen 70-90% och inte sällan produktivitetsökningar på flera hundra procent.

Att forma material i varmt tillstånd på ett kontrollerat sätt har blivit en allt mer betydelsefull process för industrin, t.ex. fordonsindustrin och mycket forskning bedrivs internationellt inom området. Många av de olösta problemen kan härledas till styrbarheten av värmeprofilen hos det formade arbetsmaterialet samt totala tiden för en tillverkningscykel. En integrering av induktionsvärmningsenheter direkt i verktygen för varmformning är en relativt oprövad teknik, men erbjudet mycket stora fördelar om den kan realiseras. Forskningsutmaningarna är stora och spänner över ett brett område, från elektroteknik till produktions- och formningsteknik samt materialteknik. Fokus på satsningen inom varmformning kan delas in i två områden; varmformning av plåt, ett område som blivit allt viktigare i takt med att nya material upptäcks, så som höghållfasta stål och magnesiumlegeringar, samt tillverkning av plast och kompositprodukter, som fått mycket uppmärksamhet inte minst från fordonsindustrin de senaste åren. När det gäller plåtdetaljer så ligger svårigheterna i att kunna tillverka detaljer på ett rationellt sätt med nya förbättrade materialegenskaper. Inom plast och kompositområdet handlar det snarare om att reducera cykeltiderna vid värmning och kylning så att produkterna prismässigt kan konkurrera med traditionella material, t.ex. bilkarosser av kolfiberkompositer istället för stål, eller temperaturtåliga plastdetaljer istället för aluminium. 2. Strategic value: Motivering till det strategiskt värde för LTH och för institutionen. Det strategiska värdet för institutionen är stort. Det beskrivna området är under stark tillväxt och den teknologibas som utvecklats vid institutionen gör det möjligt att tävla i den absoluta spetsen av internationell forskning. Möjligheten att växa internationellt och att attrahera EU-medel är stor. Det beskrivna ämnet (teknikområdet) har en mycket tydlig profil avseende hållbar utveckling. Ur energibesparingssynpunkt kan induktionsvärmning innebära mycket stora positiva effekter för såväl industri som samhället i stort. För LTH finns ett stort värde i att visa att man satsar på hållbar teknik med stort värde för miljön. Ämnet är komplext och måste integrera kunskap från ett stort antal områden; tillverkningsteknik, materialteknik, polymerkemi, elektroteknik samt styr- och reglerteknik. Detta innebär att ett helt nytt tvärvetenskapligt område definieras, som kan innebära nya forskningsutmaningar inom dessa områden. Varmformning av kolfiberkompositer är ett exempel på system där flera processer samtidigt måste studeras, t.ex. interface och bindning mellan kolfiber, uppbyggnad av induktionsenheter som kan integreras i formverktyg, samt styrning av högfrekvent ström i flera samverkande spolar. För svensk industri är det strategiska värdet stort om tekniken kan utvecklas till full industriell implementering. Den tillämpade forskningen vid universitet och högskolor kan på ett mycket påtagligt vis bidra till att behålla och utveckla tillverkningsindustrin i Sverige. Ett exempel på detta är utvecklingen av varmformningsteknik vid Volvo i Olofström, som till stora delar baseras på forskning utförd vid LTU och som i realiteten medfört att huvuddelen av arbetstillfällena vid anläggningen i Olofström kunnat säkras. 3. Potential: Beskrivning av potentialen att växa till ett nytt/kompletterande forskningsområde eller ny inriktning för institutionen och LTH. Som beskrivet tidigare är ämnet Industriell värmning och varmformningsprocesser i högsta grad tvärvetenskapligt och kräver samlad kompetens från ett flertal etablerade forskningsdiscipliner. CEMEC (Centre for Electro Magnetic Energy Conversion) är en forskningsmiljö vid LTH som börjat

skapa denna tvärvetenskapliga profil och internationellt finns få liknande konstellationer. Detta ger möjligheten att skapa en unik forskningssammansättning med stor potential för snabb tillväxt. Hållbara tillverkningsprocesser och energieffektiv uppvärmningsteknik är ett område som är högt prioriterat nationellt i Sverige men också internationellt, t.ex. inom EU. Det är därför relativt enkelt att motivera forskningsinsatser inom området och möjligheterna att erhålla finansiella forskningsstöd är goda. Speciellt teknologier för effektiv framställning av kolfiberkompositer är ett mycket hett forsknings- och utvecklingsområde för den internationella fordonsindustrin. 4. Relation to education: Redogörelse för ämnets koppling till utbildning på grundnivå och/eller avancerad nivå. Ämnet har goda möjligheter att koppla till existerande kursutbud, men också till utveckling av nya kurser, framför allt på avancerad nivå. I grundkurserna för M- och I-programmen kan industriell värmning och varmformning ingå som enskilda delar eller integreras i befintliga delavsnitt. Kursen i Verkstadsteknik kan med fördel också utökas med en del som behandlar värmningsprocesser. Det finns idag tillräckligt med material för att skapa en avancerad kurs på LTH inom induktionsvärmning, en kurs eller kunskapsområde som helt saknas i Sverige och som är svår att hitta även internationellt. En sådan kurs kan också utformas som en doktorandkurs. 5. Funding: Finansieringsplaner och kompletterande finansiering. En postdoktor (yngre forskare) inom området kommer att vara knuten till centrumbildningen CEMEC, där en viss grundfinansiering finns via donation, 2014-2017. Kompletterande finansiering kan skjutas till från dessa medel.

Sustainable urban mobility transitions: Förslag till fakultetsfinansierad post doc 2013 1. Introduktion Resor och transporter spelar en allt mer betydande roll för invånare och näringsliv i våra städer. Transporter står samtidigt för en stor del av städers energiförbrukning och utsläpp av växthusgaser. Ett tydligt bevis på en fokusering på det urbana området är de forskningsutlysningar och policydokument som nu kommer både internationellt och nationellt. Europeiska kommissionens handlingsplan för urbana transporter 2010 syftar till att påskynda införandet av sk. Sustainable Urban Mobility Plans (SUMPar) i Europa genom att tillhandahålla vägledningar, främja utbytet av best practice, forskning och benchmarking. Enligt förslaget från Kommission ska alla städer och kommuner med fler än 100.000 invånare förebereda och genomföra en mobilitetsplan med syftet att förbättra trafiksituationen i städerna. Arbetet med SUMPar pekar dock på en brist så som transportplaneringen hittills behandlat personoch godstransporter genom att de studeras separat. De strategier och åtgärder som definieras i en Sustainable Urban Mobility Plan omfattar istället alla typer och former av transporter i en tätort, inklusive offentliga och privata, person- och godstrafik, motoriserad och icke-motoriserade. Sverige är känt som föregångsland när det handlar om planera för en hållbar framtid men i det här fallet finns det ingen övergripande plan för transporter, speciellt inte för godstransporter där kunskapsbristerna är stora speciellt med avseende på flöden och organisation i tätorter. Samtidigt står vi på tröskeln till stora strukturomvandlingar vad det gäller handel och varutransporter. E-handel innebär t.ex. att både konsumenternas och handelns beteende och organisation av transporter förändras. Mer E-handel innebär en potentiell överföring av persontransporter för inköp till godsdistributionstjänster. E-handel innebär också en påverkan på hur godstransporter sker, hur lagerhållningen organiseras eller handel lokaliseras. Förändrat inköpsbeteende kan potentiellt minska persontransporterna relaterade till de inköp som görs via e- handel men det kan även medföra så kallade rekyleffekter vilket innebär att insparad körsträcka/tid används till andra resor. Kunskapen om de sammantagna effekterna av denna redan pågående strukturomvandling är dock liten. Viss forskning har nosat på detta bl a av McKinnon och LETS2050Gods inom Lunds Universitet. Baserat på denna problematik och utmaningar ökar behoven att introducera ett ämnesövergripande område med det föreslagna namnet Sustainable urban mobility transitions för att understryka områdets fokus på de urbana transporterna men även på de långsiktiga förändringarna (transitions) som kommer att ske i den urbana miljön med exempelvis förtätning och satsningar på gång, cykel, kollektivtrafik och elektrifiering.

2. Motivering till det strategiskt värde för LTH och för institutionen. LTHs organisation av transportforskning speglar väl det sätt som området traditionellt har behandlats, dvs en uppdelning i persontransportdel och godstransportdel. Syftet med föreliggande post-docs tjänst är att öka integrationen mellan dessa områden. Forskningen kan bygga vidare på de samarbeten som etablerats inom LETS2050Gods där personer från Trafik och väg, Förpackningslogistik samt Teknik logistik har samarbetat. Strategiskt är det viktigt att integrera dessa ämnesområden för att kunna konkurrera om finansiering av forskning kring urbana transporter. Sett till mängden utlysningar internationellt och nationellt för forskning i det urbana området är det viktigt att LTH har en egen forskningsinfrastruktur som svarar upp till dessa frågeställningar. Sustainable urban mobility transitions länkar väl till den forskning som bedrivs inom Urban Arena och det arbete som nu initieras genom Transportportalen. Området har även starka kopplingar till den forskning som kommer att bedrivas inom K2 (Nationellt kollektivtrafikforskningscentrum) genom de gemensamma transportupplägg som kollektivtrafik och godstransporter till viss del har i tätorter. Kopplingen till K2 gör att de pengar som Lunds Universitet satsar i K2 via medfinansiering kan växlas upp. Det finns också intressanta kopplingar vad gäller elektrifiering av godstransporter och persontransporter (både fordon och infrastruktur) i tätort och den forskning som bedrivs på LTH inom IEA. Förslag på övergripande forskningsfrågor (lämplig kandidat bör ges möjlighet att styra inriktningen och definiera sin forskning) Möjligheter att samplanera person- och godstransport samt dess infrastruktur i tätort Möjligheter att samla in information om godsflöden i tätort samt modellering Aktiv styrning av gods- och personflöden i tätort (ITS) Nya affärsmodellers (typ e-handel) påverkan och långsiktiga effekter på logistikupplägg, markutnyttjande samt stadens planering och transporter. Nya drivmedel, system och infrastrukturer som kan samutnyttjas av både person- och godstransporter, t.ex. elektrifiering 3. Potential: Beskrivning av potentialen att växa till ett nytt/kompletterande forskningsområde eller ny inriktning för institutionen och LTH. Sustainable urban mobility transitions har potential att vara utgöra grunden för en ny tvärvetenskaplig forskningsinriktning på LTH där forskare som studerar lösningar och problem i urbana miljön kan samlas. Det nya området är tänkt att byggas kring professor Tom Rye (professor vid Trafik och väg sedan maj 2012) med ett övergripande ansvar för forskning kring stadens samtliga transportslag. Det finns ett starkt önskemål från Teknik och samhälles sida att möjliggöra uppbyggnaden av en forskargrupp kring Tom Rye som relativt nyanställd professor vid LTH. Det finns goda möjligheter för att forskningsområdet ska kunna utvecklas och bli framgångsrikt inom LTH då samarbetet påbörjats genom forskningsprogrammet LETS2050 Gods men även inom Urban Arena. Transporter och logistik är starka områden på LTH och det här föreslagna området har stark potential som gränsöverskridande och integrerande forskningsområde. Genom att samarbeten redan

finns ökar möjligheterna för att post docen får en flygande start och snabbt kan börja producera. Tillgången på lämpliga kandidater bedöms vara god genom goda kontakter från EU-projekt och nationella samarbeten. 4. Redogörelse för ämnets koppling till utbildning på grundnivå och/eller avancerad nivå. Resultatet av forskningen kommer att komma studenterna till del både på grundnivå (Trafikens effekter), och avancerad nivå (Transport Management och Trafikprojekt i tätort) inom Trafik och väg. Redan idag efterfrågas fler föreläsningar och större kursinnehåll som behandlar godstransporter. Genom den samverkan som forskningsområdet utgör kommer resultaten även att komma andra avdelningar och dess studenter till del, såsom Teknik logistik samt Förpackningslogistik. Därtill kommer forskningen att ge oss värdefull kunskap som direkt kommer att användas på forskarutbildningsnivå. Trafik och väg kommer vidare att föreslå en ny Masterutbildning med inriktning mot Hållbara transporter och det föreslagna forskningsområdet, Sustainable urban mobility transitions utgör en naturlig del i detta utbildningspaket. 5. Finansieringsplaner och kompletterande finansiering. Långsiktigt kommer finansiering för forskningsområdet att sökas från externa finansiärer som t.ex Formas, Trafikverket samt i EU-projekt. Behovet av SUMPar och en mer integrerad syn på personoch godstrafik förväntas leda till ökad finansiering av det föreslagna området i framtiden Initialt planeras att post-doc tjänsten delfinansieras från de 2 st Civitasprojekt (EU-projekt) som Trafik och väg medverkar i och som tar slut i december 2016. Föreliggande förslag är skrivet i samråd med prof Lars J Nilsson, Miljö och energisystem samt prof Tom Rye, Trafik och väg. För institutionen för Teknik och samhälle Lund 2013-05-10 Lena Hiselius Avd ansvarig Trafik och väg Stf Prefekt Teknik och samhälle

LTH: 2-årigt stöd till anställning av yngre forskare Experimental in-operandi micromechanics of Li-ion batteries PI: Stephen Hall, Division of Solid Mechanics. Summary This 2-year postdoctoral research position will focus on a new research area of 4D micromechanical characterisation of electrochemo-mechanical battery processes. A central component will be the use of x-ray tomography of both in-operandi chargedischarge cycling and in-situ mechanical testing of Li-ion batteries. The project is a timely development of a new research direction in battery research, building on the existing expertise in 4D experimental micromechanics of the PI. The project will also reinforce the newly established research direction in experimental mechanics, which is linked to both MAX IV and ESS. The project also has significant strategic potential in terms of the broader subjects of energy research (including battery and fuel cell research), of 4D experimental (micro)mechanics and of 4D x-ray imaging. Introduction Li-ion battery technology has become an integral part of our lives, being used in many everyday devices including mobile phones and laptop computers, for which there is a continuing push for extended battery life and durability. Furthermore, Li-ion batteries could be central to the mass production of clean transport solutions such as electric vehicles and could provide back-up for wind and solar energy. However, to achieve these clean energy goals requires significant advances in Li-ion battery safety, life and durability (reduced degradation, aging and failure), as well as reduced costs. Central to this challenge is to understand the mechanical processes of contraction, dilation, degradation and failure in the critical battery materials (i.e., the electrodes and separator) due to the underlying, coupled electrochemo-mechanical processes of charge-discharge. Whilst the electrochemical phenomena of Li-ion batteries have received significant attention by researchers in recent years, the mechanical aspects of these processes have been insufficiently addressed. A key open challenge is thus to identify and characterise the controlling micromechanical processes of battery operation. Such insight will enable the development of appropriate coupled-field electrochemo-mechanical modelling approaches. The focus of this 2-year postdoctoral research position will be 4D micromechanical characterisation of electrochemo-mechanical battery processes. The key novelty of this work, with respect to research being performed elsewhere, is the focus on the mechanical behaviour. The central aspects of the project will be in-operandi charge-discharge cycling and in-situ mechanical testing of Li-ion batteries. Here in-operandi refers to x-ray imaging during battery operation whilst in-situ refers to performing a mechanical loading test on the system during x-ray imaging. The postdoc will design and build a novel Li-ion battery cell and mechanical measurement/loading system for this in-operandi and in-situ x-ray tomography. This set-up will be used at synchrotron facilities (e.g., the ESRF in

