729G43 Artificiell intelligens Planering

Storlek: px
Starta visningen från sidan:

Download "729G43 Artificiell intelligens Planering"

Transkript

1 729G43 Artificiell intelligens Planering Arne Jönsson HCS/IDA Planering Sökning vs planering Planeringsnotationer Enkel planering Partialordningsplanering Resursplanering Hierarkisk planering Planering i icke-deterministiska domäner Linköpings universitet 1

2 Planering vs sökning, 1 Sökning Handlingarna ger möjliga nya tillstånd Tillstånden är kompletta, oftast enkla omvärldsbeskrivningar, tillståndsvektorer Agenten kan testa om målet är uppnått genom att applicera en heuristisk funktion, f, på ett tillstånd, p, f(p). Kan inte välja handling som för närmare målet utifrån f(p). Sökningen leder till en obruten sekvens av handlingar Planering vs sökning, 2 Planering Använder en mer uttrycksfull representation som låter agenten resonera om tillstånd och handlingar FOPL kopplar handlingar och tillstånd Söker inte blint utan kan välja operatorer som för agenten framåt Agenten kan ta de stora besluten först Låter agenten lägga till handlingar när de behövs Arbetar med flera delplaner samtidigt Linköpings universitet 2

3 Handlingsrepresentation STRIPS-notationen: Preconditions: villkor som måste vara uppfyllda för att utföra handlingen Effect: effekten av att utföra handlingen. Delas ibland i en add list och en delete list Bara positiva predikat i tillstånd, inga negationer Closed world assumption Bara konjunktioner Inga kvantifierare Ingen likhet Ingen typning Inga situationsvariabler Exempel, Blocks world Predikat: On(x, y) Clear(x) Handling: Move(b, x, y) Precond: On(b, x) Clear(b) Clear(y) Effect: On(b, y) Clear(x) On(b, x) Clear(y) STRIPS hade ADD och DELETE: ADD: On(b, y) Clear(x) DELETE: On(b, x) Clear(y) Linköpings universitet 3

4 Exempel A B C On(A,B) Clear(A) Clear(C) On(B, Table) On(C, Table) Move(A, B, C) Precond: On(A, B) Clear(A) Clear(C) ADD: On(A, C) Clear(B) DELETE: Clear(C) On(A, B) A B C On(A,C) Clear(A) Clear(B) On(B, Table) On(C, Table) STRIPS Effektiv men begränsad Tar bort predikat, DELETE-list, dvs icke-monoton Linköpings universitet 4

5 ADL Mer uttrycksfullt Tillåter negation Open world assumption Kraftfullare effekter: P Q innebär också P Q Kvantifierade målvariabler: ex, x At(P, x) At(R, x) Konjunktion och disjunktion Villkorliga effekter: when P : E Likhet Typning: b : Block Planeringsalgoritmer Generera en sekvens av handlingar från start till mål Framåtsökning Bakåtsökning STRIPS Linköpings universitet 5

6 STRIPS-operatorer Stack(x, y) P: Clear(y) Ù Holdning(x) D: Clear(y) Ù Holdning(x) A: ArmEmpty Ù On(x, y) UnStack(x, y) P: On(x,y) Ù Clear(x) Ù ArmEmpty D: On(x, y) Ù ArmEmpty A: Holdning(x) Ù Clear(y) PickUp(x) P: Clear(x) Ù OnTable(x) Ù ArmEmpty D: OnTable(x) Ù ArmEmpty A: Holdning(x) PutDown(x) P: Holdning(x) D: Holdning(x) A: OnTable(x) Ù ArmEmpty Exempel Start B C A On(B, C) Clear(A) Clear(B) OnTable(A) OnTable(C) ArmEmpty Uppfyllt A Mål B C On(B, C) On(A, B) OnTable(C) ArmEmpty Leta efter operatorer som har On(x, y) på sin ADD-list, dvs Stack(A, B) Precond: Clear(B), Holding(A) Leta efter operator som har Holding(x) på ADD-list: PickUp eller UnStack Välj PickUp(A). Precond: ArmEmpty, Clear(A), OnTable(A) uppfyllt Linköpings universitet 6

7 Nytt exempel Start C A B On(C, A) Clear(C) Clear(B) OnTable(A) OnTable(B) ArmEmpty A Mål B C On(A, B) On(B, C) OnTable(C) ArmEmpty Börja med ett mål, t.ex. On(A, B), ger UnStack(C, A), PutDown(C), PickUp(A), Stack(A, B) Ta sen nästa mål On(B, C). Ger UnStack(A, B), PutDown(A), PickUp(B), Stack(B, C) Nu är inte On(A, B) uppfyllt så PickUp(A), Stack(A, B) Partialordningsplanering Problemet beror på att STRIPS arbetar med ett mål i taget Vill kunna avbryta uppfyllandet av ett mål och påbörja nästa och sen fortsätta med det första igen Uppnå On(A, B) UnStack(C, A), PutDown(C) Fortsätt med On(B, C) PickUp(B), Stack(B, C) Återuppta On(A, B) PickUp(A), Stack(A, B) Partialordningplanerare skapar partiellt ordnade delplaner enligt least commitment strategy, dvs fatta så få beslut som möjligt Linköpings universitet 7

