Övning 6. Komprimering, kryptering, dokumentering & testning
|
|
- Jakob Andersson
- för 8 år sedan
- Visningar:
Transkript
1 Per Sedholm DD1320 (tilda11) Smittskydd Övning 6 Komprimering, kryptering, dokumentering & testning Du har fått ett mail som innehåller tips mot spridning av virus. Informationen är komprimerad med ett Huffmanträd där nollor motsvarar vänster och ettor motsvarar höger (se figur, T kodas t.ex. som 11) Vad står det i meddelandet ? T 11 D 000 V 001 H 010 N 011 Ä 100 A H A N D T V Ä T T 2. Huffman för Havamal man är mans gamman kan man läsa i Havamal. Konstruera en huffmankod för tecknen i detta uttryck (rita trädet) och skriv sedan upp det i kodad form. Bokstav m a n ä r s g Frekvens Trädet växer fram som: m 4 a 4 m 4 a 4 m 4 a 4 1
2 m 4 a 4 sgär 4 n 6 m 4 a 4 sgär 4 asgär 8 n 6 m 4 a 4 sgär 4 n m 10 asgär 8 n 6 m 4 a 4 sgär n m 10 1 asgär 8 00 n 6 01 m 4 10 a 4 11 sgär n s g ä r 1 2
3 Med vänster 0, höger 1 får vi Bokstav n m a s g ä r Kod Koden för man är mans gamman blir m a n _ ä r _ m a n s _ g a m m a n (50 bitar) En alternativ lösning (se hemsida) ger koden Bokstav ä r s g n m a Kod (50 bitar) 3. Enkel kryptering Kryptera lösenordet SIMSALABIM med 1. rot13 2. Transpositionschiffer A B C D E F G H I J K L M N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z A B C D E F G H I J K L M 1. FVZFNYNOVZ 2. BISALAMIMS (mfl) 4. Testning I labb 6 ska ni göra ett program som kontrollerar syntaxen för en molekylformel. Skriv upp en samling indata att testa programmet med! Giltiga formler Ogiltiga formler Tomma strängen? Både en- och tvåteckens siffror Tänk på att ej korrekta kemiska formler är tillåtna. 3
4 5. RSA-kryptering (ur kursboken, uppg 2 s. 125) Du vill hålla ditt turnummer (18) hemligt, och har därför bestämt dig för att kryptera det med RSA. Välj två primtal större än 500 och använd dom för att kryptera turnumret. p = 587 q = 719 } n = p q = φ(n) = (p 1) (q 1) = = e = 17 väljs så att 1 < e < φ, och e och φ är relativt prima, dvs inga faktorer gemensamma, eller gcd(e, φ) = 1. Kryptering P av meddelandet M fås genom P (M) = M e (mod n) P (18) = (mod ) = (mod ) (mod ) För att avkryptera chiffertexten C används S(C) = C d (mod n) där d = beräknas som modulär multiplikativ invers (modular multiplicative inverse, se nedan), dvs d sådant att d e 1 (mod φ(n)) Här kan se att S( ) = (mod ) = (mod ) 18 (mod ) Det fungerar även baklänges. För att signera meddelandet C = 18: S(C ) = 18 d (mod n) (mod n) P ( ) = e (mod n) 18 (mod n) Paret (e, n) är din allmänna nyckel (public key). Paret (d, n) är din privata nyckel (private key). För att signera, beräkna med privata nyckeln så kan andra verifiera med den allmänna. För att kryptera kan andra beräkna med den allmänna, och du avkryptera med den privata. Vid behov fyller man ut M till önskad bitlängd 4
5 Modulär multiplikativ invers Antag a = 3. Då är b = 7 dess invers modulo 10: a 1 b (mod 10) a b = 3 7 = 21 1 (mod 10) Istället för att dividera med a kan man då multiplicera med b: Exempel: n a = n a 1 = n b n = 12 12/3 = = 7 12 (mod 10) n = 15 15/3 = = 5 7 (mod 10) n = /3 = = 5 7 (mod 10) För att en invers till a ska existera i Z m så måste a och m vara relativt prima. Inversen beräknas med en utökad version av Euklides algoritm. I RSAexemplet ovan är d e = = (mod ) 5