France plus in the future at MAX IV), to: (i) quantify structural evolution of the battery electrodes and separator; (ii) to perform full-field strain measurement over the whole system; (iii) determine, by inverse analysis, local mechanical property evolution during repeated charge/discharge. The main research achievements will be the in-operandi/insitu experiments plus advanced 4D image analysis to yield new insight into the causes of battery failure (both gradual and catastrophic). One important tool for this analysis will be Digital Volume Correlation (DVC) to follow and quantify the swelling, shrinkage and degradation of the granular electrode material during charge/discharge. The in-situ loading of the battery device and inverse analysis of DVC strain-field data will enable local mechanical property evolutions to be determined. This will be a significant stepforward and enable advances in mechanical model development. The experimental data and insight will enable collaborating researchers (in the division of Solid Mechanics in Lund and at DTU, Copenhagen) to develop enhanced theoretical and numerical models for coupled-field simulation of battery operation. Such models could be exploited to design enhanced battery technology to address the questions on improving lifetimes, durability and safety. Strategic value This project has significant potential for new research output and also has a strong strategic value in terms of establishing new research possibilities for the division of Solid Mechanics and for LTH. Firstly, the project addresses a new research area for the group, which has high strategic value given the current and future need for improved energy storage and transport systems. In a more general sense, this project is directly in-line with LTH s strategic policy on developing research areas that will profit from the large-scale facilities currently being constructed in Lund; MAX IV and ESS. A central component to this research project is x-ray imaging and, in particular, in-situ experiments in x-ray imaging facilities. This will project will thus help establish LTH as a centre for x-ray imaging in Sweden. This will, in turn, enable LTH to be directly involved in the development of imaging at MAXIV. The project could also open the door to other energy-related projects, e.g., fuel cells, where neutron techniques (as will be available at the ESS) have a great complementary potential to x-rays. This project is also part of the strategy of the division of Solid Mechanics to develop experimental mechanics and to establish LTH as the leader in Sweden in this area. This includes the development of new competences in in-situ x-ray imaging experiments, which have important applications in a wide range of subject areas within mechanics and in many other areas. In addition to new local collaboration opportunities, this project involves two new strategic collaborations on battery research with University College London (UCL) (P. Shearing) and coupled field modeling with DTU, Copenhagen (B. Johannesson). P. Shearing is a leading international researcher in Li-ion batteries and his background in chemical engineering and significant experience in x-ray tomography of Li-ion batteries strongly complement the capabilities of the Solid Mechanics team in Lund. Collaboration with P. Shearing also opens up a link to the strong Manchester x-ray imaging (. B. Johannesson will be involved in the exploitation of the experimental results from this postdoctoral project, in collaboration with members of the Division of Solid Mechanics

(Johannesson is an expert in coupled-field problems and, in particular, the development of ionic multi-species transport and chemically-reactive models). Potential This project has strong potential to provide novel research results to an already competitive field due to a quite different perspective, i.e., studying directly the mechanical consequences (dilation, contraction and degradation) of the electro-chemical battery processes. These mechanical processes are the principal causes of Li-ion battery performance loss, but their study has been largely neglected to date. Therefore, the potential of this project to make a significant contribution to the field is high. There is also great potential for this post-doctoral position to grow into a strong new research area for the division, building on existing expertise of the group. This concerns both the development of research on Li-ion battery and in the experimental studies of coupled-field problems in general (where one must consider the interaction of mechanics with, for example, fluid flow and chemistry). The project will also strengthen the overall experimental mechanics capabilities of the division, thus enabling future growth in this area. Furthermore, the project will play an important role in integrating the expertise in experimental mechanics recently brought to the group by the PI of this project and the traditional strength of the division in theoretical and numerical mechanics. The nature of this research project will also lead to a development of cross-disciplinary collaboration, in addition to with MAX IV and ESS. In particular, the project will benefit from experience in complementary experimental methods and diffusion related problems in the division of Materials Engineering. Collaborations will also be established with chemists working on battery electro-chemistry and with mathematicians working on multi-dimensional image analysis. Relation to education This research project has a strong focus on advanced experimental mechanics, which is a newly established research area in the Division of Solid Mechanics. This is also an area in which we are developing education at different levels. A new advanced level course in Modern Experimental Mechanics was established this year and is currently running successfully. The vision is that by developing the research further in this area will also develop the possibilities for more hands-on experience for the students. This will provide students leaving LTH with an additional set of competences perhaps not available at other institutions in Sweden. In addition, the development of an experimental mechanics area in the group is leading to new possibilities for PhD students. Already our PhD students have been involved with experiments at MaxLab and we have accepted proposals at other large-scale x-ray and neutron facilities relating to the PhD studies of the group. The new competences provided by this postdoc position will open up new possibilities in a wider range of experimental investigations that will de transferred to the students through the courses and through interaction with PhD projects. Funding Co-financing of this postdoctoral position will be through already available funds from the PI s European Career Integration Grant (CIG).

POST-DOKTOR 2 ÅR - Byggnadsakustik Delphine Bard, Institutionen för byggvetenskaper, 10.5.2013 Institutionen för byggvetenskaper har konsekvent och under lång tid arbetat för att återbygga stark forskningskapacitet inom de strategiska områdena områden för samhällsbyggnad och samhällets infrastruktur, nämligen Byggnadsakustik och Geoteknik. Båda representerade ämnen som hade kollapsat när de kom in i institutionen och båda viktiga ämnen för en teknisk högskola. Vi har nu fått en betydande trovärdighet i olika forskningsprojekt inom dessa områden, god förankring i grundutbildning vilket inte minst avtecknar sig genom ett större antal examensarbete inom båda områdena. Detta är ett operativt bevis för kvalitén som grundutbildningen, studenterna anser att detta är viktiga ämnen samtidigt som detta har skett i samarbete med industrin så har vi fått acceptans hos slutanvändarna. I båda fallen har vi stöttat upp med kompetens från övriga delar av institutionen. Bemanningsmässigt och verksamhetsmässigt ligger Byggnadsakustik idag mycket väl framme i återuppbyggnaden av ämnet som helhet. Byggnadsakustik De medel som institutionen erhållit under senare år från EU, via Interreg IVA-projektet Silent Spaces, samt nationella medel från VINNOVA och Formas (AkuLite) har inneburit en ryggrad för återupprättandet. Genom dessa projekt har vi också kunnat stärka samarbetet med industrin samt med andra discipliner vilket inneburit att vi kunnat sätta in akustiken i ett vidare vetenskapligt sammanhang. Det multidisciplinära inslaget har vuxit genom att institutionen deltar i ett nytt EU nätverk (COST FP 1101) om trähusbyggande i stort. Allt detta gör att vi ständigt blir inbjudna till konferenser främst inom specialområdet lättbyggnadsteknik och modellering, bl a för att leda tematiska sessioner. Akustiken är därmed etablerat med spirande livskraft, några doktorander och två lärare med undervisning. Det är nu viktigt att ta vara på möjligheten att fortsätta utveckla akustik i ett tvärvetenskapligt sammanhang. Genom utbildningssamarbete med arkitektur har vi hittat nya vägar att attrahera studenter (se bif artikel). Slutligen innebär etableringar av Vibration and Acoustic Lab och samarbetet med Brüel och Kjær Sound and Vibration AS att vi kan ständigt ökar aktiviteten på i vår laboratorieverksamhet. På sikt innebär det att området kan etablera sig i ytterligare flervetenskapliga samarbeten med andra discipliner inom fakulteten. Planer för post doc För att fördjupa och stärka det som byggts upp forskningsmässigt under senaste femårsperioden önskar vi därför tillsätta en post doc med utgångspunkt i akustik i lätta konstruktioner Vi fokuserar då på det som gjort oss unika under denna period och där vi ser att vi ytterligare kan utveckla vårt kunnande och vår expertis för att bli nummer ett och det gäller a) predikteringsmodeller för lätta konstruktioner b) utveckla byggprocessen

för att nå de nya krav som utvecklats inom forskningsprojektet AkuLite och som kommer att ställas på framtida lätta konstruktioner. Detta stämmer också väl med de behov om framtida forskningsinsatser som slogs fast i samband med en internationell konferens hos Skogsindustrierna 2011. Det finns redovisat i en separat rapport ( ). En Post doc. med denna inriktning kan ta vid i ett läge när vi har möjlighet att ytterligare stärka vår position inom byggnadsakustik såväl inom Sverige som internationellt och utveckla våra tvärvetenskapliga samarbeten inom LTH. Vi kan också bibehålla det fina samarbetet som etablerats med flera lättbyggnadsindustrier som visat stort intresse för predikteringsmodeller. Det är definitivt nästa utmaning för denna industrigren. Vi kan använda Vibration and Acoustic Lab för verifieringar och samarbetet med Brüel och Kjær kan stärkas ytterligare. Beskrivningen ovan ger möjlighet för oss att ta hänsyn till sökandes olika profiler i avsikt att få in den bästa. Med det nätverk vi byggt upp internationellt inom detta område och det fina rykte vi har etablerat inom aktuellt område så vet vi redan idag flera personer som kan vara lämpliga.

Building With Wood Workshop - Acoustics and Vibration in Wood Construction, Stockholm 17-18 October 2011 Klas Hagberg SP Technical Research Institute of Sweden SP Trätek SP Report 2011:72

2 Abstract Building With Wood Workshop - Acoustics and Vibration in Wood Construction, Stockholm 17-18 October 2011 This report is a summary of the presentations, discussions and conclusions from an international Wood Construction. The workshop was organised by Skogsindustrierna (Swedish Forest Industries Federation) in co-operation with CEI-Bois Building With Wood. The report has been compiled by Klas Hagberg, WSP. The report contains a short summary of the presentations held during the workshop as well as a summary of the group discussions. The report also concludes that, have the highest priority in upcoming research calls and projects. Key words: Acoustics, vibration, building with wood, light-weight construction, research needs SP Sveriges Tekniska Forskningsinstitut SP Technical Research Institute of Sweden SP Report 2011:72 ISBN 978-91-87017-04-9 ISSN 0284-5172 Borås 2011 Cover photo: The N building at Linnaeus University in Växjö, Sweden. Photo:

3 Contents Abstract 2 Contents 3 1 Summary and conclusions 4 1.1 Design criteria 4 1.2 Development of structural solutions 4 1.3 Modelling and prediction 5 1.4 Measurement methods and techniques 5 2 Background 6 3 On-Going activities and future needs day one 7 4 Need for future development/research day two 11 4.1 Design Criteria 11 4.2 Development of structural solutions 11 4.3 Modelling and Predictions 12 4.4 Measurement methods and Techniques 12

4 1 Summary and conclusions The main conclusions from this workshop (regarding future research needs within wooden multi storey buildings) are summarized in the bullet points below. However for a full overview it is necessary to read the full report. The summary is divided into four parts according to the programme in the workshop. These four parts are mentioned below in the order that they appeared in the workshop. However, due to content of past and currently on-going projects, the main priority order concerning industrial needs, for upcoming calls and new projects should be I. 2. Development of structural solutions II. 3. Modelling and prediction III. 1. Design criteria and 4. Measurement methods and techniques 1.1 Design criteria Design criteria are developed currently in on-going projects. However, it is of interest to further develop some parts in this area after the completion of the projects a. Study cultural differences within European countries various acceptance in different countries due to cultural reasons. b. Level of acceptance for different categories of habitants (Students, elderly et.c) to promote more optimized constructions c. Develop methods in order to secure the final results d. Sound class rating. How many classes and which limits should fit? e. Further investigations regarding frequencies below 50 Hz, in particular vibrations. Investigate heavy impact sources further if this, after all, might be an alternative to the impact machine and then, consider this in the criteria development (noise and vibration) f. How do other technical aspects relate to acoustic criteria? Relation of (increased?) acoustic criteria to other aspects (cost, fire, energy, env.) for optimizing structural systems 1.2 Development of structural solutions Once more knowledge in design criteria is available, an important step towards more wood in buildings is to develop solutions that exhibit resistance to vibrations and low frequencies. It should be done in different approaches Global solutions for the building (R&D) a. Concept study b. Study Statics, Acoustics, Fire, Earthquake and Wind stiffness c. Study the effect of combining various materials d. Possibilities for modelling and predictions Parametric Study (R&D) a. Study critical parameters and certain elements b. Study stiffness and mass and their mutual influence on the characteristics c. Include studies of i. element damping, ii. multilayer constructions,

5 iii. loss factor d. In this context 1.3 Modelling and prediction It is important to highlight potential problem in order to promote development and try to (design criteria). Direct transmission including floating floors Involve potential various floor / building systems Consider multilayer constructions Consider radiation factor and loss factor o Study critical frequency 1.4 Measurement methods and techniques Measurement technique in low or very low frequencies has to be further developed since the statistical methods are not valid in the low frequencies / structural vibrations. There is Adapt to human perception of very low frequencies (sound and vibration) Carry out laboratory tests full scale tests o Perform variation studies o Coupling effects between rooms and structural parts Involve new/current impact methods in research (heavy ball for instance) further, if this after all might be an alternative to the standardized impact machine

6 2 Background A two day workshop / seminar regarding acoustics in Light weight structures was held in Stockholm at the Swedish Forests Industries Federation. This report gives a summary of the content and also the main conclusions from the workshop discussions, day two. The CEI--viewing the currently on-going European research on acoustics and vibration in wood structure buildings. There are currently a number of European initiatives in this field, including national as well as international cooperation projects. The basis for this workshop as well as for most on-going actions is the fact that light-weight structures in building, such as wood structures, may be more susceptible to acoustic problems and vibration than traditional structures. A further basis is that we lack common European evaluation criteria for such construction systems. During the first day of the workshop, representatives for the on-going projects, networks and the recently concluded BWW feasibility study presented the current status and overall results and conclusions from the respective actions. Each representative specifically highlighted needs for further research that have been identified. The second day was devoted to a structured workshop with the aim of collecting a joint European picture of the current situation for this particular wood construction issue and potential prioritized further needs for research and development. The result of this discussion is presented in this report and can be used as input to the formulation of a potential research call within the last round of calls in FP7 during 2013 as well as in other research programs.

