Avdelning 1, trepoängsproblem

Relevanta dokument
Avdelning 1, trepoängsproblem

Problem Svar

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem

Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7

Avdelning 1, trepoängsproblem

Svar och lösningar. Kängurutävlingen 2009 Cadet för gymnasiet

Trepoängsproblem. Kängurutävlingen 2011 Cadet. 1 Vilket av följande uttryck har störst värde? 1 A: B: C: D: E: 2011

Välkommen till. Kängurutävlingen Matematikens hopp 2009 Student för elever på kurs D och E. Kängurutävlingen 2009 Student.

Kängurutävlingen Matematikens hopp 2009 Cadet för gymnasiet för elever på kurs A

Kängurutävlingen Matematikens hopp 2009 Cadet för elever i åk 8 och 9

1. Det står KANGAROO på mitt paraply. Du kan se det på bilden. Vilken av följande bilder visar också mitt paraply? A: B: C: D: E:

Cadet. 1. I en klass finns 13 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda?

Gymnasiets Cadet. a: 2 b: 4 c: 5 d: 6 e: 11

Trepoängsproblem. Kängurutävlingen 2011 Junior

Kängurutävlingen Matematikens hopp 2017 Cadet för elever i åk 8, 9 och för elever som läser kurs 1a, 1b eller 1c.

A: 3 B: 4 C: 5 D: 6 E: 7 Ryssland

A: måndag B: tisdag C: onsdag D: torsdag E: fredag. Vilken av följande bitar behöver vi för att det ska bli ett rätblock?

Avdelning 1, trepoängsproblem

Kängurun Matematikens hopp

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem

Kängurutävlingen Matematikens hopp 2010 Cadet för elever i åk 8 och 9

Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5

Trepoängsproblem. Kängurutävlingen 2012 Junior

Avdelning 1, trepoängsproblem

Junior. låda 1 låda 2 låda 3 låda 4 låda 5 B V B V. a: det är omöjligt att göra så b: A c: V d: O e: R

Student. a: 5 b: 6 c: 7 d: 8 e: 3

Junior för elever på kurs Ma 2 och Ma 3

Problem Svar

= A: 0 B: 1 C: 2013 D: 2014 E: 4028

A: mindre än 4 år. B: minst 4 år. C: exakt 4 år. D: mer än 4 år. E: inte mindre än 3 år. (Schweiz) A: 0 B: Oändligt många C: 2 D: 1 E: 3 (Italien)

A: 300 m B: 400 m C: 800 m D: 1000 m E: 700 m

? A: -1 B: 1 C: 19 D: 36 E: 38 Belarus A: ROOT B: BOOM C: BOOT D: LOOT E: TOOT A: 1,5 B: 1,8 C: 2 D: 2,4 E: Vilket tal bör ersätta

Kängurutävlingen Matematikens hopp 2019 Benjamin

Välkommen till Kängurutävlingen Matematikens hopp 17 mars Junior för elever på kurs Ma 2 och Ma 3

Avdelning 1, trepoängsproblem

A: måndag B: onsdag C: torsdag D: lördag E: söndag Grekland 2. Vilket av följande uttryck har högst värde?

Del 1, trepoängsproblem

1 Diagrammet visar hur vattennivån i en hamn förändras under en viss dag. Under hur många timmar var vattennivån över 30 cm?

Kängurutävlingen Matematikens hopp 2018 Benjamin

Kängurutävlingen Matematikens hopp

Trepoängsproblem. Kängurutävlingen 2019 Cadet. 1 Vilket moln innehåller endast jämna tal? A B C D E

9 Geometriska begrepp

Kängurutävlingen Matematikens hopp 2010 Benjamin för elever i åk 5, 6 och 7.

Benjamin för elever i åk 5, 6 och 7

1 I denna additionsuppställning har några siffror täckts över med. Vad är summan av de övertäckta siffrorna? A: 0 B: 1 C: 2 D: 3 E: 10

Välkommen till Kängurutävlingen Matematikens hopp 2019 Benjamin för elever i åk 5, 6 och 7

Svar och arbeta vidare med Cadet 2008

A B C D E. 2 Det står KANGAROO på mitt paraply. Du kan se det på bilden. A B C D E

Känguru 2017 Student gymnasiet

Kängurutävlingen Matematikens Hopp Benjamin 2003 Uppgifter

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT SVAR UPPGIFT SVAR

Kängurutävlingen Matematikens hopp 2018 Ecolier

Kängurutävlingen Matematikens hopp 2016 Cadet för elever i åk 8, 9 och för elever som läser kurs 1a, 1b eller 1c.

Student för elever på kurs Ma 4 och Ma 5

Matematiska uppgifter

Cadet. a: 1001 b: 11 c: 223 d: 191 e: 123 (Sverige) 2 Boris är född 1 januari 2002 och han är 1 år och 1 dag äldre än Irina. Vilken dag föddes Irina?