8 Ännu inte uppfyllt men först partialordnas delplanerna START OnTable(A) OnTable(B) ON(C,A) ArmEmpty Clear(C) Clear(B) Clear(A) OnTable(A) ArmEmpty PickUp(A) Holding(A) ArmEmpty OnTable(A) Clear(B) OnTable(B) ArmEmpty PickUp(B) Holding(B) ArmEmpty OnTable(B) {x/a} On(C,A) Clear(C) ArmEmpty UnStack(C,A) Holding(C) Clear(A) ArmEmpty On(C,A) Clear(B) Holding(A) Stack(A,B) ArmEmpty ON(A,B) Clear(B) Holdning(A) Clear(C) Holding(B) Stack(B,C) ArmEmpty On(B,C) Clear(C) Holdning(B) Holding(C) PutDown(C) ArmEmpty OnTable(C) Holdning(C) On(A,B) On(B,C) OnTable(C) MÅL Partialordna, 1 Operatorer som lagts till för att uppnå delmål partialordnas PickUp(A) Stack(A,B) PickUp(B) Stack(B,C) UnStack(C,A) PutDown(C) Vid konflikt ordnas operatorer så att konflikten undviks Stack(A,B) är i konflikt med PickUp(B) eftersom Stack tar bort Clear(B) Stack(B,C) är pss i konflikt med UnStack(C,A) Partialordna: PickUp(B) Stack(A,B) UnStack(C, A) Stack(B,C) Linköpings universitet 8

9 Partialordna, 2 Finns det ytterligare ordning mellan de partiellt ordnade planerna? PickUp(A) Stack(A,B) PickUp(B) Stack(B,C) UnStack(C,A) PutDown(C) PickUp(B) Stack(A,B) UnStack(C,A) Stack(B,C) PickUp(B) (och därmed också Stack(B,C)) före Stack(A,B) och UnStack(C,A) före Stack(B,C) UnStack(C,A) PutDown(C) PickUp(B) Stack(B,C) PickUp(A) Stack(A,B) START OnTable(A) OnTable(B) ON(C,A) ArmEmpty Clear(C) Clear(B) On(C,A) Clear(C) ArmEmpty UnStack(C,A) Holding(C) Clear(A) ArmEmpty On(C,A) Holding(C) PutDown(C) ArmEmpty OnTable(C) Holdning(C) Clear(B) OnTable(B) ArmEmpty PickUp(B) Holding(B) ArmEmpty OnTable(B) Clear(C) Holding(B) Stack(B,C) ArmEmpty On(B,C) Clear(C) Holdning(B) Clear(A) OnTable(A) ArmEmpty PickUp(A) Holding(A) ArmEmpty OnTable(A) Clear(B) Holding(A) Stack(A,B) ArmEmpty ON(A,B) Clear(B) Holdning(A) On(A,B) On(B,C) OnTable(C) MÅL Alla preconditions uppfyllda så planeraren är klar Linköpings universitet 9

10 Planeringsgraf Graf med en sekvens av nivåer som svarar mot temporala steg i planen. Bara för propositioner, dvs inga variabler i tillstånden Representerar handlingar och icke-handlingar Ex S 0 A 0 S 1 Have(Cake) Eaten(Cake) Eat(Cake) Have(Cake) Have(Cake) Eaten(Cake) Eaten(Cake) Mutexlänk Ömsesidigt uteslutande relationer Mutexlänkar Inkonsistenta effekter en handling negerar en annan handlings effekt Interference en handling negerar en annans precondition Konkurrerande behov två handlingars preconditions är ömsesidigt uteslutande Inkonsistent stöd två satser på samma nivå är varandras komplement eller alla handlingar som kan uppnå satserna är ömsesidigt uteslutande Linköpings universitet 10

11 Planering GraphPlan 1. Skapa en planeringsgraf med djup k 2. Om det finns en lösning returnera den 3. I annat fall öka djupet med 1 och gå till 1. Det finns en lösning om: Alla fakta i målet finns på djup k och inte är mutex Om det för alla delmål på djup k-1, k-2, 1 finns en handling som inte är mutex med någon annan handling Planen är en linjärisering av eventuella parallella handlingar GraphPlan def graphplan(problem): graph = initialplanninggraph(problem) goals = goals(problem) while True: if goals all non-mutex in last level of graph: solution = extractsolution(graph, goals, length(graph)) if solution <> failure: return solution elif nosolutionpossible(graph): return failure graph = expandgraph(graph, problem) Linköpings universitet 11

12 Punkteringsexemplet Init(At(Flat, Axle) Ù At(Spare, Trunk)) Goal(At(Spare, Axle)) Action(Remove(Spare, Trunk), Precond: At(Spare, Trunk), Effect: At(Spare, Trunk) Ù At(Spare, Ground)) Action(Remove(Flat, Axle), Precond: At(Flat, Axle), Effect: At(Flat, Axle) Ù At(Flat, Ground)) Action(PutOn(Spare, Axle), Precond: At(Spare, Ground) Ù At(Flat, Axle), Effect: At(Spare, Ground) Ù At(Spare, Axle)) Action(LeaveOvernight, Precond: Effect: At(Spare, Ground) Ù At(Spare, Axle) Ù At(Spare, Trunk) Ù At(Flat, Ground) Ù At(Flat, Axle)) S 0 A 0 S 1 At(Spare,Trunk) At(Spare,Trunk) Remove(Spare,Trunk) At(Spare,Trunk) At(Flat,Axle) At(Spare,Axle) Remove(Flat,Axle) LeaveOvernight At(Flat,Axle) At(Flat,Axle) At(Spare,Axle) CWA At(Flat,Ground) At(Spare,Ground) At(Flat.Ground) At(Flat,Ground) At(Spare,Ground) At(Spare,Ground) Linköpings universitet 12

