Föreläsning 17 - Komprimering
|
|
- Ludvig Axelsson
- för 6 år sedan
- Visningar:
Transkript
1 DD1343 Datalogi och numeriska metoder del 1 Föreläsning 17 - Komprimering Komprimering Följdlängdskodning (run-length encoding) Huffmankodning Lempel-Ziv-kodning Entropi Komprimering av bilder Komprimering av rörliga bilder Komprimering av ljud Felkorrektion Komprimering Komprimering innebär att man använder någon metod för att minska storleken på en fil. Vi skiljer mellan förlustfri komprimering (non-lossy compression) där det går att dekomprimera för att få tillbaka filen i ursprungligt skick och förstörande komprimering (lossy compression) där man tar bort data. Att det går att komprimera utan att förstöra en fil beror på att filer oftast har redundans, dvs innehåller mer än nödvändigt. Följdlängdskodning - RLE I följdlängdskodning, förkortat RLE (Run-Length-Encoding), utnyttjar man att en följd av likadana tecken kan lagras med antal istället för att skrivas ut. ÅÅÅÅH! JAAAAAAA! AAAAAAAAAAAAH. Vi ersätter följderna av Å och A med antalet följt av det upprepade tecknet: 4ÅH! J7A! 12AH. Men om grundtexten innehåller siffror blir det svårtolkat. Därför väljer vi ett bryttecken, t ex, som vi är säkra på inte kommer att förekomma i texten. 4ÅH! J 7A! 12AH. Algoritmen blir enkel, men tyvärr inte så användbar för textkomprimering eftersom de flesta texter inte innehåller längre följder av samma tecken. Huffmankodning Om vi vet hur vanliga olika tecken är i texten kan vi ställa upp en tabell där vi för varje tecken kan ange sannolikheten för att ett visst tecken ska dyka upp. I David A. Huffmans metod kodar man varje tecken med ett binärt tal, där vanligare tecken får kortare koder. Algoritmen som beräknar vilket tecken som ska få vilken binär kod går ut på att man ritar upp ett binärt träd, där varje tecken ses som ett löv. Sedan numrerar man trädets grenar med 0 och 1 och följer trädet från roten ut till varje löv för att se koderna.
2 1. Sortera tecknen som ska kodas i stigande sannolikhetsordning. 2. Rita grenar från de två tecken som har lägst sannolikhet och låtsas att vi har ett nytt tecken med sannolikhet som är summan av deras sannolikheter. Numrera ena grenen med 0 och andra med Upprepa punkt 2 tills alla tecken kommit med. Roten bör få sannolikhet Börja från roten och följ grenarna ut till ett löv. Samla nollor och ettor på vägen - dessa ger koden för lövets tecken. Vi illustrerar algoritmen med ett exempel. En genomgång av skräcklitteraturen ger följande frekvenstabell: Huffmankod Tecken Sannolikhet G 0.05 R 0.05! A 0.15 H 0.2 I 0.3 Texten HAHA!IIIIIIH!AHRG... skulle alltså kodas som Huffmankodning är en statistisk metod. Lempel-Ziv Alla texter följer inte statistiken. Här följer ett utdrag ur romanen Gadsby av Ernest Vincent Wright ( ). IF YOUTH, THROUGHOUT all history, had had a champion to stand up for it; to show a doubting world that a child can think; and, possibly, do it practically; you wouldn't constantly run across folks today who claim that ''a child don't know anything.'' A child's brain starts functioning at birth; and has, amongst its many infant convolutions, thousands of dormant atoms, into which God has put a mystic possibility for noticing an adult's act, and figuring out its purport. Jacob Ziv och Abraham Lempel uppfann en förutsättningslös metod som anpassar sig till indata. Principen är att man går igenom filen och bygger en ordlista som används för kodningen. Lempel-Ziv finns i ett otal olika varianter: LZ77, LZSS, LZFG, LZW, LZMW, LZAP, LZY, LZP, osv. Så här fungerar LZW (en variant gjord av T. Welch): Läs in tecken för tecken och slå ihop till en sträng s. Fortsätt på det viset så länge som strängen redan finns med i ordlistan. Så småningom får vi en sträng som inte finns i ordlistan (s finns med men inte s+c). Skriv då ut koden för strängen s, skriv ut tecknet c, och lägg in s+c i ordlistan. def lzw(text): table = Table() q=queue() for c in text: # spara texten tecken för tecken i en kö q.put(c)