7 3 On-Going activities and future needs day one In the following paragraphs, a short summary is given of the presentations during day 1. The full presentations can be downloaded from http://www.forestindustries.se/web/logga_in_3.aspx?redirecturl=/web/acousticsworksh op.aspx with reference to the name of the presenter/author. The workshop started with an over view of industrial needs. This presentation was held by Johan Åhlén at Moelven Töreboda in Sweden. Moelven Töreboda produces elements for wooden buildings in cross laminated timber. The system can be used in public buildings as well as multifamily buildings in several storeys. The main conclusion from his presentation is that the Swedish project AkuLite is very important to overcome the scepticism that is connected to light weight structures. The next presentation was given by Klas Hagberg and described the two projects AkuLite and AcuWood. The objectives and research contents of the projects are given in the presentation and the main conclusions are that the projects have to be followed by o o o Transfer of knowledge to industry, authorities, university students Raised knowledge within calculation models Minimizing failure during building process Herbert Muellner from TGM in Austria presented a recently finalized BWW Feasibility Study. The conclusions from this study is o o o o How to overcome the very poor low frequency sound insulation problem in some light structures and need for more robust constructions adapted to future requirements The urgent need for better prediction models The need for raised knowledge regarding flanking transmission Improvement of measurement procedures Olin Bartlomé from Lignum in Switzerland (corresponding to The Swedish Forest Industries Federation) presented the aim of a big national Swiss project, comprising in - laboratory at EMPA in Zürich, but also setting up an on-line database comprising a large

8 amount of data and combinations of different materials and building elements. It will promote more accurate design for builders and consultants. Ari Saarinen gave a short overview of projects running in Finland and possible future research work. There is a lot of experience in developments projects in Finland since the middle of 1990. Currently there is an on- comprising approximately 20000 m 2 of buildings. The challenges for future are: o o o o o o Lack of wood competence in the building sector Low frequency noise protection Walking noise Flanking transmission Noise from installations Prediction and monitoring tools Subjective vs physical properties Delphine Bard at Lund University presented the outcome from the regional project Sandberg as project manager. In this project there is focus on calculation models for vibrations and low frequencies. One important activity is to develop prediction models using FEM and to verify the models through measurements. The results could be very important input for future prediction model research. The project also involves production Technology and Harmonization of legal acoustic requirements in the region. From Norway, Anders Homb from SINTEF in Trondheim, made a summary of current status in Norway, regarding recently finished projects, ongoing projects and future needs (annex 09). The main focus in Norway is on Vibrations (comfort properties), design of floor constructions (CLT constructions), and calculation models of certain timber constructions. On- variables to optimize floor structures, and development of CLT construction. The future needs are summarized as: o o Impact sound insulation, lack of safe design and performance requirements / measured values

9 o o In particular low frequencies A lot still unknown regarding measurement methods and calculation models Cost effective and environmentally friendly solutions adapted to future modern requirements UK, represented by Sean Smith at Napier University in Edinburgh, is the European country that currently builds the most multifamily housing units with wood structures. The presentation gave an overview of new regulations involving Robust Details and the improvement in acoustic quality this new system has implicated. The presentation also included brief information of a classification system, or rather different sustainability requirements for acoustics. The main complaints are still in the region below 100 Hz and the main issues for the future are: o o o Bridging the gap between 20-100 Hz Tackling Stiffness of core floor Achieving all-round good performance for 20-4000 Hz After the summary of on-going research in each country there were presentations from two on-going European COST actions TU0109 and FP0702. The first action is managed by Birgit Rasmussen in Denmark at SBI (Danish Building Research Institute) aiming at harmonizing sound insulation aspects within Europe. The second one is a COST action based on acoustics in wooden constructions managed by Michel Villot at CSTB in France. None of the COST action managers were present, however they were in both cases presented by Eddy Gerretssen at TNO in the Netherlands, see annex 11. The conclusions from these actions so far are summarized below o o o o Need for good vibration descriptors and well defined measurement methods Need for perceptive studies in order to identify proper descriptors and frequency range (low frequencies) Collect relevant examples with performance data also for low frequencies and vibrations (collaboration between the COST actions) Proposals of preferred descriptors all over Europe to promote trade with building systems and products Finally the on-going revisions of two evaluation standards were presented by Werner Scholl. These standards are of great importance for the future development of wooden structures in multifamily houses. In the new standard proposals the quantity of single

10 numbers are reduced significantly, and now comprise only four single numbers according to table below This means that the frequency ranges will be fixed and all quantities are expressed in terms of sound reduction indexes. Old system and new system will work in parallel during some years period.

11 4 Need for future development/research day two Day two comprised structured group discussions in four different groups, each with one topic to discuss and to present certain needs for the future. The topics in the four groups were 1. Design Criteria 2. Development of structural solutions 3. Modelling and prediction 4. Measurements The results from the workshops show the following primary needs for the future 4.1 Design C riteria Design criteria are developed currently in on-going projects. However, it is of interest to further develop some parts in this area after the completion of the projects Needs for research and development (R& D) - Study cultural differences within European countries various acceptance in different countries due to cultural reasons. - Level of acceptance for different Categories of habitants (Students, elderly et.c) to promote more optimized constructions - Develop methods in order to secure the final results Confidence in sound class - Sound class rating. How many classes and which limits should fit? - Further investigations regarding frequencies below 50 Hz, in particular vibrations. Investigate heavy impact sources further if this, after all, might be an alternative to the impact machine and consider this in the design criteria development (noise and vibration) - How do other technical aspects relate to acoustic criteria? Relation of (increased?) acoustic criteria to other aspects (cost, fire, energy, env.) for optimizing structural systems Needs for engineering adaptation (Eng) - Develop towards one common design criteria for light and heavy structures - Standard development Prove that the new sound reduction indices are fairly correct R living /R impact to convince users and building system developers - Are the current proposal regarding R speech spectrum in ISO 16717 correct enough? 4.2 Development of structural solutions Once more knowledge in design criteria is available, one important step towards more wood in buildings is to develop structural solutions that exhibit resistance to vibrations and low frequencies. It should be done in different approaches Global Solution (R & D) Concept study o Study Statics, Acoustics, Fire, Earthquake and Wind stiffness o Study the effect of combining various materials o Possibilities for modelling and predictions Parametric Study (R & D) Study critical parameters and certain elements o Study stiffness and mass and their mutual influence on the characteristics o Include studies of element damping,

12 multilayer constructions, loss factor o In this context Needs for guidelines (eng) A database with typical Solutions and principles Harmonizing regulations/recommendations for vibrations 4.3 Modelling and Predictions It is important to highlight potential problem in order to promote development and try to (design criteria) Needs for research and development (R& D) Direct transmission including floating floors Involve potential various floor / building systems Consider multilayer constructions, Consider radiation factor and loss factor o Study critical frequency Needs for design software (Eng) A useful tool that help designers to predict sound insulation and vibration behaviour that also could be used to predict changes in construction 4.4 Measurement methods and Techniques Measurement technique in low or very low frequencies has to be further developed since the statistical methods are not valid in the low frequencies / structural vibrations. There is Research and development in measurement technique (R & D) Measurement technique in very low frequencies, below 50 Hz, adapted to wooden structural systems (light weight systems) Adapt to human perception of very low frequencies (sound and vibration) Carry out laboratory tests full scale tests o Perform variation studies o Coupling effects between rooms and structural parts Involve new/current impact methods in research (heavy ball for instance) further, if this after all might be an alternative to the standardized impact machine Engineering methods (Eng) Develop standard vibration measurement procedure Describe low frequency measurement technique in building acoustics

13

SP Sveriges Technical Tekniska Research Forskningsinstitut Institute of Sweden Vi Our arbetar work is med concentrated innovation on och innovation värdeskapande and the development teknikutveckling. of value-adding Genom technology. att vi har Sveriges Using Sweden's bredaste most och mest extensive kvalificerade and advanced resurser resources för teknisk for utvärdering, technical mätteknik, evaluation, forskning measurement och technology, utveckling research har vi stor and betydelse development, för we näringslivets make an important konkurrenskraft contribution och to hållbara the competitiveness utveckling. and Vår sustainable forskning development sker i nära of industry. samarbete Research med is carried universitet out in close och högskolor conjunction och with bland universities våra cirka and institutes 9000 kunder of technology, finns allt to från the benefit nytänkande of a customer småföretag base till of internationella about 9000 organisations, koncerner. ranging from start-up companies developing new technologies or new ideas to international groups. SP Technical Research Institute of Sweden Box 857, SE-501 15 BORÅS, SWEDEN Telephone: +46 10 516 50 00, Telefax: +46 33 13 55 02 E-mail: info@sp.se, Internet: www.sp.se www.sp.se SP Trätek SP Report 2011:72 ISBN 978-91-87017-04-9 ISSN 0284-5172 More information about publications published by SP: www.sp.se/publ

Teaching common language in architecture with short movies Delphine Bard Tina-Henriette Kristiansen Eva Frühwald Hansson

Abstract At the school of Architecture, Lund University, courses are taught in different ways. A large part of the education during year one and two is held as studios, doing creative (individual) project work, with helping teachers always available for supporting the students. Smaller courses, as the technical courses, rather correspond to the traditional engineering education style, using lectures, exercises, small project works (in larger groups) and final written examination. The problem is that many students are not able to fully assimilate the content from the technical courses and don t know how they should make use of the gathered information in their creative project works. They have also difficulties in talking about their project works, as they are lacking a common architectural language. The aim of the study covered by this paper was to improve upon the existing teaching/learning scheme by introducing new methodologies. Each and every student should have a very good understanding of the basic concepts and techniques that underlie the field of study, and this independently from their initial academic and personal background. Moreover, they should master the commonly accepted and used vocabulary for the field of study. In order to achieve our goal, we gave the students two different assignments: In the first assignment, the students had to produce short educational movies (several different topics, such as structure, acoustics, hierarchy, etc.) to explain and teach their topic to their peers. In the second assignment, they should implement the new knowledge gathered in the first assignment into their individual creative projects. Special topics they should implement were acoustics and structure. Most students produced really impressive movies and everybody liked this assignment. However, the implementation into the individual creative projects was not equally good, as most students had not included thoughts about acoustics and structure, two essential topics. Only the very best students, mostly from the second year, really improved and reached a higher level of understanding when assessing their level before and after the second assignment.

Contents 1. The teaching and learning situation... 4 2. Problems with the former teaching and learning situation... 5 a. Disparity in student background and skills... 5 b. Engaging the students and adapting to sensibility disparities... 7 c. Necessary changes... 8 3. The goals with the teaching/learning situation... 9 4. Actions taken... 9 a. Introductionof new methods... 9 b. On the importance of the used tools... 11 5. Methods to assess the changes in the teaching/learning situation... 11 6. Results... 12 a. The movie... 12 b. Implementation of new knowledge in individual projects... 12 7. References... 15

1. The teaching and learning situation The present report focuses on the situation we encountered in our very own environment. As such, it is about teaching common architectural language and tools to first and second year architectural students at LTH. We strive to teach our students the concepts of sound, form, light, color and construction, all orbiting around the common denominator of the architecture, see figure 1. The aspect of the communication is very essential to the work of an architect and it should be given a central role in the teaching experience. Figure 1: Common architectural language and tools. An assessment of the current situation prior to this study reveals that there is a big gap between different types of learning within the Lund University, affecting the teaching and learning experience at the School of Architecture. Two types of teaching styles seem to coexist in years 1 and 2. The first type, referred to as Special Courses in the following, consists of a series of four smaller courses (3 hp) extending over days or weeks: Architectural Design (year 1, fall), Building Materials (year 1, spring), Building Technology and Building Physics (year 2, fall), Energy and Building Services (year 2, spring). During fall, the courses are intensive courses during 2 weeks full time, whereas during spring the students have this type of course during one whole day a week. The courses are taught by guest teachers from other Institutes (Structural Engineering, Building Materials, Building Physics and Energy and Building Services). Based on lectures and small assignments, they are followed by a written examination at the end of the semester. Focused on technical matters like, e.g. structural engineering, they differ clearly from the students normal studios, which are more centered on creativity assignments, where the students design and make architecture themselves. This hiatus causes some

confusion for most students who seem to have little idea of why they have these special courses and how to use them in the creative assignments, especially in first and second year. Only the very best students seem to have the skills to connect and integrate the special knowledge in their own projects. The students often focus solely on how to pass the exam and not how to make use of this knowledge in their creative work, e.g. the structural engineering course. As a result of this lack of student connection and involvement, the retention rate of this kind of course is particularly low. This type of learning, in its actual form, is contra-productive as the class level is less than impressive compared to the students skills in general. The second type of teaching methods, referred hereafter as the Studio, is very different. At the school of Architecture in Lund, first year and second year students are assigned to four different studios, with about 35 students (50% first-year and 50% second-year) in each studio. Each studio is led by a different teacher. When studio projects are started, the students are given an introduction to an assignment, followed by a short inspiration lecture. The students will be given a timeframe of one week to one month to produce a review where they have to present their model and drawings to a jury. The jury will comment and guide the student but no grades will be given. It s up to the students daily teacher to follow and guide the students in their individual development. The students seem to make a rather compelling use of their studio classes to open up and integrate essential topics from the architectural field (light, construction, acoustics, material, colors, sustainability, building law, etc.). Both teaching types lack any kind of homogeneity. The studio teachers and the special courses teachers originate from different institutes situated in distinct buildings at the University. We only meet once or twice a year and that is only for time planning meetings. There is little to no collaboration taking place for the creative assignments and the studios, as the teachers usually don t meet for discussing teaching strategies or other pedagogic matters. We all individually felt frustrated by the current status quo and wanted to challenge this teaching/learning situation. The pedagogical course, where we met, brings a welcoming opportunity to test how this could be done. 2. Problems with the former teaching and learning situation a. Disparity in student background and skills A class of students is more often than not a disparate group of individuals having different educational and personal backgrounds. Also at the school of Architecture, the student group is very inhomogeneous. Some students have just finished high-school, while others have been working for a few years. Also, the path leading to the school of Architecture differs from student to student: some obtained a place thanks to the good grades they obtained at high-school, others by their architectural portfolio. This disparity can be seen in the studio work already from year one: students who were accepted due to their portfolio have already architectural skills and understanding, which other students are mostly lacking. Regarding the special courses, the technical courses, there is also a large difference between students, most often depending on what kind of high-school they attended (focusing on social sciences,