13 S 0 A 0 S 1 A 1 S 2 At(Spare,Trunk) At(Spare,Trunk) At(Spare,Trunk) Remove(Spare,Trunk) At(Spare,Trunk) Remove(Spare,Trunk) At(Spare,Trunk) Remove(Flat,Axle) Remove(Flat,Axle) At(Flat,Axle) LeaveOvernight At(Spare,Axle) At(Flat,Ground) At(Spare,Ground) At(Flat,Axle) At(Flat,Axle) LeaveOvernight At(Spare,Axle) PutOn(Spare,Axle) At(Flat.Ground) At(Flat,Ground) At(Spare,Ground) At(Spare,Ground) At(Flat,Axle) At(Flat,Axle) At(Spare,Axle) At(Spare,Axle) At(Flat.Ground) At(Flat,Ground) At(Spare,Ground) At(Spare,Ground) Avancerad planering Resursplanering Handlingar tar en viss tid att utföras Planhierarkier Abstrakta operatorer som håller steg i planen som i sig implementerar operatorn Expanderas till dess att planen bara innehåller primitiva operatorer Planering i icke-deterministiska domäner Världen är inte komplett. Kan t.ex. inte se allt som finns Världen är inte korrekt. Någon kan t.ex. flytta objekt eller handlingar misslyckas Linköpings universitet 13

Planering. Planering vs sökning, 1. Planering vs sökning, 2. Handlingsrepresentation

Planering. Planering vs sökning, 1. Planering vs sökning, 2. Handlingsrepresentation Planering Planering vs sökning, 1! Sökning vs planering! Planeringsnotationer! Enkel planering! Partialordningsplanering! Resursplanering! Hierarkisk planering! Planering i icke-deterministiska domäner

Läs mer

729G43'Ar*ficiell'intelligens' Planering' Planering' Planering'vs'sökning,'1' Planering'vs'sökning,'2' Arne'Jönsson' HCS/IDA' '

729G43'Ar*ficiell'intelligens' Planering' Planering' Planering'vs'sökning,'1' Planering'vs'sökning,'2' Arne'Jönsson' HCS/IDA' ' Planering' 729G43'Ar*ficiell'intelligens' Planering' Arne'Jönsson' HCS/IDA' ' Sökning'vs'planering' Planeringsnota*oner' Enkel'planering' Par*alordningsplanering' Resursplanering' Hierarkisk'planering'

Läs mer

Lek$on 4: Planering. Robin Keskisärkkä

Lek$on 4: Planering. Robin Keskisärkkä Lek$on 4: Planering Robin Keskisärkkä Sy7e Få en känsla för möjligheter och begränsningar med planering Öva på att modellera planeringsproblem för en planerare Förberedelser Läs kapitel 11 i kursboken

Läs mer

Artificiell Intelligens Lektion 1

Artificiell Intelligens Lektion 1 Labbar översikt rtificiell Intelligens Lektion 1 Labbar översikt Planering (Lab1 Projektinspiration 3 stycken datorlabbar Planering Probabilistisk logik Maskininlärning Handledare Robin, Jonas, hristian,

Läs mer

Artificiell Intelligens Övningsuppgifter

Artificiell Intelligens Övningsuppgifter Sökning - Tentauppg 99-:4 Artificiell Intelligens Övningsuppgifter Sökning Konjunktiv normalform Unifiering Resolution Planering Situationskalkyl Maskininlärning Beskriv sökmetoden A* genom att visa hur

Läs mer

Artificiell Intelligens II Lektion 1

Artificiell Intelligens II Lektion 1 Labbar översikt rtificiell Intelligens II Lektion 1 Labbar översikt Planering (Lab1 Projektinspiration 3 stycken datorlabbar Planering Probabilistisk logik Maskininlärning Handledare Robin, Jonas, hristian,

Läs mer

Fråga 5 (1 poäng) För att definiera ett sökproblem krävs...

Fråga 5 (1 poäng) För att definiera ett sökproblem krävs... OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Fråga 5 (1 poäng) För att definiera ett sökproblem krävs...

Fråga 5 (1 poäng) För att definiera ett sökproblem krävs... OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Tentamenskod: Inga hjälpmedel är tillåtna

Tentamenskod: Inga hjälpmedel är tillåtna Intelligenta och lärande system 15 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen (TEN1) Artificiell intelligens (AI) 5hp 21IS1C Systemarkitekturutbildningen Tentamenskod: Tentamensdatum:

Läs mer

Vad behövs för att skapa en tillståndsrymd?

Vad behövs för att skapa en tillståndsrymd? OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

de var svåra att implementera och var väldigt ineffektiva.

de var svåra att implementera och var väldigt ineffektiva. OBS! För flervalsfrågorna gäller att flera alternativ eller inget alternativ kan vara korrekt. På flervalsfrågorna kan man bara ha rätt eller fel, dvs frågan måste vara helt korrekt besvarad. Totalt kan

Läs mer

Asymptotisk analys innebär att... man försöker uppskatta vad som händer för stora indatamängder.

Asymptotisk analys innebär att... man försöker uppskatta vad som händer för stora indatamängder. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten. OS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Asymptotisk analys innebär att... man försöker uppskatta vad som händer för stora indatamängder.

Asymptotisk analys innebär att... man försöker uppskatta vad som händer för stora indatamängder. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna kan man bara ha rätt eller fel, dvs frågan måste vara helt korrekt besvarad för att man skall

Läs mer

Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section

Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section Föreläsning 1 Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section 1.1-1.3 i kursboken Definition En utsaga (proposition) är ett

Läs mer

Artificial Intelligence

Artificial Intelligence Omtentamen Artificial Intelligence Datum: 2014-08-27 Tid: 09.00 13.00 Ansvarig: Resultat: Hjälpmedel: Gränser: Anders Gidenstam Redovisas inom tre veckor Inga G 8p, VG 12p, Max 16p Notera: Skriv läsbart!