3 s="" kodtext="" # här sparas det kodade meddelandet while not q.isempty(): c=q.get() if table.exists(s+c): s=s+c else: kodtext+=str(table.code(s))+c table.add(s+c) s="" if not s=="": kodtext+=str(table.code(s)) return kodtext Klassen Table (som används för ordlistan) är tänkt att vara en datastruktur där man kan stoppa in strängar med add(), kolla om en sträng finns med exists(), och få ut en kod för en given sträng med code(). LZ-komprimering används i många komprimeringsprogram, t ex compress, Zip, WinZip och GZip (här i kombination med Huffmankodning). Exempel: Använd LZW-algoritmen ovan för att komprimera NÄSSNUVSNORSNOK Om vi använder en vektor som tabell och för enkelhets skull kodar strängarna med vektorindex får vi tabellen: code sträng "N" "Ä" "S" "SN" "U" "V" "SNO" "R" "SNOK" och det komprimerade ordet blir: NÄS2NUV3OR6K Entropi Hur mycket kan man komprimera utan att förlora information? Om det var möjligt att komprimera hur mycket som helst skulle vi kunna få ner varje fil till en bit, men det kan vi uppenbarligen inte. Det finns alltså en undre gräns för hur kompakt man kan få en fil med förlustfri komprimering. Om man känner till sannolikheten för varje tecken som ska kodas (som i skräckexemplet ovan) kan man beräkna entropin som ger en undre gräns för medellängden hos en kod. Anta att vi har en teckenmängd m 1, m 2,...,m n (t ex alfabetet) och att sannolikheten för att tecknet m i ska förekomma är P(m i ). Då är L(m i )=-log(p(m i )) minimilängden för ett kodord för tecknet m i och L medel = P(m 1 )*L(m 1 ) P(m n )*L(m n ) medellängden för koderna (entropin). Komprimering av bilder Det är vanligt att varje bildpunkt (pixel) i en färgbild representeras med ett 24-bitars binärt tal (vilket ger oss åtta bitar för vardera rött, grönt resp blått). Då tar en färgbild 100x100 pixlar bitar, dvs 24 kb och en bild som täcker en 600x800-skärm tar 11.5 MB.
4 GIF 24 kb JPEG 3 kb JPEG 1.5 kb Vilken redundans kan finnas i en bild? Vissa färger kanske är vanligare, så att vi kan använda Huffmankodning för att få kortare koder för dessa. I foton är närliggande pixlar ofta lika (blå himmel t ex), likaså i streckteckningar och grafer (bara svarta och vita pixlar). Där kan man använda RLE genom att räkna antal vita resp svarta pixlar i följd. Även varianter av LZW kan användas - då innehåller tabellen pixelinfo istället för strängar! Vi kan också använda förstörande komprimering för att ta bort information som ögat ändå inte ser. GIF (Graphics Interchange Format) är ett filformat för bilder där färgkodningen görs med 8 bitar, dvs man får 2 8 =256 färger. Sen används en variant av LZW för att komprimera. Den komprimeringen är förlustfri och storleken minskas med ungefär faktorn 4. JPEG (Joint Photographic Experts Group) är bättre för foton och andra bilder där närliggande pixlar har liknande färger. Färgbilder delas upp i en belysningsdel och en färgdel, där färgdelen komprimeras med förstörande komprimering eftersom ögat är mindre känsligt för färgförändringar. Sen används en kombination av RLE och Huffmankodning för att koda grupper av pixlar. Komprimeringsgraden är parameter till algoritmen, så man kan bestämma själv hur hårt man vill komprimera. Färgkodningen görs med 24 bitar, dvs 2 24 (nästan 17 miljoner) färger. Komprimering av rörliga bilder En videofil innehåller massor av bilder och dessutom ljud så det är extra viktigt att kunna komprimera såna. Dekomprimeringen måste gå snabbt om man direkt ska kunna se filmen i realtid. Det mest kända formatet för rörliga bilder är MPEG (Moving Picture Experts Group). MPEG är egentligen en samling standarder för kombinationer av ljud och video. Komprimeringen av video-delen kan delas upp i bildkomprimering av varje enskild bildruta och tidskomprimering där man utnyttjar likhet mellan på varandra följande bilder. För bildkomprimeringen används i regel JPEG. För tidskomprimeringen finns ett antal olika metoder: Koda likheter (att en del av bilden ser likadan ut som i förra rutan). Koda förskjutningar (att en del av bilden har förskjutits sen förra rutan). Koda skillnaden mellan två bildrutor. Koda förväntad rörelse. Tidskomprimeringen kan göra det knepigare att redigera filmen.