techniques, arts etc.) and on how long ago they graduated from high-school. In the first technical course ( Architectural Design ), some students clearly feel unconfident when seeing an equation or having to manipulate numbers, whereas others ask for more technical stuff, equations etc. Under-stimulated students often don t come to the lectures and might even drop out. On the contrary, students who lack the basic knowledge might not be able to grasp some particular aspects of the course content and while they are trying to make sense of the information, they might lose track and be left behind, unable to catch up with the course progress pace. Each missed concept or information will incrementally make it more difficult for them to keep afloat with the teaching material. This results in a different teaching situation, where the teacher does not really want to leave any student behind, but feels that he needs to do so for the sake of the group. Having to juggle with the incompatible requirements from the audience is detrimental to the quality of the course, for both the students and the teacher. From the teacher s point of view, this can be a stressful situation, where he must adapt in real-time the content of his message and his way of delivering it, depending on the reactions of his audience. Or the lack thereof, when he sees students drop their attention one after another. The diversity of background knowledge and skills has also the consequence that he has to be prepared for different scenarios, being ready to switch from the official course content to theoretical explanations about some basic background material that might be obvious for most of the audience but a few. He must therefore be constantly flexible and attentive. In our particular case, the students acquire basic knowledge about basic topics within their years of studying. Former lectures may have addressed acoustics briefly or some students might have had a course in acoustics within their study plan, while others might not. As a teacher, it is particularly difficult to assess in advance how much a single student knows about the subject. Typically, clues about the relative experience of the various students start arising when the teacher notices that some individuals start having difficulties following the course of the lessons. Another issue for the students is to make efficient use of the material they study in separate courses. For example, courses about light, acoustics and construction are not always easily transferable to an architecture course. One of the authors of this paper teaches the first technical course Architectural Design and has identified a clear problem with first year students who don t understand some basic rules of structural engineering, stress distribution in beams and columns, force distribution in trusses. Without this simple background, it is obviously very difficult for the student to make sense of the more advanced concepts presented to him during the course. Another of the authors is studio teacher and has experienced that some students lack the vocabulary to describe their own projects or don t know how to make use of things learned or heard in a parallel lecture into a description of their own project, or an analytic work on that topic. This is a very common issue of language and communication across related disciplines. These exposed issues are critical for the following reasons: - A set of basic concepts is necessary for a common understanding of architecture. - A common language is a prerequisite for an efficient communication among the students on one hand and between the students and the teachers on the other hand.

- The students need to have a rudimentary set of tools at their disposal in order to analyse existing architecture projects, as well as for making their own creations. b. Engaging the students and adapting to sensibility disparities Learning is an active process that requires the student to allocate a great part of his cognitive resources to the task over a long period of time. He first of all has to understand the material that is presented to him. Only when he is able to fully grasp what is presented to him can he elaborate a personal version of the information, in a format that he can make sense of. Once that step is done, he can memorize the material in order to be able to make use of this newly acquired information later on. The first issue of the teaching model used for example in the special courses in Architectural program is that the student tends to be passive for a long span of time. For practical reasons, it is asked to him that he stands still, without talking, without interacting with his peers, without interrupting the course of the class. The passivity and the lack of movement over a prolonged period of time typically lead the students to a progressive loss of concentration, sometimes resulting in dozing off, yawning or outright falling asleep during the teaching lesson. We have unfortunately all witnessed those symptoms to some degree among our students. We are not all equal in how we are best able to learn [Felder and Brent, 2005]. Some persons will be very sensitive to visual information, and will understand and remember concepts better when they are presented in drawings and pictures. Some others will better cope with information presented to them by speech. Yet some others will retain information the most efficiently when reading it, and will benefit from having a written support to follow on while the teacher speaks. Most would also argue that they need to put in practice some methods to better understand and memorize them, through problem solving for example. For others, however, repetitively applying the course content on various examples represents a complete waste of time. Biggs shows that if different learning methods (reading, hearing, discussing, applying, and teaching others) are combined, people learn more than if only one method (e.g. reading or hearing) is used. As an example, in the course architectural design, most of the students have problems to understand how forces are distributed in a truss, i.e. which parts will be compressed and which will be loaded in tension. Different methods have been tried out to teach this subject: calculations on the one hand (which was hated by almost all the students) and more practical ideas thinking how the loads will travel through the truss and how the truss will deform. However, even if this method is used, not all the students understand. During the second week of the course, the students then work with a group project where they have to actually build a truss of wood and rods spanning 1 m, however the truss is not allowed to weigh more than 150g. The trusses are to be loaded with two point loads to failure at the project presentation. This weight limitation in this project results in an optimization work for the students where they use computer models, lecture notes and building small models to find the perfect shape for the truss and also to find out whether single elements in the truss should be made of wood (compressed members) or rod (tensioned members). Most student groups in the end produce trusses that can carry quite high loads and they write a paper explaining how they came up with their idea, telling how the truss works, etc. This is a typical example of that students learn by using different means (lecture notes, computer programs, model building), with the model building as a hands-on method being the most important part resulting in understanding. However, in

the individual written exam at the end of the course, it can be seen that many students have difficulties to understand how trusses work, when they only work with paper and pencil. The technical courses teaching model is characterized by a one-to-many configuration, where one person tries to transfer some information to many recipients in the most efficient way. By definition, since every individual is reacting fundamentally differently to his presentation of the course material, the teacher has always to make some compromises. It is not possible to deliver the message in a way that is optimal for each and every one of his students, so choices have to be made. From the student point of view, a stressful teaching situation is usually also felt by the students, who then have more troubles connecting with their teacher and establishing a trust relationship with him. The rigid format of the teaching methodology makes it difficult for the student to get efficiently and consistently engaged during the teaching course. The difficulties that have been evoked have little to do with the intelligence or cognitive capabilities of the students. The result is that some students may be disadvantaged when they have difficulties to cope with the teaching style, independently from their actual intelligence, skills and potential to learn. To some extent, it might be that their personal compatibility with the teaching style limits their ability to get fluent in the taught discipline. c. Necessary changes The teaching paradigm and teacher-student relationship as they have been described often prove to be impractical and not very well adapted in our experience. The format of teaching a technical class might benefit from a rethinking, the introduction of new models or an outright overhaul. For an efficient teaching and learning experience to be possible, the students need to be engaged in the material, and not try to absorb it by passively attending the class. For this to be possible, some interactivity would need to take place. This includes both student-teacher and student-student interactions. By allowing mutual exchanges, the teacher can create an environment where all the students actively work on their understanding of the course, and help each other so that nobody is left behind. Each and every individual thereby regulates by himself the pace he needs for absorbing the content of the course efficiently. The format of the presented material also needs to be available under different forms that the various participants can absorb according to their particular abilities. The background and skill disparity issue needs to be addressed. New methods of learning should be introduced, that are better adapted to a wide range of student profiles. As the basic course material is a prerequisite for the understanding of the more advanced parts of the course, a particular focus has to be shone on the bases, in order to secure that all students learn and understand these. While a rethinking of the methodologies is definitely a part of the solution, we will see that the introduction of some modern technologies can also contribute to solving the issues, in so far as they are used wisely. In [Motschnig 2002] the authors study the evidence of superior academic results, but also social and personal growth, when applying a Student-Centered elearning (SCeL) teaching style. The problematic they focused on, is the limited amount of time a teacher can provide to their students. By using the computer for finding information they need for the course by themselves, the students benefit because the teacher can use the time allocated to each of them in a more valuable manner. The learning experience is thereby split in an autonomous period, where the students learn to work on their own and

find the basic material they need by themselves, and an interactive period, focused on transparent, open, respectful and empathic interactions within the group. The students tend to estimate that they learn more in a same amount of time, independently from their initial level of knowledge. Furthermore, they learn to solve problems by themselves. The course attendance is higher because students are more involved and active. In [Linckels 2005], the authors have a discussion about the role of the teachers in the cyber-age. According to their observations, the technology tools and internet are currently used by the teachers to increase the access to educational material rather than to improve the teaching experience in itself. Their reluctance to use the technology even more is reported to result from a lack of training and infrastructure. The authors suggest that adequate tools could help both the teacher and the students to get an even better experience. They propose a research tool based on semantic questioning instead of just keywords for retrieving relevant information. 3. The goals with the teaching/learning situation We would like to improve upon the existing teaching/learning scheme by introducing new methodologies. Based on the evaluation of the current situation, we strive to achieve the following objectives by the end of the teaching period: - Each and every student should have a very good understanding of the basic concepts and techniques that underlie the field of study, and this whatever their initial academic and personal background. - The students should master the commonly accepted and used vocabulary for the field of study. Thereby, they will be able to understand and be understood by their peers and professionals. Sharing a common set of terms is essential for communicating efficiently and precisely. - Each student should master a minimal set of skills, methods and tools that they will have to rely upon as a solid basis for their future professional work. - The students should be able to efficiently use modern communication technologies. This will give them a head start in a world where the said technologies are likely to play an increasingly crucial role and to evolve quickly. 4. Actions taken a. Introductionof new methods A new type of assignment has been introduced. The students, organized in small groups, were given the task to create short movies on basic topics using various media, including but not limited to: written text, sounds, still pictures, movies and animations. The result of their work would be shown to the other students and to the teacher. A strong emphasis had to be put on conveying the message clearly to the fellow students, to make it easy for them to understand. By working on this objective, they should create a common understanding and language.

We began by showing the students the results of similar assignments, in the form of audio files or movies found in podcasts or video sharing platforms (YouTube, Vimeo ). The examples were intended for showing the students what is required from them. A typical example presented to them was a sound file demonstrating the concept of a soundscape. The project has to be conducted seriously and requires a thorough investigation of the subject. It typically involves a lot of research, reading and the analysis of existing work, for example buildings erected by experienced architects. The resulting video must constitute an educational material on the given subject. As such, it should be clearly understandable by the fellow students and convey enough information for them to learn some new material and acquire valuable knowledge and insight in the topic, whatever their background was. The topics addressed in this assignment include: - Acoustics and sounds - Construction - Shapes - Colours - Movement - Textures and materials - Light - Scale - Rhythms - Hierarchy - Perceptions (light versus heavy, dynamic versus static, ) Some of these topics are to be found in Sten Eiler Rasmussen s book Experiencing architecture (1957). This reference has been used successfully for many years in architectural studies. Even though it covers the basic topics in a nice way, the sheer age of this book makes it less relevant for a contemporary usage among students. Therefore, we would like to create a new experience of learning these basic topics, based on modern media. Having the students working in groups on this kind of assignment has several benefits. First of all, the students really engage into the activity. They have to rely on themselves and their friends for the work to be done. And more importantly still, their friends count on them for doing the tasks they have been assigned to. This responsibility means that they cannot afford to be passive. They have to work actively towards their objective. Having to produce an educational material means that the students have to understand clearly the content of their production beforehand. If there are flaws in the comprehension of the topic, they will be inevitably laid bare during the production of the video, when there is still the possibility to dig deeper into the topic, to discuss and research until an appropriate level of understanding has been reached. This means that no one is left behind, each student will ultimately gain a good knowledge of his topic. Students that start with an advantage because they have former knowledge of the topic can help their

fellows by sharing their skills. While doing so, they will most probably deepen their understanding even more and gain confidence and proudness. The learning process is enhanced for all the students, whatever their initial level. Presenting the material with their own words is a great communication exercise for the students. Our hypothesis is that it will help them acquire and master the appropriate vocabulary for the field they are working on. It will also open their minds to new perspectives when confronted to the diverse points of view of their fellow students. Having to defend their position will result in more self-confidence. The validity of the hypothesis can be verified during the final presentation (see chapter 5). The teacher, meanwhile, also benefits from the process. Our hypothesis is here that the assignment implies mutually helping each other, so the teacher is less likely to have to explain all the content of the course material down to the very basics, as more experienced students will take over the task to help the more inexperienced of their peers. This most probably will result in significant time saving and a reduced stress level. b. On the importance of the used tools Modern media and new technologies are here not used as a goal in themself, but rather as a tool to achieve the expected educational goal. Producing a video is a multi-disciplinary activity and will teach them new skills. The very nature of the media to be used means that they will gain experience in using modern communication technologies. Furthermore, it is a perfect setup for learning the benefits of teamwork, a skill they will likely prove beneficial in their future professional activities. Working on a case study requires being strict and following some logical path. They will thereby learn to work in a more structured manner. The visual aspect is a primordial part of the architect s work. Working with illustrations can for example put in evidence how a structure is affected by tension. Having the students to produce an audio-visual content will be beneficial for them, as it will get them used to think and work with visual clues. Pictures and images also play a vital role in communicating about their work with customers. Less obviously at first thought, acoustics, lights, colours and shapes are also parts of a panel of tools an architect can use to communicate with. 5. Methods to assess the changes in the teaching/learning situation Contrary to scientific and technical disciplines, architecture is suited for a precise measurement of the skills only in a limited subset of material. It is thereby difficult to precisely assess the changes introduced in the teaching and learning situation by using traditional metrics. Letting the students express themselves on the studied material, explain what they have learned and describe their experience, is however a very good way to measure the development of the students skills as a result of the assignment. This is however a subjective measurement of the change. One more systematic way to investigate this would be to use the taxonomy scale proposed by Bloom, grading the students accordingly before and after the second assignment to see if they improved.