Trepoängsproblem. Kängurutävlingen 2014 Junior. 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt?

Vad kommer det att stå i rutan som är märkt med ett X? A: 2 B: 3 C: 4 D: 5 E: 6 A: 5 B: 6 C: 7 D: 8 E: 9 A: 40 B: 37 C: 35 D: 34 E: 32

Fundera tillsammans. Victor är 5 år och Åsa är 8 år. Hur gammal kommer Victor att vara när Åsa är dubbelt så gammal som hon är nu?

Välkommen till Kängurutävlingen Matematikens hopp 2019 Cadet för elever i åk 8, 9 och för elever som läser kurs 1a, 1b, eller 1c

3: A I den vita asken. Kolan ligger i den röda asken så chokladbiten måste ligga i den vita. Problemet kan lösas konkret och med en enkel bild.

Känguru 2013 Junior sida 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium

Kartläggningsmaterial för nyanlända elever SVENSKA. Geometri Matematik. 1 2 Steg 3

Trepoängsproblem. Kängurutävlingen 2011 Student

Svar och arbeta vidare med Benjamin 2008

Kängurutävlingen Matematikens Hopp Cadet 2003 Uppgifter

Känguru 2016 Student gymnasieserien

Svar och arbeta vidare med Student 2008

Känguru 2013 Ecolier sida 1 / 6 (åk 4 och 5) i samarbete med Pakilan ala-aste och Jan-Anders Salenius vid Brändö gymnasium

Avdelning 1. Trepoängsproblem

Ecolier för elever i åk 3 och 4

PLANGEOMETRI I provläxa med facit ht18

Matematiska uppgifter

Välkommen till Kängurun Matematikens hopp 2008 Benjamin

Känguru 2011 Cadet (Åk 8 och 9)

Ecolier för elever i åk 3 och 4

Känguru 2010 Cadet (klass 8 och 9) sida 1 / 6

Matematiska uppgifter

Matematik CD för TB = 5 +

Avdelning 1. Trepoängsproblem

Cadet för gymnasiet. a: 1001 b: 11 c: 223 d: 191 e: 123 (Sverige)

Benjamin. Avdelning 1. Trepoängsproblem

Träningsuppgifter, gamla nationella prov i matematik(del B1) från Taluppfattning. Hashem Rezai, S:t Ilians skola, Västerås

Känguru 2012 Cadet (åk 8 och 9)

Facit åk 6 Prima Formula

Benjamin för elever i åk 5, 6 och 7

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6

Lösningar till udda övningsuppgifter

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp 2019 Ecolier

Känguru 2014 Cadet (åk 8 och 9)

Lathund geometri, åk 7, matte direkt (nya upplagan)

2. 1 L ä n g d, o m k r e t s o c h a r e a

Känguru 2012 Junior sivu 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

Känguru 2019 Student gymnasiet

Känguru 2013 Junior sida 1 / 9 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium

Kängurun Matematikens hopp Gymnasiets Cadet 2006 A: 0 B: 2006 C: 2014 D: 2018 E: 4012

Transkript:

Avdelning, trepoängsproblem. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Stjärnan i figuren har bildats av 2 identiska, liksidiga trianglar. Stjärnans omkrets är 36 cm. Hur stor är omkretsen av det mörka området? A: 6 cm B: 2 cm C: 8 cm D: 24 cm E: 30 cm Slovakien 3. Maja delar ut reklam på Storgatan. Hon delar ut i alla hus med udda nummer. Det första huset har nummer 5, det sista har nummer 53. I hur många hus delar Maja ut reklam? A: 9 B: 20 C: 27 D: 38 E: 53 Nederländerna 4. Fyra pojkar och fyra flickor var på fest. Pojkarna dansade bara med flickor och flickorna dansade bara med pojkar. När vi efteråt frågade dem hur många olika personer de hade dansat med svarade pojkarna: 3,, 2, 2. Tre av flickorna svarade: 2, 2, 2. Vad svarade den fjärde flickan? A: 0 B: C: 2 D: 3 E: 4 Ungern Kungl Vetenskapsakademien & NCM/Nämnaren 3

5. Hur stor del av den största kvadratens area utgör den lilla svarta kvadraten? A: 00 B: 300 C: 600 D: 900 E: 000 USA 6. I ett rum finns katter och hundar. Antalet katt-tassar är dubbelt så stort som antalet hundnosar. Då är antalet katter A: dubbelt så stort som antalet hundar B: hälften av antalet hundar C: lika med antalet hundar D: en fjärdedel av antalet hundar E: en sjättedel av antalet hundar Ryssland 7. Vi ska märka rutorna med A, B, C och D. Grannar får inte ha samma markering. Även rutor med gemensamt hörn räknas som grannar. Några rutor är redan ifyllda. Vad ska det stå i den skuggade rutan? A: A B: B C: C D: D E: Det finns två olika svar som är möjliga. A B C D Mexiko Kungl Vetenskapsakademien & NCM/Nämnaren 4