5 Komprimering av ljud Digital lagring av ljud innebär automatiskt en komprimering eftersom vi samplar en analog ljudkurva i ett ändligt antal punkter. Vidare komprimering av digitala ljudfiler kan göras med RLE eller Huffmankodning. Däremot fungerar inte LZ-metoderna särskilt bra, eftersom de bygger på att man hittar upprepningar. Och även om t ex ett musikstycke upprepar sig är det osannolikt att samma upprepningar skulle återfinnas i ljudfilen efter samplingen. När det gäller ljud kan man också använda förstörande metoder Två exempel på sådana är tystnadskomprimering där man ersätter mycket svaga ljud med tystnad och companding där man minskar ordlängden för varje ljudpunkt (t ex från 16 till 12 bitar). MP3 (MPEG Audio Layer-3 encoding) använder en kombination av tekniker där man utnyttjar en modell av den mänskliga hörseln samt Huffmankodning. Felkorrektion Vill man gardera sig mot fel kan man lägga till redundans (motsatsen till komprimering). Det finns många olika sätt att göra det på, här följer några exempel: Kontrollsiffra (t ex sista siffran i ett personnummer). Skicka kopior av hela meddelandet, minst tre behövs om man ska kunna korrigera. Paritetsbitar, att man lägger till en etta eller nolla till ett binärt tal för att göra det udda. Ett jämnt tal innebär att nån bit är fel. Hammingavstånd: Lägg till så många extrabitar till koden så att varje enbitsfel ger ett kodord som skiljer sig i en bit från det korrumperade kodordet, men i flera bitar från alla övriga kodord. Exempel: A F I N Två kodord har Hammingavstånd d om dom skiljer sig åt i d bitar. En kod har Hammingavstånd d om alla kodord är minst d ifrån varann. Givet koderna till vänster - hur ska vi tolka meddelandet
Övning 6. Komprimering, kryptering, dokumentering & testning
Per Sedholm DD1320 (tilda11) 2011-10-05 1. Smittskydd Övning 6 Komprimering, kryptering, dokumentering & testning Du har fått ett mail som innehåller tips mot spridning av virus. Informationen är komprimerad
Övning 6 - Tillämpad datalogi 2012
/home/lindahlm/activity-phd/teaching/12dd1320/exercise6/exercise6.py October 2, 20121 0 # coding : latin Övning 6 - Tillämpad datalogi 2012 Sammanfattning Idag gick vi igenom komprimering, kryptering och
Föreläsning i webbdesign. Bilder och färger. Rune Körnefors. Medieteknik. 2012 Rune Körnefors rune.kornefors@lnu.se
Föreläsning i webbdesign Bilder och färger Rune Körnefors Medieteknik 1 2012 Rune Körnefors rune.kornefors@lnu.se Exempel: Bilder på några webbsidor 2 Bildpunkt = pixel (picture element) Bilder (bitmap
Bilder... Dagens föreläsning. Objektgrafik. Objektgrafik. TNMK30, 2010 Föreläsning
TNMK30, 2010 Föreläsning Bilder... Tobias Trofast, LiU 1 Dagens föreläsning Olika grafikformat Bitdjup Färglägen och kanaler Komprimering Filformat Bildkvalitet Upplösning & Interpolering Objektgrafik
INT 3 F4. Bildkomprimering. Run Length Encoding. Medieteknik Del2. Komprimering, ljud och rörliga bilder. Olika algoritmer för bildkomprimering:
INT 3 F4 Medieteknik Del2 Komprimering, ljud och rörliga bilder DSV Peter Mozelius Bildkomprimering Olika algoritmer för bildkomprimering: Icke-förstörande komprimering RLE Run Length Encoding Huffman-kodning
Ordbokskodning. Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning)
Datakompression fö 6 p.1 Ordbokskodning Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Man skapar en ordbok som innehåller 2 b olika sekvenser av symboler
Exempel, minnesfri binär källa. Ordbokskodning. Lempel-Zivkodning. Lempel-Zivkodning, forts.
Datakompression fö 6 p.3 Datakompression fö 6 p.4 Ordbokskodning Exempel, minnesfri binär källa Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Man skapar
Optimala koder. Övre gräns för optimala koder. Gränser. Övre gräns för optimala koder, forts.
Datakompression fö 3 p.3 Datakompression fö 3 p.4 Optimala koder Övre gräns för optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning)
Optimala koder. Det existerar förstås flera koder som har samma kodordsmedellängd. Enklaste fallet är att bara byta 0:or mot 1:or.
Datakompression fö 3 p.1 Optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning) som har lägre kodordsmedellängd. Det existerar förstås
Källkodning. Egenskaper hos koder. Några exempel
Källkodning Källkodning innebär att vi avbildar sekvenser av symboler ur en källas alfabet på binära sekvenser (kallade kodord). Mängden av alla kodord kalls för en kod. (Man kan förstås tänka sig att
DD1320 Tillämpad datalogi. Lösning (skiss) till tenta 20 okt 2011
DD1320 Tillämpad datalogi Lösning (skiss) till tenta 20 okt 2011 1 KMP P I P P I N i 1 2 3 4 5 6 Next[i] 0 1 0 2 1 3 2 Huffmankodning: Algoritmen 1. Sortera tecknen som ska kodas i stigande förekomstordning.