Läs mer

Shakey s värld med HTNplanering

Shakey s värld med HTNplanering Shakey s värld med HTNplanering 2010-10-03 Artificiell Intelligens 2, 729G11 Maria Lindqvist Fördjupningsarbete, HT 2010 880913-0506 Linköpings Universitet marli314 2 Innehållsförteckning Inledning...

Läs mer

STRIPS. En planerares uppbyggnad. Emma Torensjö. Artificiell Intelligens II. Linköpings Universitet HT Emma Torensjö.

STRIPS. En planerares uppbyggnad. Emma Torensjö. Artificiell Intelligens II. Linköpings Universitet HT Emma Torensjö. STRIPS En planerares uppbyggnad Artificiell Intelligens II Linköpings Universitet HT 2012 Innehållsförteckning Innehåll Innehållsförteckning... 3 Inledning... 4 1. Introduktion till STRIPS... 4 2. Operatorbeskrivning

Läs mer

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten. OS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Lektion 2: Sökagenter. Robin Keskisärkkä

Lektion 2: Sökagenter. Robin Keskisärkkä Lektion 2: Sökagenter Robin Keskisärkkä Lektionens innehåll Introduktion till laboration 2 Implementation av en sökalgoritm Livekodning Konfrontera ett liknande problem själva Extra: Heuristisk sökning

Läs mer

Artificiell Intelligens Lektion 4

Artificiell Intelligens Lektion 4 Frames Filmdomän Artificiell Intelligens Lektion 4 Frames (Lab4) Resolution & unifiering Frames system Lagrar hierarkisk information Attribut lagras i attributvärdesstrukturer Attribut kan ha egenskaper

Läs mer

Logik och kontrollstrukturer

Logik och kontrollstrukturer Logik och kontrollstrukturer Flödet av instruktioner i ett programmeringsspråk bygger vi upp med hjälp av dess kontrollstrukturer. I C har vi exemplen if, if else, while, do while. Dessutom finns switch

Läs mer

Antag att följande träd genereras i ett spelförande program om vi applicerar evalueringsfunktionen

Antag att följande träd genereras i ett spelförande program om vi applicerar evalueringsfunktionen 1. Komplexiteten hos en agent beror mycket på vilken omgivning den skall verka i. Vad innebär det att en omgivning är stokastisk, episodisk och dynamisk? Ge exempel på en omgivning som är stokastisk, episodisk

Läs mer

Varför är logik viktig för datavetare?

Varför är logik viktig för datavetare? Varför är logik viktig för datavetare? 1. Datavetenskap handlar ofta om att automatisera processer som tidigare styrts av människor. Intuition, intelligens och mänskliga resonemang ersätts av beräkningar.

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet

Tommy Färnqvist, IDA, Linköpings universitet Föreläsning 9 Pekare, länkade noder, länkade listor TDDD86: DALP Utskriftsversion av föreläsning i Datastrukturer, algoritmer och programmeringsparadigm 25 september 2015 Tommy Färnqvist, IDA, Linköpings

Läs mer

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Trädstrukturer och grafer

Trädstrukturer och grafer Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer

Läs mer

Sökning i ordnad lista. Sökning och sortering. Sökning med vaktpost i oordnad lista

Sökning i ordnad lista. Sökning och sortering. Sökning med vaktpost i oordnad lista Sökning och sortering Sökning i oordnad lista Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man mycket data

Läs mer

Mycket kortfattade lösningsförslag till tenta i AI 6 nov 2003

Mycket kortfattade lösningsförslag till tenta i AI 6 nov 2003 2003-12-02 Institutionen för datavetenskap Arne Jönsson/* Mycket kortfattade lösningsförslag till tenta i AI 6 nov 2003 1. Förklara de olika egenskaper en omgivning kan ha och ge exempel på en omgivning

Läs mer

729G74 IT och programmering, grundkurs. Tema 2. Föreläsning 3 Jody Foo,

729G74 IT och programmering, grundkurs. Tema 2. Föreläsning 3 Jody Foo, 729G74 IT och programmering, grundkurs Tema 2. Föreläsning 3 Jody Foo, jody.foo@liu.se Föreläsningsöversikt Information i grafstrukturer Diskret matematik Relationer: kopplingar mellan mängder Funktioner

Läs mer

729G74 IT och programmering, grundkurs. Tema 2. Föreläsning 3 Jody Foo,

729G74 IT och programmering, grundkurs. Tema 2. Föreläsning 3 Jody Foo, 729G74 IT och programmering, grundkurs Tema 2. Föreläsning 3 Jody Foo, jody.foo@liu.se Föreläsningsöversikt Information i grafstrukturer Diskret matematik Relationer: kopplingar mellan mängder Funktioner

Läs mer

Föreläsning 4: Kombinatorisk sökning

Föreläsning 4: Kombinatorisk sökning DD2458, Problemlösning och programmering under press Föreläsning 4: Kombinatorisk sökning Datum: 2009-09-25 Skribent(er): Kristina Nylander, Dennis Ekblom, Marcus Öman Föreläsare: Fredrik Niemelä 1 Introduktion

Läs mer

A B C D E F A B C D E F (3) Svar: Tabellen ger grafen:

A B C D E F A B C D E F (3) Svar: Tabellen ger grafen: 1. Russel & Norvig menar att man kan utveckla AI-system som antingen tänker som en människa, handlar som en människa, tänker rationellt eller handlar rationellt. Förklara och exemplifiera dessa fyra synsätt.