6 6. Lempel-Ziv I denna uppgift ska du avkoda ett meddelande som komprimerats med Lempel-Zivs metod. Komprimeringen går till så att komprimeraren lagrar en lista med strängar som från början enbart innehåller tomma strängen. Komprimeraren läser tecken för tecken från intexten den längsta sträng som ligger i strängtabellen. Sedan skrivs index för denna sträng i tabellen ut, följt av nästa tecken i intexten. Strängtabellen utökas med strängen plus nästa tecken. Därefter läses åter tecken för tecken från intexten. Så fort en sträng inte finns i strängtabellen läggs den alltså till. Metoden kan i (icke-optimerad) kod beskrivas så här: def lzw(text): table = Table() q=queue() for c in text: # spara texten tecken för tecken i en kö q.put(c) s="" table.add(s) kodtext="" # här sparas den kodade texten while not q.isempty(): c=q.get() if table.exists(s+c): s=s+c else: kodtext+=str(table.code(s))+c table.add(s+c) s="" if not s=="": kodtext+=str(table.code(s)) return kodtext Klassen Table stöder inläggning av strängar, kontroll av om en sträng finns i tabellen och möjlighet att ta reda på index hos en speciell sträng. Index bestäms av ordningen strängarna lades in i, där den första strängen har index 1. Uppgiften är att avkoda följande text, där alfabetet består av versaler och mellanslag kodat som. 1S1T1O1R2T4C1K1H4L1M2_6O1L3A1_9O14M1A5 Det vill säga: vad är t om print lzw(t) ger ovanstående som utskrift? Ge också en tabell med strängar och index som motsvarar tabellen i koden! index sträng S T O R ST OC K H OL M S index sträng STO L TA HO LM A 1S1T1O1R2T4C1K1H4L1M2_6O1L3A1_9O14M1A5 S T O R ST OC K H OL M S STO L TA HO LM A R 6
Övning 6 - Tillämpad datalogi 2012
/home/lindahlm/activity-phd/teaching/12dd1320/exercise6/exercise6.py October 2, 20121 0 # coding : latin Övning 6 - Tillämpad datalogi 2012 Sammanfattning Idag gick vi igenom komprimering, kryptering och
Föreläsning 17 - Komprimering
DD1343 Datalogi och numeriska metoder del 1 Föreläsning 17 - Komprimering Komprimering Följdlängdskodning (run-length encoding) Huffmankodning Lempel-Ziv-kodning Entropi Komprimering av bilder Komprimering
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om restklassaritmetik Mikael Hindgren 19 september 2018 Exempel 1 Klockan är nu 8.00 Vad är klockan om 78 timmar? Vad var klockan för 53 timmar sedan? 8 + 78
DD1320 Tillämpad datalogi. Lösning (skiss) till tenta 20 okt 2011
DD1320 Tillämpad datalogi Lösning (skiss) till tenta 20 okt 2011 1 KMP P I P P I N i 1 2 3 4 5 6 Next[i] 0 1 0 2 1 3 2 Huffmankodning: Algoritmen 1. Sortera tecknen som ska kodas i stigande förekomstordning.
Tildatenta Lösningsskiss
Tildatenta 2017-10-20 Lösningsskiss E-delen 1. KMP PAPPAPARTY next[i] = 0 1 0 2 1 0 4 3 1 1 2. Parent-pekare Utskriftfunktionen fungerar så här: 1. Om noden inte är None a. gör vi först ett rekursivt anrop
RSA-kryptering och primalitetstest
Matematik, KTH Bengt Ek augusti 2016 Material till kurserna SF1630 och SF1679, Diskret matematik: RSA-kryptering och primalitetstest Hemliga koder (dvs koder som används för att göra meddelanden oläsbara
Programmeringsuppgifter 1
Programmeringsuppgifter 1 Redovisning: Ni demo-kör och förklarar för handledaren några av de program ni gjort. Ni behöver inte hinna allt, redovisa så långt ni kommit. Om ni hinner mer kan ni alltid redovisa
Grupper och RSA-kryptering
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 26 oktober 2007 Grupper och RSA-kryptering Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen
Några satser ur talteorin
Några satser ur talteorin LCB 997/2000 Fermats, Eulers och Wilsons satser Vi skall studera några klassiska satser i talteori, vilka är av betydelse bland annat i kodningsteknik och kryptoteknik. De kan
NÅGOT OM KRYPTERING. Kapitel 1
Kapitel 1 NÅGOT OM KRYPTERING Behovet av att skydda information har funnits mycket länge, men först i samband med utvecklingen av datatekniken har det blivit ett allmänt problem för alla moderna samhällen.