SMS047 Mediakodning. Introduktion. Frank Sjöberg. Introduktion. Introduktion
SMS047 Mediakodning Frank Sjöberg Email: frank@sm.luth.se Rum A3207 Kursen behandlar kodning av fyra olika typer av media Text & annan data Bild Ljud (ej tal) Video Vi kommer i första hand att studera
FLAC (Free Lossless Audio Coding)
Datakompression fö 9 p.1 FLAC (Free Lossless Audio Coding) Distorsionsfri kodning av ljud Ljudsignalen delas in i block (typiskt några tusen sampel). Koda summa/skillnad av de två stereokanalerna om det
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre
Synsinnet. Komprimeringsexempel. Förlustkomprimering - Bakgrund. Image Coding. Common Image Formats GIF
Image Coding Förlustkomprimering - Bakgrund Bilder överförs för att visas upp för en människa. Människan är otålig och halvblind Otålig Frustrerande med väntan framför skärmen Halvblind Det mänskliga synsinnet
Synsinnet. Komprimeringsexempel. Förlustkomprimering - Bakgrund. Common Image Formats. Image Coding GIF. GIF (Graphis Interchange Format)
Image Coding Common Image Formats GIF (Graphis Interchange Format) Lossless, but only in 256 colors Uses LZW for compression (Patent problem) PNG (Portable Network Graphics) More flexible replacement for
Föreläsning 7: Bild- och videokodning
Föreläsning 7: Bild- och videokodning Inledning - varför bildkodning - tillämpningar - grundprinciper Förlustfri kodning - Variabellängdskodning - Skurländskodning - Huffmankodning Irreversibla kodningsmetoder
Skurlängdskodning. aaaabbbbbbbccbbbbaaaa. Man beskriver alltså sekvensen med ett annat alfabet än det ursprungliga.
Datakompression fö 4 p1 Skurlängdskodning Ibland har man källor som producerar långa delsekvenser av samma symbol Det kan då vara praktiskt att istället för att beskriva sekvensen som en följd av enstaka
Tildatenta Lösningsskiss
Tildatenta 2017-10-20 Lösningsskiss E-delen 1. KMP PAPPAPARTY next[i] = 0 1 0 2 1 0 4 3 1 1 2. Parent-pekare Utskriftfunktionen fungerar så här: 1. Om noden inte är None a. gör vi först ett rekursivt anrop
Föreläsning 7. Felrättande koder
Föreläsning 7 Felrättande koder Antag att vi vill skicka ett meddelande som består av bokstäver a,b,c,d. Vi kan koda a,b,c,d. Antag att det finns en viss sannolikhet att en bit i ett meddelande som skickas
Dagens agenda. Lagring & berarbetning av data. Filer och filformat Metadata Komprimering Kryptering Olika typer av data Filsystem Databaser
Lagring & berarbetning av data 1IK426 Introduktion till informationsteknik Patrik Brandt Filer och filformat Metadata Komprimering Kryptering Olika typer av data Filsystem Databaser Dagens agenda Filer
Data och Information. Dr. Johan Hagelbäck.
Data och Information Dr. Johan Hagelbäck johan.hagelback@lnu.se http://aiguy.org Data eller information? I den verkliga världen har vi information, till exempel en bok eller ett stycke musik Denna information
Föreläsning 1: Bild- och ljudkodning
Föreläsning 1: Bild- och ljudkodning 1. Kursöversikt 2. Introduktion till bild- och ljudkodning - syfte - historik - antal bitar per bildpunkter/sampel 3. Två principiella klasser : distorsionsfri och
Adaptiv aritmetisk kodning
Datakompression fö 8 p.1 Adaptiv aritmetisk kodning Aritmetisk kodning är väldigt enkel att göra adaptiv, eftersom vi bara behöver göra en adaptiv sannolikhetsmodell, medan själva kodaren är fix. Till
Så skapas färgbilder i datorn
Så skapas färgbilder i datorn 31 I datorn skapas såväl text som bilder på skärmen av små fyrkantiga punkter, pixlar, som bygger upp bilden. Varje punkt har sin unika färg som erhålls genom blandning med
Pixelgrafik. Utdrag ur Adobe Photoshops handbok. Om bitmappsbilder (pixelbilder) Om vektorgrafik (kallas ibland objektgrafik)
Pixelgrafik Utdrag ur Adobe Photoshops handbok Om bitmappsbilder (pixelbilder) I bitmappsbilder, eller rasterbilder eller pixelgrafik, används ett rektangulärt rutnät med bildelement (pixlar eller bildpunkter)
Tentamen, Algoritmer och datastrukturer
UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och
Krafts olikhet. En momentant avkodbar kod (prefixkod) med kodordslängderna l 1,...,l N existerar om och endast om. 2 l i. 1 i=1
Datakompression fö 2 p.1 Krafts olikhet En momentant avkodbar kod (prefixkod) med kodordslängderna l 1,...,l N existerar om och endast om N 2 l i 1 Bevis: Antag att vi har en trädkod. Låt l max =max{l
F3 Datarepresentation teckenkodning och datakompression EDAA05 Datorer i system! Roger Henriksson!