Another way could be to ask the students to evaluate their peers, the work they have produced, the progress they have made. Organizing a friendly competition (Architecture Grammies?) where each student is both alternatively judge and judged could for example give them the opportunity to have a critical view at each other s work and to learn even more in the process. Great consideration has to be given to the fact that the teacher still has the responsibility to permanently assess the progress of the assignment and support the students, in case they would need it while working on the assessment. A team of students might for example have the illusion of doing all right while moving in a wrong direction or producing a substandard quality product. A continuous evaluation of the progress should therefore take place, allowing for small adjustments in the course of the project. 6. Results The evaluation of the results consists of two parts: The movie (using digital tools) Implementation of new knowledge in individual projects The fact that the students in this assignment are either first or second year students is taken into account in the evaluation. a. The movie The teacher s evaluation: The students surprised us by how enthusiastic they were in their work and did a great job overall. The particular approach of studying of each individual could be recognized very clearly by the way the movie was worked on. Some of the students concentrated on seeking deeper knowledge and using the newly acquired knowledge for their assignment. Some others took liberties and provided a more creative answer to the assignment, not caring too much about the technical information that was requested. The student s evaluation: We had a half hour talk with the students to discuss about what they did and their experience on the assignment. The outcome of the movie experiment was very satisfying in general. Even though there are some inevitable disparities, everybody learned something and produced a movie that explained their topics in a more or less artistic way. The students shared during the evaluation that they enjoyed making the movies and asked for this kind of assignment to be repeated in the future. They appreciated the challenge of collecting knowledge about different areas and communicating it, found it very stimulating, since they had the freedom to be creative and to make their own style for this communication. They also appreciated to have the total liberty about the choice of style, computer software, formats (movies, stop motion movies, slide show, voiceover, music etc.). b. Implementation of new knowledge in individual projects This aspect of the assignment was centered on evaluating the students ability to implement this new knowledge into their own creative assignment. The topic was the remodeling of an existing building into

students living units. The students should focus on three topics: structure, acoustics and one more topic of their choice from the movies, see figure 2. Figure 2: Basic topics in architecture to be implemented in the creative assignment. The teacher s evaluation: In this part it became very clear at which general level the students were, according to Bloom s taxonomy (http://en.wikipedia.org/wiki/bloom's_taxonomy). The students who normally would be at a higher taxonomy level also seemed to integrate an implementation of the gained knowledge from the first assignment. There was also a very clear difference between first and second year students, besides a few exceptions. It seemed like the first year students, who were not trained in the creative process, had enough to do with understanding the assignment, getting an idea about how to turn their ideas into images, and tended to forget about the implementation of acoustics and construction. Only a very few (again the students with the normal higher taxonomy level on Bloom s taxonomy) of the first year students addressed acoustics issues in their projects. There was a very clear new focus on light and its quality, however, which had not been addressed before in this level. In addition, light construction was addressed in more projects, but they didn t seek the experts support that was offered to them, and the results were mixed. Regarding structural issues, the results were quite disappointing. Help was offered to the students in the studio one week before presentation of their projects. The teacher looked at some students projects and discussed the project with the student, if the student asked questions about the load-bearing

structure or the building methods. However, no student was at that point in time forced to discuss his project regarding structure, which resulted in only very few students pointing out structural issues in their presentation one week later. Most of the other students, when asked structurally related questions at the presentation, had not thought of the structure, despite it was strengthened in the assignment (special focus on acoustics, structure and one more topic of their choice). Regarding acoustics issues, the results were even worse, probably due to the fact that the acoustics teacher was sick the day of the studio-help, which meant that the students were not forced to think about acoustics during the process. The student s evaluation A half hour talk was held with the students, about what they did and their experience on the assignment. The students seem to find that acoustics issues are more diffuse to work with. They didn t find they had enough time to address this and gave the topic a lower priority. They found they needed more information on materials, sound waves, etc. and did not use their time to find it by themselves. They said they were very stressed about this part. They had the opportunity to meet an expert on the field but only a very few made use of this offer. The same could be said about the construction, but the students found it a bit easier to relate to, because they have had courses on this topic before. Again, only a few of the students made use of the offer to get help from an expert, but they appreciated that she was in the studio for one day. Some students also found the timing difficult. The project had to have reached a certain state before it made sense to seek help regarding structure and acoustics. They suggested more days with experts in the studios, for approaching them and asking them questions. Conclusion: In general the first assignment worked much better than the second assignment. The level was satisfying and the students seemed to like the challenge. In the second assignment only the best students managed to address the topics, while only a very few really impressed us. Most students only produced a mediocre job. It seems that there could be a grading in the topics, where some would be introduced in first year (light, color, simple constructions, etc.) and others in the second year (detailed construction, acoustics, etc.). In addition, the courses should be planned in a way where a much closer and more frequent contact with experts occurs and all students have scheduled meeting with these experts.

7. References [Biggs 2003]: Teaching for Quality Learning at University, 2nd edition, The Society for Research into Higher Education [Felder and Brent 2005]: Understanding student differences, Journal of Engineering Education, January 2005. [Linckels 2005]: Teaching in the Cyber-Age: Technologies, Experiments, and Realizations., Serge Linckels, Christoph Meinel, Thomas Engel, in Proceedings of DeLFI, 13-16 September 2005, Rostock, Germany, pp. 225-236. [Motschnig 2002]: Student-Centered Teaching Meets New Media: Concept and Case Study, Renate Motschnig-Pitrik and Andreas Holzinger, Educational Technology & Society 5 (4) 2002, ISSN 1436-4522, found at http://www.ifets.info/journals/5_4/renate.html in March 2012.

Research on fire safety in high risk and critical electrical infrastructures such as ESS, MAX IV. 1. Introduction: The research topic includes research on fire safety in electrical infrastructures, which have a high- risk profile, as they are critical for society, industry and international research. Examples of such infrastructures are e.g. nuclear power plants, but more recently even the fire safety responsible of the research infrastructures (MAX IV and ESS) has indicated the need for more research in this field. In these facilities a number of possible fire scenarios can affect the continuity of the facility and could lead to long operational stops or high damage. Possible fire scenarios are for example fires in di- electrical fluids in the coils of the accelerator, innovative combustible material for radiation shielding, cables fires, electrical instrumentation and cabinet fires in the instrument hall and transient fires (waste, temporary fire loads due to instrumentation). The consequences of such fires on the production can be demonstrated by the fire in the Ringhals nuclear power plant where small temporary fire loads (diving equipment and vacuum cleaners) in the containment led to a production stop of more than a year in one nuclear power plants (Magnusson 2011). The major damage was due to soot deposit on electrical components and equipment. Another example of a dangerous scenario is short cuts in transformers/coils with di- electrical fluid. This can lead to explosions followed by intensive fires depending on the choice of liquid. Research on performance criteria for the choice of the liquid is needed. As a summary the research topic will include areas such as: Fire development in electrical infrastructures caused by cables, electrical cabinets, di- electrical fluids, radiation shields, and transient fire loads (waste, etc.) Fire Mitigation by means of extraction of smoke, extinguishing systems, manual extinguishment etc. Consequence analysis of fires by means of environmental impact (smoke release containing radioactive particles, extinguishing water treatment, etc.) and impact on instrumentation and facilities (smoke deposit, etc.) All the above topics have been taken up in discussion with ESS fire safety engineer and show the need of research in this field of such infrastructures. 2. Strategic value: Max IV and ESS are two important projects/infrastructures for Lund University, which are clearly indicated in the strategic plan of LTH both as priorities for providing resources to research (p. 13) as well as for introducing and connecting it to the third cycle education to produce researchers for tomorrow (p. 14). The department of fire safety engineering (FSE) and systems safety has today within the research area fire safety engineering (not including the safety systems part) high competence areas within fire behaviour of materials, modelling, human behaviour and risk analysis. In the future plan of the division new areas should be developed of which industrial fire safety can be one of them. In order to further expand the department and

also to keep the highly international profile of the division, formation of new research topics into high competence areas is necessary and of strategic importance. At the moment the fire safety engineering group of department counts four research leaders (docent or similar) in fire safety engineering. Three of them are dealing with major research topics such as probabilistic performance based fire safety design (Dr. Håkan Frantzich), Human behaviour (Dr. Daniel Nilsson), fire behaviour of materials (Prof. P. Van Hees) and modelling (Prof. P. van Hees). The fourth research leader has a long experience on fire testing and training at Revinge (Dr. Stefan Svensson) and is building and expanding up the laboratory resources. Finally the department has also one adj. Professor (Prof. Haukur Ingason) who is dealing with tunnel fire safety. There is thus a good motivation to start research in one specific area on industrial fire safety and that is in the area covering the electrical infrastructures. The area might also lead to increase cooperation with SP Fire Technology and MSB Revinge as some of the research will be large scale fire testing and involvement of research supporting rescue services. 3. Potential At the moment, the area of research on this topic is concentrated to research on pool fires, which are a major fire hazard in electrical infrastructures. The research is now performed in a NKS (Nordic Nuclear safety research) sponsored project (development of models for pool fires) an a national project sponsored by the Swedish Board for fire research (Brandforsk) supporting research within a large international OECD project dealing with fires in enclosures with mechanical ventilation. This area is now covered within the research topics fire behaviour of materials and modelling as part- time activity of one professor and one PhD. The area has large possibilities to expand towards a research topic lead by a docent with several PhD students and will complement the other activities in the department both within fire safety engineering but also in the systems safety area where the results can be used as input in their research which is at global level. It is also worth mentioning that the area can further be expanded to industrial facilities outside the electricity production. 4. Relation to education The research area will be coupled to the fire safety engineering education in Lund both at bachelor level (traditional Swedish FSE education) and master level (International Erasmus Mundus programme for fire safety protection) as well as to the risk engineering programme. In these programmes different aspects of electrical infrastructures fires are treated. Furthermore there could be synergy with the advanced educational programmes at the department leading to PhD degrees. The department now has 5 own PhD students in fire safety engineering as well as 9 industrial PhD students (of which 5 are of the Marie Curie programme).

5. Funding: At the moment there is a 5 years project of 1.2 MSEK running sponsored by the Swedish board of fire research (Brandforsk) which, can be used a co- financing as it is dealing with fires in mechanically ventilated enclosures. The project started last year and will last until 2017. Furthermore there are strong indications that organisations such as NKS (Nordic nuclear research board) as well as NBSG (national fire safety group of nuclear power plants) can help to expand the area. At the moment a pool fire project sponsored by NKS is running and will last until the end of the year but possibilities for extension exist. Also NBSG has co- sponsored several previous research projects on fire development during the last year. Finally during the last year extensive in- kind support has been received by FSE Fredrik Jörud (ESS) by providing materials and contribution in kind by working hours in several discussion meeting. Fredrik also assisted in a master thesis of the international Erasmus Mundus programme, which will be finished this month. Remaining financing can be taken from the internal resources of the department but with the above mentioned co- financing there should be room for a two years appointment if the project is approved. References Faculty of Engineering, Strategic plan 2012-2016. Lund University 2012 T. Magnusson, Fire in the Containment During Pressure Test Causing Great Damage at Ringhals Nuclear Power Plant, Unit 2, Proceedings of the 12th SMIRT Pre- Conference Seminar on Fire Safety in Nuclear Power Plants and Installations, München, Germany; September 13-15, 2011.

Träs fuktegenskaper vid höga fuktnivåer för användning i modeller för dimensionering av livslängd Introduktion Livslängdsdimensionering av en konstruktion syftar till att kunna bestämma en konstruktions livslängd utifrån en belastning. Vilken belastning som är intressant beror på vilket material konstruktionen består av. För regnutsatta träkonstruktioner är det framförallt relativ fuktighet, temperatur och regn som är lasten. Olika rötsvampar har olika optimala fukt- och temperaturförhållanden, men generallt begränsas deras tillväxt vid fuktkvoter under fibermättnadspunkten (Zabel and Morell 1992), d.v.s. höga fuktkvoter i en träkonstruktion leder med tiden till rötangrepp. För att förlänga en träkonstruktions livlängd är det därför viktigt att se till att varaktigheten av höga fuktkvoter begränsas (Carll and Highley 1999). Detta kan göras på olika sätt, till exempel genom materialval, konstruktiv utformning, ytbehandling etc. För att kunna livslängdsdimensionera träkonstruktioner utomhus måste man därför kunna förutsäga vilka fuktnivåer som uppnås i konstruktionen under dess livslängd utifrån vilket klimat konstruktionen exponeras för och utifrån dess utformning. Detta tillsammans med information om rötsvampars aktivitet vid varierande klimat kan ligga till grund för en livslängdsdimensioneringmodell för träkonstruktioner som bygger på fysikaliska principer; fuktkvoten beräknas med hjälp av fukttransportmodeller med omgivande klimat som randvillkor på samma sätt som vid beräkning av temperatur och fuktfördelning i till exempel väggkonstruktioner. Utifrån fuktbelastningen kan sedan livslängden beräknas om rötsvampars aktivitet som funktion av relativ fuktighet, temperatur och tid är känd. Arbete med rötsvampars fukt- och temperaturberoende pågår för närvarande på avdelningen Byggnadsmaterial. Med hjälp av kalorimetri kan rötsvampars aktivitet vid olika fuktnivåer mätas (Wadsö et al. 2010). Denna metod är unik för avdelningen Byggnadsmaterial. För att kunna utforma en livslängdsmodell enligt principen ovan krävs dock även modeller för fukttransport i det höga fuktområdet samt indata i form av fuktegenskaper hos materialet. Ett materials fuktinnehåll beror på den relativa fuktigheten i luften, men också på fukthistorien; ett material som är under uttorkning har högre fuktkvot än ett material som fuktas upp. För att kunna beskriva fuktinnehållet i ett material som utsätts omväxlande för uppfuktning och uttorkning krävs kännedom om sambandet mellan relativ fuktighet och fuktkvot både för uttorkning (desorption) och uppfuktning (absorption). Det krävs också kännedom om vad som händer när ett material går från att torka till att fuktas upp och tvärtom. Detta beskrivs av så kallade scanningkurvor, men i det höga fuktområdet, d.v.s. i det fuktområde som rötsvampar är aktiva, saknas både absorptionsisotermer och scanningkurvor.