Avdelning 2, fyrapoängsproblem 8. Vi startar i punkten P och rör oss längs kanten i pilens riktning. I hörnet vid kantens slut kan vi gå till höger eller till vänster. När vi når slutet på nästa kant kan vi återigen gå till höger eller vänster, och så vidare. Vi väljer att gå varannan gång till höger och varannan gång till vänster. Hur många kanter måste vi på detta vis passera innan vi för första gången kommer tillbaka till punkten P? P A: 2 B: 4 C: 6 D: 9 E: 2 Nederländerna 9. En hiss kan ta antingen 2 vuxna eller 20 barn. Hur många barn kan som mest åka i hissen tillsammans med 9 vuxna? A: 3 B: 4 C: 5 D: 6 E: 8 Ukraina 0. Ali har mätt alla de sex vinklarna i två trianglar en spetsvinklig triangel och en trubbvinklig. Han kommer ihåg fyra av vinklarna: 20, 80, 55 och 0. Hur stor är den minsta vinkeln i den spetsvinkliga triangeln? A: 5 B: 0 C: 45 D: 55 E: det går inte att avgöra Ryssland. Hur många positiva heltal finns det där talet i kvadrat har lika många siffror som talet i kubik? A: 0 B: 3 C: 4 D: 9 E: oändligt många Kungl Vetenskapsakademien & NCM/Nämnaren 5

2. Talen 3 och 5 är utsatta på tallinjen. Var ska 4 placeras? 5 A B C D E 3 A B C D E Nederländerna 3. Befolkningen på Ön består av sanningssägare och lögnare. Sanningssägarna talar alltid sanning och lögnarna ljuger alltid. 25 män står i en kö. Alla, utom han som står först i kön, säger att mannen framför honom i kön är en lögnare. Mannen som står först i kön säger att alla män som står bakom honom är lögnare. Hur många lögnare är det i kön? A: det går inte att avgöra B: 0 C: 2 D: 3 E: 24 Ukraina 4. I figuren är QSR en rät linje. Vinkeln QPS är 2 och PQ=PS=RS. Hur stor är vinkeln QPR? 2 P Q S R A: 36 B: 42 C: 54 D: 60 E: 84 Kungl Vetenskapsakademien & NCM/Nämnaren 6

Avdelning 3, fempoängsproblem 5. Här ser du de tre första mönstren i en serie. Hur många kvadrater behöver man för att kunna bygga det tionde mönstret i serien, om man inte räknar med den skuggade delen? A: 76 B: 80 C: 84 D: 92 E: 00 Estland 6. Hur stor del av den yttre kvadraten är skuggad? A: 4 π B: 2 C: π +2 4 D: π 4 E: 3 7. Bilden visar en geometrisk kropp med 6 triangulära sidoytor. I varje hörn finns ett tal. För varje sidoyta beräknar vi summan av talen i de tre hörnen. Alla sidoytor har samma summa och två av talen är och 5 som på bilden. Vad blir summan av alla fem talen? 5 A: 9 B: 2 C: 7 D: 8 E: 24 Mexiko Kungl Vetenskapsakademien & NCM/Nämnaren 7

8. I likheten E I G H T F O U R = T W O står varje bokstav för en siffra. Ingen siffra kan motsvaras av mer än en bokstav. Hur många värden kan produkten T H R E E ha? A: B: 2 C: 3 D: 4 E: 5 Vitryssland 9. Romeo skrev en rad med flera olika positiva heltal. Alla var mindre än. Julia undersökte talen och upptäckte något intressant. I varje par av tal som stod intill varandra var det ena talet delbart med det andra. Hur många tal kan Romeo som mest ha skrivit? A: 6 B: 7 C: 8 D: 9 E: 0 Litauen 20. Figuren visar en regelbunden niosidig månghörning. Två av sidorna har förlängts till punkten X. Hur stor är den markerade vinkeln vid X? X A: 40 B: 45 C: 50 D: 55 E: 60 2. Vi vill dela upp en kvadrat i 2009 kvadrater, där sidornas längd ska vara ett helt antal cm. Vilken är den kortast möjliga längden på den ursprungliga kvadratens sida? A: 44 B: 45 C: 46 D: 503 E: Det är inte möjligt att dela upp kvadraten i 2009 kvadrater, där sidorna är ett helt antal cm. Katalonien Kungl Vetenskapsakademien & NCM/Nämnaren 8