Läs mer

Sätt att skriva ut binärträd

Sätt att skriva ut binärträd Tilpro Övning 3 På programmet idag: Genomgång av Hemtalet samt rättning Begreppet Stabil sortering Hur man kodar olika sorteringsvilkor Inkapsling av data Länkade listor Användning av stackar och köer

Läs mer

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1.

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1. UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik I 1 Lite om satslogik 1.1

Läs mer

Föreläsning 2 Programmeringsteknik DD1310. Programmering. Programspråk

Föreläsning 2 Programmeringsteknik DD1310. Programmering. Programspråk Föreläsning 2 steknik DD1310 python introduktion Variabler Datatyp Aritmetiska operatorer av typer Reserverade ord logiska operatorer If-sats kommentarer funktioner betyder att instruera en dator Ett program

Läs mer

DD1361 Programmeringsparadigm HT17

DD1361 Programmeringsparadigm HT17 DD1361 Programmeringsparadigm HT17 Logikprogrammering 1 Dilian Gurov, KTH Delkursinnehåll Logisk versus procedurell läsning Kontrollflöde: Unifiering, Backtracking, Snitt Induktiva datatyper och rekursion

Läs mer

Dataabstraktion. TDDD73 Funktionell och impterativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap

Dataabstraktion. TDDD73 Funktionell och impterativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap Dataabstraktion TDDD73 Funktionell och impterativ programmering i Python Föreläsning 12 Peter Dalenius Institutionen för datavetenskap 2013-11-12 Översikt Vad är abstraktion? Vad är en abstrakt datatyp?

Läs mer

729G04 Programmering och diskret matematik. Python 3: Loopar

729G04 Programmering och diskret matematik. Python 3: Loopar 729G04 Programmering och diskret matematik Python 3: Loopar Översikt Labbar Punktnotation och strängmetoder Loopar Labb 3 Labbar? Punktnotation Punktnotation Ni har stött på punktnotation tidigare - kapitel

Läs mer

Grundläggande logik och modellteori (5DV102)

Grundläggande logik och modellteori (5DV102) Tentamen 2013-10-31 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 11 Maximalt antal poäng 30 Krav för 3 i betyg 14 poäng Krav för 4 i betyg 19 poäng,

Läs mer

Föreläsning 10 Datalogi 1 DA2001. Utskrift på skärmen. Syntax. print( Hej ) Hur är det? Hej. print( Hej,end= ) print( Hur är det? ) HejHur är det?

Föreläsning 10 Datalogi 1 DA2001. Utskrift på skärmen. Syntax. print( Hej ) Hur är det? Hej. print( Hej,end= ) print( Hur är det? ) HejHur är det? Föreläsning 10 Datalogi 1 DA2001 python introduktion Variabler Datatyp Aritmetiska operatorer av typer Reserverade ord logiska operatorer If-sats kommentarer på skärmen print( Hej ) print( Hur är det?

Läs mer

Grafer, traversering. Koffman & Wolfgang kapitel 10, avsnitt 4

Grafer, traversering. Koffman & Wolfgang kapitel 10, avsnitt 4 Grafer, traversering Koffman & Wolfgang kapitel 1, avsnitt 4 1 Traversering av grafer De flesta grafalgoritmer innebär att besöka varje nod i någon systematisk ordning precis som med träd så finns det

Läs mer

Datatyper och kontrollstrukturer. Skansholm: Kapitel 2) De åtta primitiva typerna. Typ Innehåll Defaultvärde Storlek

Datatyper och kontrollstrukturer. Skansholm: Kapitel 2) De åtta primitiva typerna. Typ Innehåll Defaultvärde Storlek De åtta primitiva typerna Java, datatyper, kontrollstrukturer Skansholm: Kapitel 2) Uppsala Universitet 11 mars 2005 Typ Innehåll Defaultvärde Storlek boolean true, false false 1 bit char Tecken \u000

Läs mer

Föreläsning 13 och 14: Binära träd

Föreläsning 13 och 14: Binära träd Föreläsning 13 och 14: Binära träd o Binärträd och allmänna träd o Rekursiva tankar för binärträd o Binära sökträd Binärträd och allmänna träd Stack och kö är två viktiga datastrukturer man kan bygga av

Läs mer

Introduktion till programmering SMD180. Föreläsning 4: Villkor och rekursion

Introduktion till programmering SMD180. Föreläsning 4: Villkor och rekursion Introduktion till programmering Föreläsning 4: Villkor och rekursion 1 1 Några inbyggda funktioner (med resultat!) Konverterar mellan de grundläggande typerna: >>> int("32") 32 >>> int(3.999) 3 >>> float(32)

Läs mer

Dataabstraktion. TDDD73 Funktionell och imperativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap

Dataabstraktion. TDDD73 Funktionell och imperativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap Dataabstraktion TDDD73 Funktionell och imperativ programmering i Python Föreläsning 12 Peter Dalenius Institutionen för datavetenskap 2014-11-19 Översikt Vad är abstraktion? Vad är en abstrakt datatyp?