Detta beror på att metoden (pressure plate) som används vid höga fuktnivåer, ursprungligen är utformad för desorptionsförsök. Tidigare studier (Cloutier and Fortin 1994) har visat att scanningkurvornas utseende har stor inverkan på den beräknade fuktkvoten vid uttorkningsberäkningar. Cloutier and Fortin (1994) gjorde uttorkningsberäkningar dels med desorptionsisotermen som indata (dvs. den indata som finns tillgänglig idag) och dels tre hypotetiska scanningkurvor. De kom fram till att den beräknade medelfuktkvoten blev upp till 20% högre och uttorkningstiden upp till 25% längre om desorptionsisotermen användes istället för deras hypotetiska scanningkurvor. Kännedom om träs fuktegenskaper i det höga fuktområdet är därför nödvändig för att vidare kunna utveckla fukttranportmodeller i det höga fuktområdet (Nilsson and Sandberg 2011; Cloutier and Fortin 1994) och därmed också modeller för livslängdsdimensionering av träkonstruktioner. Arbete med fukt i regnutsatta träkonstruktioner har påbörjats i ett doktorandprojekt vid avdelningen Byggnadsmaterial. I detta projekt har bland annat en ny metod (Fredriksson and Johansson 2013) för mätning av absorptionsisotermer i det höga fuktområdet tagits fram. Denna metod möjliggör inte bara mätning av absorptionsisotermer, utan också mätning av scanningkurvor i det höga fuktområdet. Det finns därför goda förutsättningar att med denna metod få ny kunskap om träs fuktegenskaper och vidareutveckla modeller för fukttransport i det höga fuktområdet. Detta arbete är nödvändigt för att kunna utforma modeller för livslängdsdimensionering av träkonstruktioner. Strategiskt värde På grund av ökad fokus på koldioxidutsläpp kommer sannolikt världens cementförbrukning att behöva minskas vilket är fördelaktigt för träområdet. Detta kräver dock mer forskning gällande träkonstruktioners beständighet samt bra livslängdsmodeller också för träkonstruktioner. Eftersom avdelningen Byggnadsmaterial tidigare har jobbat med fukt- och beständighetsfrågor för andra material finns ett försprång inom dessa områden och därmed goda förutsättningar att bli starka och konkurrera internationellt också när det gäller fukt och beständighet hos träkonstruktioner. Trä är ett av våra mest använda byggnadsmaterial och det är därför strategiskt viktigt och nödvändigt att bredda kunskaperna inom byggnadsmaterialområdet och bli starka också inom träforskningen. Detta behövs om LTH ska vara stark inom byggnadsteknik. Potential Avdelningen Byggnadsmaterial har en lång tradition inom forskning gällande fukt i material och beständighet, men hittills har fokus framförallt varit på cementbaserade material. Avdelningen är stark internationellt när det gäller beständighetsfrågor och har tidigare utvecklat livslängdsmodeller för betong, bland annat för Öresundsförbindelsen. Ett forskningsområde relaterat till beständighet av träkonstruktioner skulle därför bredda både forskningen och kunskapen på avdelningen samtidigt som erfarenheterna av livlängdsmodeller från betongforskningen kan användas. Ett forskningsområde gällande fuktförhållanden i träkonstruktioner skulle dessutom komplettera pågående forskning om rötsvampars fukt- och temperaturberoende. Båda dessa kunskaper behövs för att kunna livslängdsdimensionera träkonstruktioner. Avdelningen har redan nu en Byggnadsbiologigrupp som arbetar med både mögel och rötsvamp med metoder som är världsunika, men också forskning gällande fuktförhållanden krävs för att göra en komplett livslängdsdimensioneringsmodell. Med forskning både om fuktförhållanden och rötsvampars fuktberoende samt tidigare erfarenheter av livslängdsdimensionering av betongkonstruktioner

finns mycket goda förutsättningar för avdelningen Byggnadsmaterial och LTH att vara med att leda beständighetsarbetet även inom träforskningen. Relation till undervisningen Avsnitt om trä liksom fuktegenskaper och fukttransport ingår i kurserna Byggnadsmaterial och Materiallära. Dessa kurser ges för sammanlagt ca 250-300 teknologer varje år på V- programmet, Brandingenjörsprogrammet, Arkitekturprogrammet och på Högskoleingenjörsprogrammet på Campus Helsingborg. Eftersom forskningen på avdelningen framförallt varit inriktad på cementbaserade material är det också inom detta område som kunskapen hos lärarna är störst. Det vore därför värdefullt att ha lärare med forskningsområden som berör andra material, framförallt trä eftersom det är ett av de vanligaste byggnadsmaterialen och ett av de stora avsnitten i dessa kurser. I fortsättningskursen Byggmaterialvetenskap, som läses av ca 20 studenter på V- programmet varje år, ingår avsnitt om fuktfixering och fukttransport samt beständighet vilka också relaterar till forskningsområdet. Det är dessutom viktigt att bredda kunskapen på avdelningen för att kunna producera relevant och uppdaterad kurslitteratur. Finansiering Kompletterande finansiering kan ske med hjälp av grundutbildningsmedel men ansökningar inom ämnesområdet har även skickats till Södra Skogsägarnas stiftelse för forskning, utveckling och utbildning samt till Formas. Ansökan till Södra Skogsägarnas forskningsstiftelse gäller en arbetsinsats på 50% under 2014-2015, total sökt summa är 1 194 kkr. Ansökan gäller grans fuktegenskaper med fokus på höga fuktnivåer och avser mätning av fuktegenskaper i höga fuktområdet (absorption- /desorptionsisotermer och scanningkurvor) samt fukttransportegenskaper. Ansökan till Formas gäller heltid under 4 år och total sökt summa är 4 760 kkr. Denna ansökan avser mätning av fuktegenskaper för trä och puts i höga fuktområdet samt modellering av sorptionsisotermer och fukttransport för trä i höga fuktområdet. Referenser Carll CG, Highley TL (1999) Decay of wood and wood-based products above ground in buildings. Journal of Testing and Evaluation 27 (2):150-158. Cloutier A, Fortin Y (1994) Wood drying modelling based on the water potential concept - hysteresis effects. Drying Technology 12 (8):1793-1814. Fredriksson M, Johansson P A (2013) method for determination of absorption isotherms ar high relative humidity levels. (manuscript under preparation). Nilsson L-O, Sandberg K (2011) A new model for wetting and drying of wood end-grain - with implications for durability and service-life. In: Proceedings of 42nd Annual Meeting The international research group on wood protection, Queenstown New Zealand, 2011. Wadsö L, Pilgård A, Alfredsen G (2010) Measurement of rot fungal activity as a function of moisture content. Paper presented at the 41st Annual Meeting of the International Research Group on Wood Protection, Biarritz, France, 9-13 May. Zabel RA, Morell JJ (1992) Wood microbiology: decay and its prevention. Academic Press, San Diego.

1. Sustainability of energy-water-ecosystem-economy nexus in a future warmer climate. The world continues to struggle with its critical natural and energy resource supplies as well as infrastructure challenges. The current situation has been exacerbated by global warming, which is recognized as one of the obstacles to sustainable development. Greenhouse gas (GHG) emissions, resulting from burning non-renewable energy sources, are identified as the major cause of global warming. Despite human s acknowledgement of the main driver of global warming and climatic changes, GHGs are still increasing dramatically worldwide. For example, GHG emissions have increased by 17% in the U.S during the 1990-2009 period and are expected to increase even more with the projected economic growth after the current recession. Reducing the carbon footprint of energy uses through replacing non-renewable energy sources with renewable ones is believed to be an efficient method for combating climate warming. Thus, the adopted governmental policies in response to global warming heavily rely on this belief. For example, the European 20/20/20 Energy Policy seeks production of at least 10% of the total energy from biofuels by 2020. According to the Energy Independence and Security Act of 2007, U.S. should produce 36 billion gallons of biofuel from corn and cellulosic crops by 2022 (Pimentel et al., 2009). Shell (2008) projects an increase of 200% in usage of biomass as an energy source by 2050, representing 15% of the total energy production worldwide. Governments seek reducing the GHG by providing incentives (e.g., capand-trade programs and renewable energy standards) for shifting from fossil energy sources toward the so-called green energy sources. However, recent research suggests that the renewable energy promotion policies may be inefficient in the long-run and only provide a quick-fix solution to the global warming problem (Madani et al., 201; Hadian et al., 2012). In fact, not all renewable energy sources might be truly green and cost effective. Therefore, expanded use of these resources can be associated with unintended consequences or secondary effects on other sectors and valuable natural resources. For example, the amount of water needed to produce energy from biofuels may be 70 to 400 times larger than the water needed to produce the same amount of energy from some fossil energy sources (Gerbens-Leenes et al., 2009). The average solar energy cost (Owen, 2006) could be 2-3 times higher than the cost of energy produced from oil (Sims at el., 2008). Renewable energy sources can have dramatic land use effects as well. For example, satisfying the US electricity demand in 2005 via wind farms would require an area equal to the areas of Texas plus Louisiana; or a 1,000 MW nuclear powerplant can be replaced by biofuel sources at the expense of 2,500 square kilometers of land (Ausubel, 2007). Based on these examples it is reasonable to suggest that carbon footprint shall not be considered as the only criterion in determining the resource use efficiency, effectiveness, and reliability of renewable energy sources for climate change mitigation. Madani et al. (2011) evaluated the overall efficiency of ten different energy sources by simultaneous consideration of three criteria, namely: carbon footprint, water footprint, and economic cost. The results of their multi-criteria analysis suggest that some renewable energy sources such as solar, ethanol, and even large-scale hydropower can be less promising than some non-renewable energy sources such as natural gas, and even coal, when their economic and water resources effects are considered together with their carbon footprint. Hadian et al. (2012) extended the scope of the earlier analysis by adding ecological/land footprint as another resource use efficiency alternative, given the importance of land availability for food production and sustaining ecosystem services. Addition of this alternative made turned geothermal energy to the best and biofuel to the worst energy option in terms of resource use efficiency. Furthermore, in their study they argues that the uncertainties involved in estimation of performance of each energy supply alternative under different resource use efficiency criteria (cost, carbon footprint, water footprint, and land/ecological footprint) increases the risk of reliance of particular type of energy sources, suggesting that not all renewable energies are sustainable. In fact, a sustainable energy option shall be selected based on a multi-criteria analysis, which facilitates consideration of the carbon footprint of energy sources together with their effects on other

important resources/sectors (e.g., water, economy, and land/ecosystem); and takes into account the uncertainties involved in long-term effects of energy sources on different sectors. Another major issue which has been disregarded in the past is the regional resource use efficiency. In other words, given the resources (economy, water, land/ecosystem) have not been uniformly distributed around the globe, resource use efficiencies can be highly sensitive to resource availability in different regions. For example, while the water footprint of an energy source might not be an issue of concern in Sweden, due to availability of water supply, the same energy source might be the most inferior option in the arid Middle East. Therefore, the weighting of resource use efficiency criteria is regionally-specific and must be taken into account when determining the optimal energy supply options for a given region with respect to the its environmental (carbon and land/ecological footprints), water use (water footprint), and economic (cost) efficiencies. Therefore, the goal of this research program is to better understand the energy-water-ecosystemeconomy nexus at a regional scale trough simultaneous consideration of the effects of energy sources on various resources and resource availability in each region. The specific research objectives are: 1) to develop a systems/multi-criteria analysis framework which facilitates holistic evaluation of the overall resource-use efficiency of renewable and non-renewable energy sources with respect to four sustainability criteria, namely: carbon footprint, water footprint, land/ecosystem footprint, and economic cost; 2) to determine the promising regional energy sources, which can be used as sustainable energy alternatives with respect to regional resource availability constraints; and 3) to evaluate the effects of uncertainly (in performances of the energy sources under the different criteria) on the level of risk associated with selection of each alternative in each region. 2. Strategic value for LTH. The end result of a strong accomplishments of the research program will increase LTH and Lund University exposure and lend credibility to its image as one of the world s a leading teaching and research institution in sustainable development with respect to the water-energy-ecosystem-economy nexus. The program connects to several LTH departments but also to other areas at Lund University. Thus, it is strongly interdisciplinary. The program extends world-class work of the LTH in sustainability, systems analysis, and climate change areas, making it competitive at the global level for research in water-energy-ecosystem-economy nexus and sustainability. 3. Potential. The preliminary and potential results to be obtained through this study will make LTH more competitive at the national and international level for external funding. Given the interdisciplinary nature of the proposed research, the potential for collaboration within LTH and Lund University is very strong. The project is expected to create momentum for collaborative interdisciplinary research in water-energy-ecosystem-economy nexus and sustainability lead by LTH researchers at the national, EU, and global level. 4. Relation to education. The leading project researcher (Madani) has extensive experience in research and education in the Hydro-Environmental and Energy Sustainability area. Among his several projects supported by federal and state agencies in the US, he has had support from the US National Science Foundation to integrate sustainability education into the engineering curriculum (mainly industrial engineering). Besides, he has been developing new engineering and sustainability curricula for Honor s students at the University of Central Florida. External evaluations suggested that 88% of the students who have benefited from his projects were left with a sense of excitement about their intended career path and their potential contribution to society. Based on his successful experience in the US, it is expected that the results of this cutting edge research will be incorporated into new courses at the graduate and post-graduate

levels at Lund University. Also, by the end of this research project, a new PhD course will be proposed on Energy Systems Analysis and Sustainability for transferring the knowledge gained in this research to PhD students with interdisciplinary research interests. 5. Funding. Since the research program is strongly interdisciplinary we suggest co-funding with the Center for Middle Eastern Studies (CMES). Preliminarily 50% of the research program will be funded by LTH and 50% by the CMES. References - Ausubel, H.A. (2007). "Renewable and nuclear heresies", International Journal of Nuclear Governance, Economy and Ecology, Vol. 1, No.3, pp. 229 243. - Gerbens-Leenes, P.W., Hoekstra, A.Y., and Meer, T.H. (2009). "The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply", Ecological Economics, 68, pp. 1052-1060. - Hadian S., Madani K., Rowney C., Mokhtari S. (2012), "Toward More Efficient Global Warming Policy Solutions: The Necessity for Multi-Criteria Selection of Energy Sources", World Environmental and Water Resources Congress, pp. 2884-2892, ASCE. - Madani, K., Rouhani, O.M., Pournazeri, Sh., Moradi, M., Sheikhmohammady, M. (2011). "Can we rely on renewable energy sources to overcome global warming?", Proceeding of the 2011 World Environmental and Water Resources Congress, pp. 3319-3326, ASCE. - Owen, A.D. (2006). "Renewable energy: Externality costs as market barriers", Energy Policy, 34(5), pp. 632-642. - Pimentel, D., Marklein, A., Toth, M.A., Karpoff, M.N., Paul, G.S., McCormack, R., Kyriazis, J., Krueger, T. (2009). "Food versus biofuels: environmental and economic costs", Human Ecology, 37, pp. 1 12. - Shell. (2008). "Shell energy scenario s to 2050", Shell International BV. - Sims, R.E.H., Rogner, H-H., Gregory, K. (2008). "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation." Energy Policy, 31, pp. 1314-1326.