Teckenkodning historik F3 Datarepresentation teckenkodning och datakompression EDAA05 Roger Henriksson Baudotkod 5-bitars kod för fjärrskrivare (teletype tty). Baudot 1874, Murray 1901 2 EBCDIC ASCII Extended
Övning 3 - Tillämpad datalogi 2012
/home/lindahlm/activity-phd/teaching/12dd1320/exercise3/exercise3.py September 14, 20121 0 # coding : latin Övning 3 - Tillämpad datalogi 2012 Summering Vi gick igenom problemträd, sökning i problem träd
F3 Datarepresentation teckenkodning och datakompression
Teckenkodning historik F3 Datarepresentation teckenkodning och datakompression Baudotkod 5-bitars kod för fjärrskrivare (teletype tty). EDAA05 Roger Henriksson Jonas Wisbrant Baudot 1874, Murray 1901 2
Digitalitet. Kontinuerlig. Direkt proportionerlig mot källan. Ex. sprittermometer. Elektrisk signal som representerar ljud.
Analog Digitalitet Kontinuerlig Direkt proportionerlig mot källan Ex. sprittermometer Elektrisk signal som representerar ljud Diskret Digital Representation som siffror/symboler Ex. CD-skiva Varje siffra
Fredag 10 juni 2016 kl 8 12
KTH CSC, Alexander Baltatzis DD1320/1321 Lösningsförslag Fredag 10 juni 2016 kl 8 12 Hjälpmedel: En algoritmbok (ej pythonkramaren) och ditt eget formelblad. För betyg E krävs att alla E-uppgifter är godkända,
Digital bildhantering
Digital bildhantering En analog bild blir digital när den scannas. Bilden delas upp i småbitar, fyrkanter, pixlar. En pixel = den digitala bildens minsta byggsten. Hur detaljrik bilden blir beror på upplösningen
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Att sända information mellan datorer. Information och binärdata
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson (Maria Kihl) Att sända information mellan datorer värd 11001000101 värd Två datorer som skall kommunicera. Datorer förstår
Alla presentationstekniker har olika behov; bandbredd, lagring samt bildkvalitet
Alla presentationstekniker har olika behov; bandbredd, lagring samt bildkvalitet 1. Multimedia för persondator distribuerad via Internet 2. Multimedia för persondator lagrad på CD-ROM 3. Digital distribuerad
BINÄRA TRÄD. (X = pekarvärdet NULL): struct int_bt_node *pivot, *ny; X X X 12 X X 12 X X -3 X X
Algoritmer och Datastrukturer Kary FRÄMLING/Göran PULKKIS (v23) Kap. 7, Sid 1 BINÄRA TRÄD Träd används för att representera olika slags hierarkier som ordnats på något sätt. Den mest använda trädstrukturen
Filformat och lagring
och lagring Text 2007-05-24 per.mattsson@miun.se Innehållet får ej kopieras eller återgivas 1 Det finns en uppsjö av filformat som är bärare av ljud. Olika filformat är vanliga i olika typer av användning
Laboration 4: Digitala bilder
Objektorienterad programmering, Z : Digitala bilder Syfte I denna laboration skall vi återigen behandla transformering av data, denna gång avseende digitala bilder. Syftet med laborationen är att få förståelse
Föreläsning 9 Innehåll
Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften
Torstens Digitalbildguide
Thor Stone Education Torstens Digitalbildguide 1 Det finns två huvudtyper av digital bild, vektorbaserad och pixelbaserad. - Vektorbaserade bilder bygger på en matematisk formel och kan storlekförändras
Digital- och datorteknik
Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Aritmetik i digitala system Speciella egenskaper: Systemet
Inlämningsuppgiften. Föreläsning 9 Innehåll. Träd. Datastrukturer i kursen
Föreläsning 9 Innehåll Inlämningsuppgiften De föreläsningar som inlämningsuppgiften bygger på är nu klara. Det är alltså dags att börja arbeta med inlämningsuppgiften. Träd, speciellt binära träd egenskaper
Datastrukturer och algoritmer. Innehåll. Trie. Informell specifikation. Organisation av Trie. Föreläsning 13 Trie och Sökträd.