Läs mer

Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf

Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik II 1 Predikatlogik, generella

Läs mer

Sökning. Sökning. Köoperationer. Generell sökalgoritm

Sökning. Sökning. Köoperationer. Generell sökalgoritm Sökning Sökning! Datastrukturer och operationer! Värdering av sökstrategier! Blind sökning! Heuristisk sökning! Constraint satisfaction! Spelförande program Datastruktur: nod = [tillstånd, förälder, operator,

Läs mer

Tentamen i. TDDA 69 Data och programstrukturer

Tentamen i. TDDA 69 Data och programstrukturer 1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDA 69 Data och programstrukturer Torsdag den 14 januari 2009, kl 14-18 Hjälpmedel: Inga. Poänggränser: Maximalt

Läs mer

Översikt. Varför lära sig detta? Motivering Syntax och semantik Imperativa språkets byggstenar och Python. PL-boken Kap 1 (repetition):

Översikt. Varför lära sig detta? Motivering Syntax och semantik Imperativa språkets byggstenar och Python. PL-boken Kap 1 (repetition): Översikt Motivering Syntax och semantik Imperativa språkets byggstenar och Python Datatyper Tilldelning och uttryck Kontrollstrukturer (på satsnivå) Subprogram Relaterade avsnitt: PL 3.1-3.2, 5.1-5.3,

Läs mer

Språket Python - Del 1 Grundkurs i programmering med Python

Språket Python - Del 1 Grundkurs i programmering med Python Hösten 2009 Dagens lektion Ett programmeringsspråks byggstenar Några inbyggda datatyper Styra instruktionsflödet Modulen sys 2 Ett programmeringsspråks byggstenar 3 ETT PROGRAMMERINGSSPRÅKS BYGGSTENAR

Läs mer

Föreläsning 2 Programmeringsteknik och C DD1316. Programmering. Programspråk

Föreläsning 2 Programmeringsteknik och C DD1316. Programmering. Programspråk Föreläsning 2 steknik och C DD1316 python introduktion Variabler Datatyp Aritmetiska operatorer av typer Reserverade ord logiska operatorer If-sats kommentarer betyder att instruera en dator Ett program

Läs mer

Djupstruktur och ytstruktur

Djupstruktur och ytstruktur Djupstruktur och ytstruktur En gammal man bodde på vinden. På vinden bodde en gammal man. Chomsky 1965 baskomponent transformationskomponent Föregångare till UCP Augmented Transition Network (Woods 1970)

Läs mer

Föreläsning 2 Programmeringsteknik och C DD1316

Föreläsning 2 Programmeringsteknik och C DD1316 Föreläsning 2 Programmeringsteknik och C DD1316 Föreläsning 2 Programmeringsteknik och C Datatyp Aritmetiska operatorer Omvandling av typer Reserverade ord Mikael Djurfeldt Logiska operatorer

Läs mer

Tentamen: Programutveckling ht 2015

Tentamen: Programutveckling ht 2015 Tentamen: Programutveckling ht 2015 Datum: 2015-11-04 Tid: 09:00-13:00 Sal: Ansvarig: Resultat: Hjälpmedel: Maxpoäng: Betygsgränser: Anslås inom 3 veckor. Inga 40 p 20 p för G, 32 p för VG. Iakttag följande:

Läs mer

Grundläggande Datalogi

Grundläggande Datalogi s delar Grundläggande Datalogi s delar s delar s delar Dataabstraktion Rekursion Algoritmanalys s delar Sortering Trädstrukturer Grafalgoritmer Optimering Stavning Strängmatchning Datakompression Versionshantering

Läs mer

Föreläsning 2 Programmeringsteknik DD1310. Programmering. Programspråk

Föreläsning 2 Programmeringsteknik DD1310. Programmering. Programspråk Föreläsning 2 steknik DD1310 Python introduktion Variabler Datatyper Aritmetiska operatorer av typer Reserverade ord logiska operatorer If-sats kommentarer betyder att instruera en dator Ett program är

Läs mer

TDDC74 Programmering, abstraktion och modellering DUGGA 2

TDDC74 Programmering, abstraktion och modellering DUGGA 2 AID-nummer: Datum: 2011-02-18 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 2 Fredag 18 feb 2011

Läs mer

Föreläsning 2 Programmeringsteknik och C DD1316. Mikael Djurfeldt

Föreläsning 2 Programmeringsteknik och C DD1316. Mikael Djurfeldt Föreläsning 2 Programmeringsteknik och C DD1316 Mikael Djurfeldt Föreläsning 2 Programmeringsteknik och C Python introduktion Utskrift Inläsning Variabler Datatyp Aritmetiska operatorer Omvandling

Läs mer

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd.

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Programmering i C++ EDA623 Mer om klasser. EDA623 (Föreläsning 6) HT 2013 1 / 26

Programmering i C++ EDA623 Mer om klasser. EDA623 (Föreläsning 6) HT 2013 1 / 26 Programmering i C++ EDA623 Mer om klasser EDA623 (Föreläsning 6) HT 2013 1 / 26 Mer om klasser Innehåll Konstanta objekt Statiska medlemmar Pekaren this Vänner (friends) Överlagring av operatorer EDA623

Läs mer

Centrala begrepp i prolog och logikprogrammering. Annamaris lista

Centrala begrepp i prolog och logikprogrammering. Annamaris lista Centrala begrepp i prolog och logikprogrammering Annamaris lista Databas med fakta och regler: Ett prolog-system består av en databas av fakta, och regler som gäller för dessa fakta. Fakta har formen av

Läs mer

Övning 1 - Abstrakta datatyper

Övning 1 - Abstrakta datatyper /home/lindahlm/activity-phd/teaching/12dd1320/exercise1/exercise1.py September 3, 20121 0 # coding : latin Övning 1 - Abstrakta datatyper 18 Summering Vi gick igenom betydelsen av abstrakta datatyper/datastrukturer.