Förslag på ämnen från Institutionen för designvetenskaper för stöd till yngre forskare Institutionen för designvetenskaper lämnar in två förslag på ämnen för stöd till yngre forskare. Förslagen är från helt olika delar av institutionens forskning, ett från Certec rehabiliteringsteknik och ett från EAT ergonomi och aerosolteknologi. Jag avstår därför att prioritera förslagen. Båda förslagen kommer från för institutionen viktiga forskningsområden och de har enligt min bedömning båda möjlighet att i samarbete med andra verksamheter på LTH utvecklas till något nytt. Jag vill också framföra att förslaget Universal Design with a focus on Tangible Embedded and Embodied Interaction (TEI) även ligger inom FN1:s kompetensområde och bör inte endast behandlas av FN 3. I de bifogade dokumenten beskrivs och motiveras ämnesområdena. Gerd Johansson /prefekt Institutionen för designvetenskaper/

2013-05-04 Lunds Tekniska Högskola, Box 118, 221 00 Lund, Sverige Ref: YNGRE FORSKARE 2 ÅR: Postdoc in Universal Design with a focus on Tangible Embedded and Embodied Interaction (TEI), Certec, Department of Design Sciences, LTH. Introduction Universal Design (UD) has developed for more than thirty years now. It has a specific purpose: to promote and facilitate designing for a future that includes people of all ages and abilities. UD describes a broad-spectrum concept of designing products and environments to be usable to the greatest extent possible by everyone, regardless of their age and ability range. In recent years, UD has gained interest in Europe. One of the main reasons behind it is the Convention on the Rights of Persons with Disabilities (CRPD), released by the United Nations in 2006. In it, UN expresses that it is the States Parties obligation to enable people with disabilities to fully enjoy "all human rights and fundamental freedoms" and points out UD as an important part of the solution. UD is now starting to gain interest and is being adopted in mainstream development and in the development of welfare technology. However, UD is not only about people with disabilities. On the contrary, it about diversity and concerns everyone. For several years Certec has been offering education and training in UD for industrial designers and engineers. Furthermore, many of Certec s projects are linked to UD. During the last five years a new field has become increasingly important for Certec s work: Tangible Embedded and Embodied interaction (TEI). It is an interdisciplinary area, which combines different perspectives and focuses on interfaces that are physically embodied. This is mainly done via embedded systems that contain microcontrollers, sensors and actuators. The TEI field has strong connections with studies in industrial design, arts, architecture and engineering. However, so far the potential of TEI in the field of UD is to a large extent unexplored. With this application we now want to utilize TEI within the field of UD, in an effort expected to yield in new research projects and content for our education. Strategic value UD has often been misconceived by designers as synonymous with making environments and products usable primarily by people with disabilities, losing the more inclusive connotation of making them understandable to and usable by all people. The true purpose is that all people, in diverse situations and with different purposes, will have positive experiences from universally designed solutions and benefit from them. These can for instance be parents walking with a pram who can easily avoid stairs, if they encounter any. Over time, people will start to expect UD features in their everyday life, be that online, at school or work, in the city or at home. Slightly less friction in everyday activities hopefully adds to the critical mass where UD eventually gets included in ordinary design without being considered a response to special needs. By embracing diversity and taking this as a starting point, UD has the potential to offer different thought patterns that promote social inclusion and empowerment. 1

TEI, on the other hand, is a growing research area which has evolved out of the necessity to adapt the overwhelming immateriality of digital information to the real (physical) world. Application areas for TEI are diverse. Most of the worldwide TEI research is being done in schools of computer science and art. This can be observed as many TEI projects are aimed at interactive music installations or instruments, museum installations, and tools to support planning and decisionmaking. However, considerations of physical form factors, choice of materials and so on, have forced computer scientists, human-computer interaction researchers and artists out of their comfort zone. Working with TEI within the field of UD will open up for new explorations of how to support empowerment and social inclusion. Turning virtual interfaces into concrete, real ones have pedagogical advantages and invites bodily engagement. As an example, playing Guitar Hero is more fun with a real guitar controller than clicking with a mouse on a guitar on the screen. Apart from being intuitive and easier to understand for people with cognitive disabilities, it is also more engaging for everyone. Including TEI as a research and education area at the Department of Design Sciences is only natural, as it has strong connections with studies in industrial design. An increasing number of appliances, which contain electronic and digital components to become intelligent, constitute new challenges as well as new opportunities for designers. TEI provides the ability to work across the boundaries of design and technology. We believe the future will contain more and more combinations of the virtual and the real in mixed reality applications, not only within UD. Virtual reality has been a large part of the department s work for many years. Adding a focus on TEI will allow us to complement this field with more tangible interaction. Potential to grow into a research direction for the department and LTH Our planned work with UD and TEI involves the design of tangible embedded and embodied interfaces (digitally and physically) for products and environments that are inherently accessible to people without disabilities, but also to older people, blind people, and people with other physical or cognitive impairments. For example, UD with focus on TEI can help to design welfare technology that assists users with and without disabilities in their daily lives. This can be done by providing intelligent aids, such as wearable tangible interfaces or tangible user interfaces for smart homes. From the department of industrial design sciences point of view, UD with focus on TEI is a very relevant complement to mainstream industrial design research. Industrial designers have the skills that are complementary to artists and engineers, and can focus on designing tangible embedded and embodied interactive products and environments that are digitally controlled by physical manipulation. From Certec s point of view, the development of new technologies is expanding the possibilities for a richer, multi-sensory interaction to support users with physical and developmental disabilities. Investigating the potential of tangible embedded and embodied interfaces to enhance everyone s experience by providing intuitive and physical engagement and exploration can be of significant importance. Moreover, not only individuals with motor disabilities can benefit from tangible and embedded interfaces, as they are easier to manipulate than current standard interfaces, but they can also be of importance to other user groups. Relation to education 2

Education within UD involves several parts of the department. The focus on UD provides both graduate and undergraduate students with a design ideology based on diversity, which accommodates people with disabilities, older people, children, and people in different contexts and situations, but still benefits all users. Education within the field of TEI is apt for two different profiles: those with significant engineering and/or computer science knowledge who wish to master design or artistic skills, and those with significant design, art, or architecture experience who wish to master technological means of making. Funding plans During last three years Certec has run a large (6 mkr) project working with TEI as a base for participation in multi-sensory environments, the SID project (http://sid.desiign.org). Our main inspiration for the focus in this application came from the experience we gained from that project. In 2014 Lund will host a large international conference on UD. It will take place at the campus of the Faculty of Engineering at Lund University and we expect 350-400 participants from about 35 countries. This event will make LTH world wide known within UD. Certec already has got the knowledge about UD as such, but to continue exploring the potential of TEI for UD we will have to recruit a TEI oriented talent that can develop in that direction. Both UD and TEI are growing fields that are relatively new. We expect to be able get funding for new projects and currently have several applications in preparation or awaiting decision from funding agencies. The post doc funding from LTH will make a base funding which we will combine with project funding in order to be able recruit a creative young TEI researcher with an interest in design for diversity. 3

Interdisciplinary research on indoor environment with specific attention on how energy saving affect indoor living and working environments with the aim to provide knowledge for proactivity, design and innovation 1. Introduction The increasing awareness of climate change and limited energy resources inevitably inspire the building industry to create buildings which are more climate smart and more energy smart than ever before. As consequences, more impenetrable building envelopes are created and new building technologies, energy system technologies, building materials and building service solutions are developed. People in developed countries spend on average more than 90% of their lives indoors. It is well known that we are strongly affected by our indoor environment and that our way of living and our activities, in turn, affect this environment. Indoor (as well as outdoor) air pollution has been linked to adverse effects, of both the cardiovascular and respiratory system. There has been an alarming increase of allergies, not least in young children, as well as an increase in more diffuse symptoms (such as the sick building syndrome). It is also known that indoor environmental factors affect productivity and well being in various work environments, e.g. in offices, hospitals and nurseries. It is however not known exactly to what extent, and how, these health problems are connected to factors such as building materials, new types of ventilation systems, activities and life style, etc. and there is a strong need for better understanding of how to create healthy indoor environments. A holistic approach, which takes into account combined effects of several environmental factors such as air pollution, lighting, noise, humidity, smell perception, thermal comfort, visual ergonomics, social interactions, work demands and also occupant behaviour and preferences, can be explored only through multidisciplinary cooperation. To be ready to face the future there is an apparent need to create such an interdisciplinary cooperation and communication platform with the main goal to understand how to create sound indoor environments which promote health and well being, hence productivity, while taking into account strive for optimal energy use. The suggested topic for the post doc position shall address how indoor environment affect humans, and constitute a knowledge base for technological development and innovation with respect to building technologies and related technologies in order to promote health, well being and productivity. The subject starts from existing research in air pollution, lighting technology, building physics, building material technology, energy technology, technology for sustainability, and the aim is that the activity should catalyse novel interdisciplinary research initiatives which includes the already successful research conducted at different departments. We have strong connection to other parts of Lund University, especially with the Faculty of Medicine, through the excellence FAS center Metalund (Ergonomics and Aerosol Technology and Occupational and Environmental Medicine), which address relations between environment and public and occupational health. 2. Strategic value The main strategic value for the division lies in a strengthened connection between our activities within different building technology related subjects. This will facilitate and increase relevance and

innovation, not least through the extensive connections to industrial partners. A closer connection between Industrial design and building and energy technology would also render strategic values for the Department of Design Sciences. The department has strong relations to research groups at other universities, both nationally and internationally. An example is the Workplace and Indoor Aerosol Conference 2012, arranged by Ergonomics and Aerosol Technology and attended by researchers and industrial representatives from 14 countries, another are the contributions to several large international conferences within the field of indoor environment, such as the European Aerosol Conference, Indoor Air and Healthy Buildings. The strategic value for the Faculty of Engineering is the opportunity to link the successful technology based disciplines to Environmental Medicine and Industrial Design. This will benefit our students in e.g. Civil engineering and Industrial design as well as increase the innovation potential the respect to building technologies and related branches. In addition to our long tradition in research on indoor environment issues, there are a number of successful groups, departments and consortia where the research is significant for our understanding in this context: Building Services, Building Physics, Building Materials, Structural Engineering, Environmental and Energy Systems Study, Department of Energy Science, Moisture Research Center, Environmental Psychology, IIIEE and others. However, even if the individual groups have successful activities with respect to different indoor environmental issues, there is need for bridge building and integration. Extensive collaboration between disciplines and groups, with the main goal to understand how to create sound indoor environments while taking into account strive for optimal energy use, would be needed to place Lund University and its Faculty of Engineering in the forefront of an important and growing aspect of sustainability. This is of strategic importance not only for us, but also for Swedish trade and industry, since the combined knowledge of the proposed interdisciplinary collaboration can serve to strengthen the industry s awareness of how to create buildings which are sustainable both for people and environment. By this, the collaboration can help promote the growth of Swedish building industry aspects which are of importance not least concerning rapidly growing new economies, such as China and India. 3. Potential The suggested topic, in which different aspects of human indoor environment interactions and energy use can be investigated in order to understand connection between indoor air, health, sustainable and energy smart buildings, would have the potential to fill the current knowledge gap (as marked in grey in figure 1), and thereby constitute a Faculty of Engineering based platform which directly responds to the Lund University core value of contributing to sustainable development. Figure 1. The core of the research topic (grey) in relation to key collaborations.

When we start by striving for integrated projects between already successful research groups, the obvious potential lies in the opportunities to grasp the complexity, in this case on how interior environments affect humans, and the opportunities to include the resulting variety of essential aspects when designing building, materials, ventilation and others services, equipment, heating systems etc. 4. Relation to education Teachers/researchers in different research groups who are active in issues related to indoor environments are active in a number of programs and courses: civil engineering, mechanical engineering, industrial design etc. and courses in building services, human factor engineering environmental psychology etc. Increased integration efforts in research will enhance the opportunities to increase relevance and quality in the learning outcome for students of courses related to this area, as well as potential to get supervision in projects, diploma works and doctoral theses. 5. Funding Our research group as well as many others in related areas of the faculty of engineering has a long history in attracting funding from research councils as Formas, FAS, VR, VINNOVA, Energimyndigheten, SBUF etc. in projects which are related to indoor environments. There is nothing that indicates that this support will decrease in the future. In the contrary, the societal interest and the technical demands and innovation potential is still high and likely to increase. However normally previous financial supports have been directed to narrow subjects (like downpipes). Complementary financing for two post doc years hence have a high possibility to be founded by these sources. The suggested position shall be a resource which can facilitate integrated cross disciplinary efforts which should be more attractive for both research fund and industrial/societal partners. We also look forward to the increased network of international contacts the cooperation will bring about, and thereby also the increased opportunities to form consortia which will attract European and other international funding. Concluding remarks In our narrow specific area of expertise, airborne particles, we are today one of the world leading research groups. We contribute with our knowledge to a wider field of research through the center of excellence Metalund and other national as well as international contacts. By an organized cooperation with departments of building and energy, we could contribute to an even wider area of interest, as well as assisting in profiling the Faculty of Engineering towards sustainability awareness. The suggested cooperation would benefit the general society as well as the cooperation between the Faculty of Engineering and the building (and related) industry, and it would enhance the contextual learning of master as well as PhD students.