Datastrukturer och algoritmer Föreläsning 13 rie och ökträd Innehåll rie rådar rie ökträd tterligare en variant av träd. Vi har tidigare sett: Oordnat träd där barnen till en nod bildar en mängd Ordnat
Digital- och datorteknik
Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Speciella egenskaper: Systemet arbetar med kodord (s k
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson Att göra Kursombud Williams bok???? Kolla schemat: Övningar flyttade Labanmälan ska funka nu 2 Att sända information
Omtentamen för TDA540 Objektorienterad Programmering. Institutionen för Datavetenskap CTH HT-15, TDA540. Dag: , Tid:
Omtentamen för TDA540 Objektorienterad Programmering Institutionen för Datavetenskap CTH HT-15, TDA540 Dag: 2016-04-09, Tid: 14.00-18.00 Ansvarig: Examinator: Alex Gerdes Joachim von Hacht och Christer
Kapitel 2 o 3. Att skicka signaler på en länk. (Maria Kihl)
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson (Maria Kihl) Att sända information mellan datorer värd äd 11001000101 värd äd Tåd Två datorer som skall kllkommunicera.
Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd
Innehåll Föreläsning 12 Sökträd Sökning Sökning och Sökträd 383 384 Binärt sökträd Används för sökning i linjära samlingar av dataobjekt, specifikt för att konstruera tabeller och lexikon. Organisation:
Översättning av galleriet. Hjälp till den som vill...
Hjälp till den som vill... $txt['aeva_title'] = 'Galleri'; $txt['aeva_admin'] = 'Admin'; $txt['aeva_add_title'] = 'Titel'; $txt['aeva_add_desc'] = 'Beskrivning'; $txt['aeva_add_file'] = 'Fil att ladda
SeniorNet Huddinge
SeniorNet Huddinge 2018-09-13 Dagens tema: Bilder Bilder Var hittar man bilder? I din smarta telefon. I din kamera. På internet. Vad vill du göra med dem? BILDER Spar dem någonstans. Skriva ut dem. Maila
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson Att sända information mellan datorer värd 11001000101 värd Två datorer som skall kommunicera. Datorer förstår endast
Burrows-Wheelers transform
Datakompression fö 7 p.1 Burrows-Wheelers transform Transformen själv ger ingen kompression, men gör det lättare att koda signalen med en enkel kodare. Antag att vi vill koda en sekvens av längd n. Skapa
Innehåll. Föreläsning 11. Organisation av Trie. Trie Ytterligare en variant av träd. Vi har tidigare sett: Informell specifikation
Innehåll Föreläsning 11 Trie Sökträd Trie och Sökträd 356 357 Trie Ytterligare en variant av träd. Vi har tidigare sett: Oordnat träd där barnen till en nod bildar en mängd Ordnat träd där barnen till
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
Förlustfri datakompression
Förlustfri datakompression Patrik Lindberg Institutionen för informationsbehandling Åbo Akademi, 20520 Åbo, Finland E-Post: patlindb@abo.fi Abstrakt Detta papper ger en kort introduktion till förlustfri
Aritmetisk kodning. F (0) = 0 Exempel: A = {1, 2, 3} k=1. Källkodning fö 5 p.1/12
Aritmetisk kodning Vi identifierar varje sekvens av källsymboler med ett tal i intervallet [0, 1). Vi gör det med hjälp av fördelningsfunktionen (cumulative distribution function) F. För enkelhets skull
SeniorNet Huddinge
SeniorNet Huddinge 2018-11-10 Dagens tema: Vad är en bild Olika typer av bilder Vanligaste typerna Vad skiljer dom olika typerna åt Vilken bildtyp klarar min kamera av 1 Vad är en Pixel? Vanliga filformat
Programmeringsuppgifter 1
Programmeringsuppgifter 1 Redovisning: Ni demo-kör och förklarar för handledaren några av de program ni gjort. Ni behöver inte hinna allt, redovisa så långt ni kommit. Om ni hinner mer kan ni alltid redovisa
Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd
Föreläsning 8 Innehåll Datastrukturer i kursen Träd, speciellt binära träd egenskaper användningsområden implementering Undervisningsmoment: föreläsning 8, övningsuppgifter 8, lab 4 Avsnitt i läroboken:
Bildlagring och - komprimering
Bildlagring och - komprimering Staffan Romberger, srom@nada.kth.se Nada (numerisk analys och datalogi) Bildrepresentation Sändare (skapare) och mottagare (användare) måste vara överens om hur bildinformation
ENKEL Programmering 3
ENKEL Programmering 3 Figurer i långa rader Titta på de olika figurerna i de olika raderna. Kan du se att de olika figurerna i varje rad är placerade enligt ett visst mönster? Kan du lista ut vilken figur
Några svar till TDDC70/91 Datastrukturer och algoritmer
Några svar till TDDC70/91 Datastrukturer och algoritmer 2011--18 Följande är lösningsskisser och svar till uppgifterna på tentan. Lösningarna som ges här ska bara ses som vägledning och är oftast inte
Tommy Färnqvist, IDA, Linköpings universitet
Föreläsning 1 Algoritmiska paradigm TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 15 oktober 013 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Dekomposition
Digital- och datorteknik
Digital- och datorteknik Föreläsning #2 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Talomvandling Principer för omvandling mellan olika talsystem:
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson Att sända information mellan datorer värd 11001000101 värd Två datorer som skall kommunicera. Datorer förstår endast
Kurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer. Khalid Sayood, Introduction to Data Compression
TSBK35 fö 1 p.3 TSBK35 fö 1 p.4 Kurslitteratur Kompression av ljud och bild Harald Nautsch harna@isy.liu.se http://www.icg.isy.liu.se/courses/tsbk35/ ISY Bildkodning, Linköpings universitet Khalid Sayood,
Datorteknik TSIU02 Lab 2 Morsesändare v0.7
Inledning För att skriva program i något programspråk förenklar det att ha ett strukturerat angreppssätt. I assembler får man strukturen genom omsorgsfull användning av subrutiner. Som exempel på en mer
Uppgift 1 ( Betyg 3 uppgift )
2008-03-12.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Du skall skriva ett program som läser igenom en textfil som heter FIL.TXT och skriver ut alla rader där det står ett decimaltal först på raden. Decimaltal
Grundläggande Datalogi för F
2D1344 Grundläggande Datalogi för F Tentamen 2004-01-09 kl 14.00 17.00 Inga hjälpmedel. Endast ett svarsalternativ på varje fråga är korrekt. Felaktigt svar eller felaktigt antal ikryssade svarsalternativ
Linköpings Tekniska Högskola Instutitionen för Datavetenskap (IDA) Torbjörn Jonsson, Erik Nilsson Lab 2: Underprogram
Mål Lab 2: Underprogram Följande laboration introducerar underprogram; procedurer, funktioner och operatorer. I denna laboration kommer du att lära dig: Hur man skriver underprogram och hur dessa anropas.
Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två
Binära träd Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två gånger, talar man om binära träd. Sådana
Talsystem Teori. Vad är talsystem? Av Johan Johansson
Talsystem Teori Av Johan Johansson Vad är talsystem? Talsystem är det sätt som vi använder oss av när vi läser, räknar och skriver ner tal. Exempelvis hade romarna ett talsystem som var baserat på de romerska
De olika exportmetoderna för rasterfiler inne i ArcMap är BMP, TIFF, GIF och PNG.
Exportera karta När man har skapat en karta kanske man vill exportera kartdokumentet till en bild eller grafisk filtyp. Nedan ges exempel på vilka olika format som stöds, samt tips för exporten. Det går
Matematikundervisningen har under
bengt aspvall & eva pettersson Från datorernas värld Hur kan vi stimulera elever i matematik, och hur kan vi genom matematiken visa delar av datorns funktioner? Författarna visar hur man kan introducera
Exportera karta juni 2010
Exportera karta juni 2010 När man har skapat en karta kanske man vill exportera kartdokumentet till en bild eller grafisk filtyp. Nedan ges exempel på vilka olika format som stöds, samt tips för exporten.