Läs mer

Programmering A. Johan Eliasson johane@cs.umu.se

Programmering A. Johan Eliasson johane@cs.umu.se Programmering A Johan Eliasson johane@cs.umu.se 1 Jag Undervisar mest grundläggande programmering på Institutionen för datavetensakap Applikationsutveckling för iphone Applikationsutveckling i Java Datastrukturer

Läs mer

Python. Vi har ofta behov av att behandla datastrukturer på ett enhetligt sätt så att vi kan göra samma sak i flera olika program.

Python. Vi har ofta behov av att behandla datastrukturer på ett enhetligt sätt så att vi kan göra samma sak i flera olika program. Moduler Vi har ofta behov av att behandla datastrukturer på ett enhetligt sätt så att vi kan göra samma sak i flera olika program. Vi har också ofta behov av att skapa överblick i våra program. Som ett

Läs mer

Föreläsning 3-4 Innehåll. Diskutera. Metod. Programexempel med metod

Föreläsning 3-4 Innehåll. Diskutera. Metod. Programexempel med metod Föreläsning 3-4 Innehåll Diskutera Vad gör programmet programmet? Föreslå vilka satser vi kan bryta ut till en egen metod. Skriva egna metoder Logiska uttryck Algoritm för att beräkna min och max Vektorer

Läs mer

Dagens föreläsning. Repetition. Repetition - Programmering i C. Repetition - Vad C består av. Repetition Ett första C-program

Dagens föreläsning. Repetition. Repetition - Programmering i C. Repetition - Vad C består av. Repetition Ett första C-program Dagens föreläsning Programmeringsteknik för Ingenjörer VT05 Föreläsning 3-4 Repetition Datatyper Uttryck Operatorer Satser Algoritmer Programmeringsteknik VT05 2 Repetition Repetition - Programmering i

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2

Tommy Färnqvist, IDA, Linköpings universitet. 1 Kursadministration 1. 2 Introduktion 2 2.1 Varför logik?... 2 2.2 Satslogik... 2 Föreläsning 1 Syntax 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 21 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Kursadministration 1 2 Introduktion

Läs mer

Några inbyggda funktioner (med resultat!) Introduktion till programmering D0009E. Föreläsning 4: Villkor och rekursion. Modulus-operatorn.

Några inbyggda funktioner (med resultat!) Introduktion till programmering D0009E. Föreläsning 4: Villkor och rekursion. Modulus-operatorn. Några inbyggda funktioner (med resultat!) Introduktion till programmering D0009E Föreläsning 4: Villkor och rekursion Konverterar mellan de grundläggande typerna: >>> int("") >>> int(.999) >>> float().0

Läs mer

Granskning av gränssnitt. Mattias Arvola

Granskning av gränssnitt. Mattias Arvola Granskning av gränssnitt Mattias Arvola 2 Att skapa interaktiva system Identifiera krav Utforma alternativ Ta fram prototyper (eller annan illustration av system) Utvärdera 3 Mål med utvärderingen Revidera,

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 12: Logikprogrammering Henrik Björklund Umeå universitet 16. oktober, 2014 Prolog Prolog har två klasser av formler. Atomära formler: country(sweden, 9000000).

Läs mer

Föreläsning 3-4 Innehåll

Föreläsning 3-4 Innehåll Föreläsning 3-4 Innehåll Skriva egna metoder Logiska uttryck Algoritm för att beräkna min och max Vektorer Datavetenskap (LTH) Föreläsning 3-4 HT 2017 1 / 36 Diskutera Vad gör programmet programmet? Föreslå

Läs mer

Labb i Datorsystemteknik och programvaruteknik Programmering av kalkylator i Visual Basic

Labb i Datorsystemteknik och programvaruteknik Programmering av kalkylator i Visual Basic Labb i Datorsystemteknik och programvaruteknik Programmering av kalkylator i Visual Basic Inledning Starta Microsoft Visual Studio 2005. Välj create Project Välj VB + Vindows Application och välj ett nytt

Läs mer

Grundläggande datalogi - Övning 2

Grundläggande datalogi - Övning 2 Grundläggande datalogi - Övning 2 Björn Terelius November 7, 2008 Klasser skapas med nyckelordet class Klasser Konstruktorer och destruktorer Undantagshantering class MyClass: Docstring and doctests for

Läs mer

Föreläsning Datastrukturer (DAT037)

Föreläsning Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)

Läs mer

Objektorienterad programmering Föreläsning 2

Objektorienterad programmering Föreläsning 2 Objektorienterad programmering Föreläsning 2 Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Agenda Inläsning av data via dialogrutor Repetitioner (While-satsen och For-satsen) Nästlade

Läs mer

DD1361 Programmeringsparadigm HT15

DD1361 Programmeringsparadigm HT15 DD1361 Programmeringsparadigm HT15 Logikprogrammering 1 Dilian Gurov, TCS Innehåll Logikprogrammering Kontrollflöde Unifiering Backtracking Negation Snitt Induktiva datatyper och rekursion Inbyggda datatyper:

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta!

TENTAMEN: Algoritmer och datastrukturer. Läs detta! 1 (6) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi

Läs mer

Artificiell intelligens

Artificiell intelligens 2013-08-13 Introduktion Artificiell intelligens Vad är AI? Olika mål Intelligenta agenter Områden inom AI Arne Jönsson HCS/IA Vad är AI? Intelligens: Förmågan till tänkande och analys (Svenska ORboken)

Läs mer

Exempel på ett litet Ada-program

Exempel på ett litet Ada-program Exempel på ett litet Ada-program -- En kommentar som beskriver något. with Ada.Text_IO; procedure Mini is -- Deklarationer. K : constant Integer := 5; X, Y : Integer; -- Körbar kod. Ada.Text_IO.Put( Utskrift

Läs mer

Innehållsförteckning

Innehållsförteckning Innehållsförteckning Ämne Sida Program Hur ska man lära sig programmering med Java? 11 Kapitel 1 Introduktion till programmering 13 1.1 Vad är programmering? 14 1.2 Vad är en algoritm? 16 1.3 Olika sätt

Läs mer

Programmera i C Varför programmera i C när det finns språk som Simula och Pascal??