Energivetenskaper/Strömningsteknik, Ansökan till Yngre forskare 2 år Postdoc in experimental fluid mechanics with specialization in fluid structure interaction Introduction The subject of fluid structure interaction (FSI) concerns the study of how structures deform due to fluid dynamical loads and how this deformation in turn affects the flow field. The applications of this can be found in many areas of engineering, energy conversion, civil engineering and biomedical engineering, just to mention a few. Any object that is submerged in a fluid flow will be subjected to a load due to the fluid motion (e.g. an aircraft wing) and the same is true for any structure surrounding a fluid flow (e.g. a pipe). The fluid motion is usually unsteady either due to turbulence, non turbulent instabilities (such as wake vortices) and external forcing (such as wind gusts or pumping effects) or a combination of these. Hence, the loading on the object/structure will also be unsteady. The unsteadiness may, at least to some extent exhibit periodicities with well defined frequencies. Due to the feed back from the unsteady motion of the structure on the flow one may attenuate or intensify the periodic fluctuations in the flow. The latter may lead to resonance, causing very large amplitudes of the structural deformations, which might be catastrophic. The most famous example of this is the collapse of the bridge over Tacoma Narrows in 1940. Another example of these unwanted resonance phenomena are so called flutter in compressor blades which may occur when running gas turbines at off design conditions. The compressor blades will then exhibit large deformations due to aerodynamical effects. It should be noted that not all interactions between flow and structural deformation lead to such dramatic results. Unsteadiness in the flow will lead to unsteady loading on the structure, which, in turn, can cause material fatigue. Hence, understanding the effects of aeroand hyrdoelasticity is of importance for predicting the lifetime of a structure. In recent years the FSI field of studies has grown rapidly, however, mainly by the use of numerical simulations, which is due to the increase in computational power now making it possible to perform these demanding simulations. An advantage of simulations is its ability to generate well resolved (in time and space) three dimensional data. However, all simulations depend, to lesser or greater extent on modeling. Furthermore, the numerical challenges connected to this kind of simulations are substantial. Hence, there is a need to develop and improve both physical and numerical models. In the process of validating such models experimental studies are key, and having a close collaboration between the model developers and the experimentalists greatly improves the efficiency of the development process. Therefore, having experimental activities alongside numerical development is a great advantage. However, the work should not be focused only on validation of numerical models but also on developing new experimental methods for measuring structural deformation using optical techniques, and the simultaneous measurements of flow and deformation. Strategic Value The fluid mechanics group at the department of Energy Sciences is nowadays almost exclusively focused on developing models for numerical simulations of turbulent flows and using these models for studying flows in several engineering applications, mainly focusing on energy conversion processes. For reacting flows (combustion) we have a well established collaboration with the experimental group at the division of Combustion Physics. However, a fairly large part of our activities concerns non reacting flows in, for example, turbomachinery of various kinds (gas turbines,

Energivetenskaper/Strömningsteknik, Ansökan till Yngre forskare 2 år hydroturbines and wind power plants). Historically we have had experimental activities within nonreacting flows, mainly as a support in the validation process of numerical models. Hence, we have laboratory facilities and equipment. It is now our aim to again increase our activity within the area of experimental fluid mechanics, also extending the activities into experimental FSI. This will enable us to perform our own validation studies as well as stand alone experimental studies. Having both numerical and experimental activities within the same group will strengthen the research quality since a close collaboration between these two disciplines will result in more efficient model development and that the range of studies we can perform will be significantly widened. The experimental activity will also strengthen the collaboration within the department, especially with the groups in thermal power engineering and heat transfer. On the whole, this collaboration, of which experimental fluid mechanics and FSI is one of the essential parts, will strengthen the department s research activities within rotating machinery of various kind, such as gas and wind turbine related flows. Furthermore, a strong FSI research will open up collaboration opportunities with other departments, both within the faculty and at other faculties, as is outlined below. This is then of course not limited to energy related research, although it will be the main focus, and therefore, through collaborations, has the potential of strengthening the overall energy research at LTH. Potential One of the focus areas of the fluid mechanics group is FSI. We have been continuously building up these activities on the numerical side since the late 1990s. Expanding also into experimental fluid mechanics and FSI will increase the possibilities for collaborations. These possibilities are outlined below: Collaboration within the department An increased focus on experimental studies would enable us, through collaboration with the heat transfer and thermal power engineering groups, to have a more complete approach on gas turbine technology research. The joint efforts of our three groups and combining our competences will increase our competitiveness within this area, especially concerning aeroelasticity. Collaboration with other departments within LTH/LU Concerning FSI there is a fairly large potential for collaboration with other departments. Within energy technology we plan to collaborate with the Vibrations and Acoustics Laboratory, which is a part of the Future energy initiative. They have equipment for determining vibrations in for example wind turbine blades. Combining measurements using these methods with simultaneous measurements of the flow around the blade would improve the understanding of how the blades interact with the flow. Another interesting area is flying animals and how they adapt for example their wing shape to adjust to wind conditions. During the last couple of years we have had contacts with the Animal Flight laboratory at the Natural Sciences faculty. They have equipment and expertise to do very advanced experimental studies on animal flight aerodynamics, and combining these with measurements of the deformation of for example a bat wing would be of great interest. Collaboration with industry We expect to be able to increase our collaboration with industry, mainly manufacturers of wind turbines and gas turbines, but also automotive industry and food industry, who are beginning to

Energivetenskaper/Strömningsteknik, Ansökan till Yngre forskare 2 år show an interest in FSI. If we are able to perform both numerical and experimental studies, our possibilities for industrial collaborations would be greatly strengthened and broadened. The conclusion is that rebuilding our activities within experimental fluid mechanics with extension into fluid structure interaction will be an essential part in expanding our activities within the FSI area and would open up new possibilities for collaborations both within the university and with industry. Relation to Education The fluid mechanics courses given at present are mainly on advanced level and are included in the specializations Energy Engineering and Computational Mechanics. Increased research activity in experimental fluid mechanics would be beneficial for the undergraduate education, both by adding courses in this subject, which has not been available before and also by adding and improving laboratory exercises in existing courses. Funding The complementary funding for this postdoc come partly from existing projects within the relevant area and partly from the department of Energy Sciences.

1 2013-01-28 Dekan och kanslichef/motsvarande vid samtliga fakulteter, USV och KOM Ledningsstöd Donatorsrelationer/Development office Projektledare Karin Hofvendahl Donationskampanj inför universitetets 350-årsjubileum Nu är det dags att fylla vår donationskampanj med innehåll! Vi behöver er hjälp med att få fram de prioriteringar LU ska hitta finansiering till. Förbered er genom att läsa igenom detta dokument. Identifiera därefter fakultetens prioriterade projekt. Vi kommer att följa upp med ett möte med dig som är dekan eller motsvarande under våren. Sammanfattning En donationskampanj bedrivs i samband med LU:s 350-års jubileum Temat för kampanjen är Lunds universitet - För en bättre värld Under första kvartalet 2013 presenterar Donatorrelationer/Development Office (DO) jubileumskampanjen på ett fakultetsledningsmöte Varje fakultet utser en ansvarig för kontakten med DO Fakulteterna identifierar 2-4 prioriterade projekt Vid ett uppföljande möte mellan DO och fakultetsledning under våren 2013 diskuteras de prioriterade projekten och det kommande kampanjarbetet De prioriterade projekt som bedöms vara mest lämpade att exponeras på kampanjwebb och i kampanjbroschyr identifieras Övriga prioriterade projekt kommer finnas med i den sammanlagda portföljen som DO arbetar med Syftet med en donationskampanj i samband med 350-års jubileum Lunds universitet står inför stora utmaningar de närmsta åren. Ska vi kunna konkurrera med de bästa universiteten i världen samt förbli ett internationellt universitet med en mångfald av idéer och kompetenser behöver vi bli bättre på att berätta vår historia och vad vi vill åstadkomma samt att attrahera externt och filantropiskt kapital till kommande satsningar. Det ger oss en frihet att förbättra vårt universitet och fullfölja vår vision: Ett universitet i världsklass som förstår, förklarar och förbättrar vår värld och människors villkor. Jubileet är ett tillfälle att fokusera och kraftsamla kring och samtidigt skapa ett mer internationellt arbetssätt, samt höja universitetets förmåga att långsiktigt arbeta med filantropiska medel. För en bättre värld Temat för kampanjen är Lunds universitet - För en bättre värld. Lund universitet Postadress Box 117, 221 00 Lund Besöksadress Universitetshuset, Paradisgatan 2, Lund Telefon 046-222 36 28, 046-222 00 00 Fax 046-222 47 15 E-post Karin.Hofvendahl@rektor.lu.se Webbadress www.lu.se/ge-till-universitetet

forskar och utbildar för en bättre värld. Våra kunskaper bidrar till att människor kan leva på ett sunt och hälsosamt sätt. Vi utbildar och forskar för en långsiktig och hållbar utveckling för människan, naturen och miljön. Vi verkar för ett samhälle som bygger på respekt, öppenhet och tolerans, fred och demokrati. Vi arbetar för att bygga ett välmående samhälle, både ekonomiskt och kulturellt. Vi bidrar till att lärande och utbildning ger oss fördjupande kunskaper om hur vi kan ta vårt ansvar för den värld vi lever i och leva ett liv med hög kvalitet nu och i kommande generationer. 2 Detta är exempel på frågor och globala utmaningar där universitetet bedriver stark forskning och som samtidigt rör alla människor och därmed bjuder in till delaktighet och engagemang, allt för att skapa en bättre värld. Vad är en donationskampanj? Ett arbetssätt för LU att kraftsamla för att attrahera filantropiskt kapital Begränsad tid och ett uppsatt mål Starkt budskap och storytelling för att skapa engagemang Ett antal prioriterade projekt lyfts fram men det är alla donationer som tillfaller LU som räknas in Kampanjbroschyr och kampanjwebb är de fysiska uttrycken Donationer och bidrag från privata stiftelser, individer, företag och icke vinstdrivande organisationer Tidplan och ramar Kampanjperioden sammanfaller med projektet för universitetets 350-årsjubileum, januari 2011 februari 2018. Den inleds med en tyst fas med förberedelser, som vid en viss tidpunkt övergår i en publik fas då insamlingsmålet fastställs och kampanjen lanseras på bred front externt. Övergången till publik fas beräknas ske vid årsskiftet 2014-2015. Ett insamlingsmål för kampanjen ska fastställas i samband med att kampanjen övergår i en publik fas. I insamlingsmålet inräknas filantropiska medel som samlats in vid hela universitetet under kampanjperioden. Universitetet definierar filantropiska medel som gåvor, donationer och bidrag från privata stiftelser, företag, icke vinstdrivande organisationer och privatpersoner. Utförligare definitioner kommer att tas fram. Därutöver kommer kampanjen att följas upp internt enligt normala redovisnings- och bokföringsprinciper. Rektorsbeslut är fattat om att bedriva donationskampanjen och ramarna för denna (LS 2012/803). Aktiviteter Ett stort antal aktiviteter pågår redan och fler kommer att starta inom den närmsta tiden, se bilaga 1. En av dessa är att lansera en kampanjwebb. En lösenordsskyddad betaversion av kampanjwebben kommer att lanseras i januari 2013. En annan är att under första kvartalet 2013 presenterar Donatorrelationer/ Development Office (DO) jubileumskampanjen för varje fakultetsledning. Därefter identifierar fakulteten några prioriterade projekt, se nedan. Vid ett uppföljande möte mellan DO och fakultetsledningen är målet att vaska fram några prioriterade projekt, av vilka några kommer att exponeras i kampanjen. Fakultetens roll Prioritering av projekt

Utse kontaktperson gentemot Donatorrelationer/Development Office (DO) Koordinering och vård av donatorrelationer Gemensam intern kommunikation Forskningsledare och fakultetsledning deltar aktivt i det praktiska arbetet med fundraising Medfinansiering Inventering av befintliga donationer 3 Prioritering av projekt Fakulteten (dekan ansvarig) identifierar 2-4 projekt som är prioriterade. Ett urval av dessa projekt kommer att vara flaggskepp i kampanjbroschyren och på webben. Under kampanjens gång kommer projekt att kunna läggas till och tas bort. Webben kommer att vara huvudkanal för kampanjen. Vid ett uppföljande möte mellan Donatorrelationer/Development Office (DO) och fakultetsledningen under våren 2013 är målet att vaska fram ett fåtal prioriterade projekt. Ur dessa kommer de som bedöms vara mest lämpade att exponeras på kampanjwebb och i kampanjbroschyr. Urvalsprocessen drivs av DO och förankras i Rektors ledningsråd. Ett prioriterat projekt bör: adressera utmaningar som är viktiga för människor och planet vara av långsiktigt intresse för fakulteten och LU vara visionärt, gärna tvärvetenskapligt och ha en internationell prägel vara en satsning inom ett område där LU är klassat som outstanding eller världsledande, alternativt har potential att nå den nivån vara förståeligt för en extern, icke akademisk målgrupp vara i behov av finansiering på ca 10 mnkr -> Varje enskilt projekt ska till det uppföljande mötet med DO under våren beskrivas på ett kort sätt (max 2-3 A4-sidor) och besvara följande frågor: Vilken/vilka globala utmaningar adresserar projektet? Vad är det som behöver göras för att vi ska förstå, förklara, förbättra vår värld och människans villkor i förhållande till utmaningen? Hur bidrar projektet till (delar av) lösningen? Hur ska det komma människor och omvärld till godo? Övergripande budget och tidplan Vem är frontfigur och representerar projektet i donationsarbetet? De av fakulteterna prioriterade områden som inte exponeras på kampanjwebben finns med i den sammanlagda portföljen som DO arbetar med, och några av dem kan komma att lyftas fram i senare skede. Dessutom kan forskningsledare på eget initiativ skapa minikampanjer, vilka även dessa kommer att exponeras på webben. Övrigt Fakulteten utser en ansvarig för kontakten med DO. Denna person är DO:s ingång till fakulteten under kampanjperioden. En central roll för kontaktpersonen är att dela information för att LU ska kunna ha en professionell relation gentemot både presumtiva och befintliga donatorer. Löpande vård av donatorrelationer är A och O för en lyckad fundraising. DO har det övergripande ansvaret för att säkerställa att LU har en högkvalitativ donatorvård över tiden. Fakultetens kunskap om donatorn är väsentlig och en fungerande kommunikation mellan fakultet och DO är därför

central. Fakulteten och DO behöver arbeta gemensamt med den interna kommunikationen om kampanjen. 4 För att ett område/projekt ska vara möjligt att exponera i kampanjen krävs att både fakultetsledning och forskningsledare arbetar aktivt tillsammans med DO. Detta gäller även efter genomförd donatorn, då donatorn bör få återkommande återkoppling. En donation kan medföra kostnader i form av medfinansiering, vilket fakulteten bör ha en strategi för hur man ska hantera. Utöver dessa framåtsyftande aktiviteter behöver en inventering av fakultetens befintliga donationer genomföras. Befintliga donatorer är de bästa ambassadörerna och de mest sannolika givarna.

Bilaga 1 Lunds universitet För en bättre värld: tidplan och aktiviteter Övergång till extern fas är flexibel Tyst fas beroende på utfall i förhållande till mål Extern fas Start tyst fas 2011 2012 2013 2014 2015 2016 2017 2018 Ca dec - > 65% av mål uppnått. Relationsbyggande Extern lansering med press & PR FIRA 28 jan 2018 Donationer Kampanjtema Kommunikation: intern och extern Rådgivande kommittén LU För en bättre värld Kommunikation: Kampanjwebb Forska Lund Kampanjwebb Kommunikation: Kampanjbroschyr Kampanjkommitté Bygga team Rekrytera Definiera processer Beräkningsmodell Prioritering av projekt och intern förankring Sätt insamlingsmål 5

Bilaga 1 Lunds universitet För en bättre värld Tidplan och aktiviteter, fortsättning 2011 2012 2013 2014 2015 2016 2017 2018 USA: LUF bildas USA: Alumni & friends Webb Nyhetsbrev USA: Fler delstater Internationella aktiviteter: UK, CH Evenemang: Stipendieceremoni Före-fest LU350 koordinering Evenemang: Alumni & friends Konserter Donationsevent i samarbete extern part Samarbeten: Medicon Village Partnerskapet EHL Mats Paulssons stiftelse Evenemang: Vetenskapssalong 6