C++ Lektion Tecken och teckenfält
C++ Lektion Tecken och teckenfält Teori Hittills har alla variabler du jobbat med varit olika typer av tal, men du kan också deklarera variabler som håller bokstavstecken. Denna variabeltyp kallas för
Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering
Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering Eddie Wadbro 5 november 2014 Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (1 : 21) Innehåll Datoraritmetik
Omtentamen för TDA540 Objektorienterad Programmering. Institutionen för Datavetenskap CTH HT-15, TDA540. Dag: , Tid:
Omtentamen för TDA540 Objektorienterad Programmering Institutionen för Datavetenskap CTH HT-15, TDA540 Dag: 2016-08-25, Tid: 14.00-18.00 Ansvarig: Examinator: Alex Gerdes Joachim von Hacht och Christer
Programmering II (ID1019) :00-11:00
ID1019 Johan Montelius Programmering II (ID1019) 2015-06-11 08:00-11:00 Instruktioner Du får inte ha något materiel med dig förutom skrivmateriel. Mobiler etc, skall lämnas till tentamensvakten. Svaren
TSBK04 Datakompression. Övningsuppgifter
TSBK04 Datakompression Övningsuppgifter Innehåll 1 Informationsteoretiska begrepp........................ 1 2 Källkodning................................... 4 Copyright c 2004 Bildkodningsgruppen, Linköpings
TSBK04 Datakompression Övningsuppgifter
TSBK04 Datakompression Övningsuppgifter Innehåll 1 Informationsteoretiska begrepp........................ 1 2 Källkodning................................... 4 Copyright c 2004 Bildkodningsgruppen, Linköpings
19-21. Samling och kaffe. Temakväll Bildhantering i släktforskningen Genomgång kring temat. Forska själv. Forska själv. Diskussion kring temat
19-21 Samling och kaffe Temakväll Bildhantering i släktforskningen Genomgång kring temat Forska själv Diskussion kring temat Forska själv Höstens temakvällar 13/9 Digitala bilder i släktforskningen 11/10
Filformat / bildformat
Filformat / bildformat Filformat/bildformat är olika modeller för att spara bilden. När du sparar ett foto finns det en uppsjö av olika filformat att välja bland. Först och främst har programmet (ex. Adobe
Föreläsning 11 - Automater, textsökning, tillstånd
Föreläsning 11 - Automater, textsökning, tillstånd Automater Textsökning KMP-automat (Knuth-automat) Boyer-Moore Rabin-Karp Sökning på webben Automater En portkodsautomat med nio knappar kan se ut så här:
DD1321, Tentamen i tillämpad programmering och datalogi Lördagen den 18 dexember 2010 kl 13 18
KTH, Nada, Alexander Baltatzis DD1321, Tentamen i tillämpad programmering och datalogi Lördagen den 18 dexember 2010 kl 13 18 Maxpoäng 100p, godkänt 50p. Bonus max 10p adderas. Resultatet anslås på mina
Tentamen kl Uppgift 4. Uppgift 5
2D344 Grundläggande Datalogi för F Tentamen 2003-03-0 kl 4.00 9.00 Inga hjälpmedel. Endast ett svarsalternativ på varje fråga är korrekt. Felaktigt svar eller felaktigt antal ikryssade svarsalternativ
TDIU Regler
Regler Student får lämna salen tidigast en timme efter tentans start. Vid toalettbesök eller rökpaus ska pauslista utanför salen fyllas i. All form av kontakt mellan studenter under tentans gång är strängt
Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt
Binära träd (forts) Ett binärt träd kan lagras i ett enda sammanhängande minne Roten har index 1 Vänster barn till nod i har index 2*i Höger barn till nod i har index 2*i + 1 Föräldern till nod i har index
TDDC30/725G63. Objektorienterad programmering i Java, datastrukturer och algoritmer
Tentamen i.. TDDC30/725G63 Objektorienterad programmering i Java, datastrukturer och algoritmer Datum 2012-12-21 Tid 14-18 Provkod DAT1 Institution Institutionen för Datavetenskap (IDA) Jour Johan Janzén
F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Datorer i system! Roger Henriksson!
F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Roger Henriksson Von Neumann-arkitekturen Gemensamt minne för programinstruktioner och data. Sekventiell exekvering av instruktionerna.
Shannon-Fano-Elias-kodning
Datakompression fö 5 p.1 Shannon-Fano-Elias-kodning Antag att vi har en minnesfri källa X i som tar värden i {1, 2,...,L}. Antag att sannolikheterna för alla symboler är strikt positiva: p(i) > 0, i. Fördelningsfunktionen
Lösningsförslag DD1320/DD
1. KMP för IT-support K Ö A R I K Ö N 0 1 1 1 1 0 1 3 eller 0 1 1 1 1 1 1 0 1 3 Lösning med eller utan mellanslag godkänns 5 ettor i följd godkänd (slarvfel) sista siffran (3) ett krav men kan avvika om
ATT FRAMSTÄLLA OCH LAGRA ELEKTRONISKA HANDLINGAR
ATT FRAMSTÄLLA OCH LAGRA ELEKTRONISKA HANDLINGAR en handledning för myndigheter i Göteborgs Stad & Västra Götalandsregionen Version 1, 2013-02-08 INNEHÅLL Inledning... 3 Kontorsdokument... 3 E-postmeddelanden...
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2008-05-27 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Enkla datatyper minne
Enkla datatyper minne 143.56 sant Sonja A falskt 18 1999-10-29 Bertil Gralvik, KTH Ingenjörsskolan 1 Addera två tal Algoritmen Summera tal Mata in två tal Beräkna Skriv ut resultat Mata in tal 1 Mata in
Datalogi för E Övning 3
Datalogi för E Övning 3 Mikael Huss hussm@nada.kth.se AlbaNova, Roslagstullsbacken 35 08-790 62 26 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1343/datae06 Dagens program Att skapa egna