Programmera i C Varför programmera i C när det finns språk som Simula och Pascal?? Programmera i C Varför programmera i C när det finns språk som Simula och Pascal?? C är ett språk på relativt låg nivå vilket gör det möjligt att konstruera effektiva kompilatorer, samt att komma nära

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel

Läs mer

Dagens föreläsning Programmering i Lisp Fö 7. Sammanfattning funktionell programmering Exempel på funktionella programspråk

Dagens föreläsning Programmering i Lisp Fö 7. Sammanfattning funktionell programmering Exempel på funktionella programspråk 1 Dagens föreläsning Programmering i Lisp Fö 7 Kopplingen funktionella programmering och diskret matematik. Jämför vad ni hittills gjort i denna kurs och i den diskreta matematiken, med referenser in i

Läs mer

729G74 IT och programmering, grundkurs. Tema 2, Föreläsning 2 Jody Foo,

729G74 IT och programmering, grundkurs. Tema 2, Föreläsning 2 Jody Foo, 729G74 IT och programmering, grundkurs Tema 2, Föreläsning 2 Jody Foo, jody.foo@liu.se Föreläsningsöversikt Kursinfo: återkoppling Muddy Cards och kompletteringar Diskret matematik Python: Programmering

Läs mer

Datalogi I, grundkurs med Java 10p, 2D4112, Fiktiv tentamen, svar och lösningar och extra kommentarer till vissa uppgifter 1a) Dividera förs

Datalogi I, grundkurs med Java 10p, 2D4112, Fiktiv tentamen, svar och lösningar och extra kommentarer till vissa uppgifter 1a) Dividera förs Datalogi I, grundkurs med Java 10p, 2D4112, 2002-2003 Fiktiv tentamen, svar och lösningar och extra kommentarer till vissa uppgifter 1a) Dividera först talet 37 med 2. Använd heltalsdivision. Det ger kvoten

Läs mer

Programmeringsteknik I

Programmeringsteknik I Programmeringsteknik I Föreläsning 2: Grundläggande Java Johan Öfverstedt Java Grundläggande begrepp Datatyper Selektion if Räckvidd (scope) Iteration while Klasser Objekt Metoder Metodhuvudet Kodstandarden

Läs mer

DD1314 Programmeringsteknik

DD1314 Programmeringsteknik Skolan för Datavetenskap och kommunikation DD1314 Programmeringsteknik Föreläsning 1 o print o variabler o reserverade ord o input o kommentarer o beräkningar o datatyper o if-satser Kursinformation Programmering:

Läs mer

Övning 3 - Tillämpad datalogi 2012

Övning 3 - Tillämpad datalogi 2012 /home/lindahlm/activity-phd/teaching/12dd1320/exercise3/exercise3.py September 14, 20121 0 # coding : latin Övning 3 - Tillämpad datalogi 2012 Summering Vi gick igenom problemträd, sökning i problem träd

Läs mer

Grunderna i stegkodsprogrammering

Grunderna i stegkodsprogrammering Kapitel 1 Grunderna i stegkodsprogrammering Följande bilaga innehåller grunderna i stegkodsprogrammering i den form som används under kursen. Vi kommer att kort diskutera olika datatyper, villkor, operationer

Läs mer

Pythons standardbibliotek

Pythons standardbibliotek Pythons standardbibliotek Python 3 skall, enligt standarddokumenten http://docs.python.org/py3k/library/index.html ha stöd för vissa funktioner, typer och datastrukturer Så länge man håller sig till detta

Läs mer

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd.

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

MicroPython Ett textbaserad programmeringsspråk för Micro:bit

MicroPython Ett textbaserad programmeringsspråk för Micro:bit MicroPython Ett textbaserad programmeringsspråk för Micro:bit Introduktion till informationsteknologi 1DT051 2018-09-24 karl.marklund@it.uu.se Uppsala universitet Programming, problemlösning och algoritmer

Läs mer

Föreläsning REPETITION & EXTENTA

Föreläsning REPETITION & EXTENTA Föreläsning 18 19 REPETITION & EXTENTA Programmeringsteknik på 45 minuter Klasser och objekt Variabler: attribut, lokala variabler, parametrar Datastrukturer Algoritmer Dessa bilder är inte repetitionsbilder

Läs mer

Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag)

Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag) Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag) 21 december 2007 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng

Läs mer

TDDC74 Programmering, abstraktion och modellering DUGGA 2

TDDC74 Programmering, abstraktion och modellering DUGGA 2 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 2 Torsdag 19 feb 2009 8-10 Namn: Personnummer:

Läs mer

DD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion

DD1350 Logik för dataloger. Fö 2 Satslogik och Naturlig deduktion DD1350 Logik för dataloger Fö 2 Satslogik och Naturlig deduktion 1 Satslogik En sats(eller utsaga)är ett påstående som kan vara sant eller falskt. I satslogik(eng. propositionallogic) representeras sådana

Läs mer

Övning2. Variabler. Data typer

Övning2. Variabler. Data typer Vahid 28 okt 2002 prgk02 Övning2 -Repetition -Variabler -Primitiva typer (+ boolean) -Operatörer +, ++, --, -Typ konvertering -Wrapper klasser -Jämförelse operatörer,(==, =, ,!=,!) -String hur man

Läs mer