Grundläggande datalogi - Övning 9
Grundläggande datalogi - Övning 9 Björn Terelius January 30, 2009 Ett formellt språk är en (oftast oändlig) mängd strängar. Språket definieras av en syntax som är en samling regler för hur man får bilda
Optimala koder. Det existerar förstås flera koder som har samma kodordsmedellängd. Enklaste fallet är att bara byta 0:or mot 1:or.
Datakompression fö 3 p.1 Optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning) som har lägre kodordsmedellängd. Det existerar förstås
Optimala koder. Övre gräns för optimala koder. Gränser. Övre gräns för optimala koder, forts.
Datakompression fö 3 p.3 Datakompression fö 3 p.4 Optimala koder Övre gräns för optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning)
Skolan för Datavetenskap och kommunikation PROGRAMMERINGSTEKNIK FÖRELÄSNING 18
Skolan för Datavetenskap och kommunikation PROGRAMMERINGSTEKNIK FÖRELÄSNING 18 Dagens föreläsning Betygskriterier P-redovisning Komplettering Vad händer om man inte hinner klart? Plussa för betyg E ska
Föreläsning 9: Talteori
DD2458, Problemlösning och programmering under press Föreläsning 9: Talteori Datum: 2009-11-11 Skribent(er): Ting-Hey Chau, Gustav Larsson, Åke Rosén Föreläsare: Fredrik Niemelä Den här föreläsningen handlar
Algebra och kryptografi Facit till udda uppgifter
VK Algebra och kryptografi Facit till udda uppgifter Tomas Ekholm Niklas Eriksen Magnus Rosenlund Matematiska institutionen, 2002 48 Grupper. Lösning 1.1. Vi väljer att studera varje element i G H för
Avbildningar och hashtabeller. Koffman & Wolfgang kapitel 7, mestadels avsnitt 2 4
Avbildningar och hashtabeller Koffman & Wolfgang kapitel 7, mestadels avsnitt 2 4 1 2 Mängder i Java 3 Mängd-gränssnittet Set vs. List Mängder får endast innehålla unika element: Metoden.add(E) returnerar
σ 1 = (531)(64782), τ 1 = (18)(27)(36)(45), τ 1 σ 1 = (423871)(56).
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Övningstenta i Algebra och Kombinatorik 7,5 hp 2015-11-24 Exempel på hur tentan skulle kunna se ut om alla uppgifter var från
Fredag 10 juni 2016 kl 8 12
KTH CSC, Alexander Baltatzis DD1320/1321 Lösningsförslag Fredag 10 juni 2016 kl 8 12 Hjälpmedel: En algoritmbok (ej pythonkramaren) och ditt eget formelblad. För betyg E krävs att alla E-uppgifter är godkända,
Sats 2.1 (Kinesiska restsatsen) Låt n och m vara relativt prima heltal samt a och b två godtyckliga heltal. Då har ekvationssystemet
Avsnitt 2 Tillägg om kongruensräkning Detta avsnitt handlar om två klassiska satser som används för att förenkla kongruensräkning: Kinesiska restsatsen och Fermats lilla sats. Den första satsen används
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2008-05-27 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:
Krypteringsprogrammet Kryptogamen
Kryptogamen Sida 1(5) Krypteringsprogrammet Kryptogamen Om programmet Detta program är avsett som en pedagogisk leksak. Det hindrar inte att det kan användas för att försvåra insyn i exempelvis en mailkommunikation
Föreläsning 5 Programmeringsteknik DD1310. Modulen doctest. Exempel. Doctest Dictionary Filhantering
Föreläsning 5 Programmeringsteknik DD1310 Doctest Modulen doctest Man kan använda modulen doctest för att testa programmet på ett mer systematiskt sätt. Så här gör man: 1. Skriver programmets funktioner
Laboration: Whitebox- och blackboxtesting
Tilda11 höstterminen 2011 Laboration: Whitebox- och blackboxtesting Mål med laborationen Du ska lära dig begreppen white-box testing och black-box testing Du ska öva dig på att konstruera testfall Du ska
Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd
Föreläsning 8 Innehåll Datastrukturer i kursen Träd, speciellt binära träd egenskaper användningsområden implementering Undervisningsmoment: föreläsning 8, övningsuppgifter 8, lab 4 Avsnitt i läroboken:
Tenta i Grundläggande programmering DD klockan
Tenta i Grundläggande programmering DD1331 2017-10-20 klockan 14.00 16.00 Marcus Dicander, KTH CST Tillåtna hjälpmedel: En Pythonbok, skrivmaterial, mat, medicin och vattenflaska. Otillåtna hjälpmedel:
Grundläggande datalogi - Övning 4
Grundläggande datalogi - Övning 4 Björn Terelius November 21, 2008 Definitioner Olika mått på komplexitet Definition En funktion f sägs vara O(g) om det existerar konstanter c, N så att f (n) < cg(n) för
DD1320 Tillämpad datalogi. Lösnings-skiss till tentamen 2010-10-18
DD1320 Tillämpad datalogi Lösnings-skiss till tentamen 2010-10-18 1. Mormors mobil 10p M O R M O R S M O B I L M O R M O R S M O B I L i 1 2 3 4 5 6 7 8 9 10 11 12 next[i] 0 1 1 0 1 1 4 0 1 3 1 1 Bakåtpilarna/next-värde
HI1024 Programmering, grundkurs TEN2 2015-10-30
HI1024 Programmering, grundkurs TEN2 2015-10-30 KTH STH Haninge 8.15-13.00 Tillåtna hjälpmedel: En A4 handskriven på ena sidan med egna anteckningar Kursboken C PROGRAMMING A Modern Approach K. N. King
IX Diskret matematik
Lösning till tentamen 101213 IX1500 - Diskret matematik 1 Betrakta det finska ordet m a t e m a t i i k k a. Hur många arrangemang av bokstäverna i detta ord innehåller varken orden matematik eller matte?
Efternamn förnamn pnr programkod
KTH Matematik Examinator: Petter Brändén Kursansvarig: Olof Sisask Σ p G/U bonus Efternamn förnamn pnr programkod Kontrollskrivning 4B till Diskret Matematik SF6, för CINTE, vt28 Inga hjälpmedel tillåtna.
Föreläsning 9 Innehåll
Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften
Uppgifter till tenta i 729G04 Programmering och diskret matematik. 17 december 2015, kl 14:00-18:00
1 ( 7) Uppgifter till tenta i 729G04 Programmering och diskret matematik. 17 december 2015, kl 14:00-18:00 Tillåtna hjälpmedel: Dator, penna, papper, linjal, suddgummi, godkänd(a) bok/böcker/kompendier
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift
BINÄRA TRÄD. (X = pekarvärdet NULL): struct int_bt_node *pivot, *ny; X X X 12 X X 12 X X -3 X X
Algoritmer och Datastrukturer Kary FRÄMLING/Göran PULKKIS (v23) Kap. 7, Sid 1 BINÄRA TRÄD Träd används för att representera olika slags hierarkier som ordnats på något sätt. Den mest använda trädstrukturen
Idag: Centrerad utskrift. Granskning. DD1311 Programmeringsteknik med PBL. Granskning Felhantering GUI. Föreläsning 15.
Skolan för Datavetenskap och kommunikation Idag: DD1311 Programmeringsteknik med PBL Granskning Felhantering GUI Föreläsning 15 På torsdag: Mer om GUI På grupptimmen: genomgång av granskningsprotokollet
Skolan för Datavetenskap och kommunikation PROGRAMMERINGSTEKNIK FÖRELÄSNING 15
Skolan för Datavetenskap och kommunikation PROGRAMMERINGSTEKNIK FÖRELÄSNING 15 Grafiska gränssnitt - GUI Tkinter Tillstånd Komponenter Layout Händelser LÄNKAR & EXEMPEL...finns på kurswebsidan under "GUI
Offentlig kryptering
127 Offentlig kryptering Johan Håstad KTH 1. Inledning. Denna uppgift går ut på att studera ett offentligt kryptosystem. Med detta menas ett kryptosystem där det är offentligt hur man krypterar, men trots
MMA132: Laboration 2 Matriser i MATLAB
MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen
Kurslitteraturen. C-nivå Villkorssatser [kap 8] if & elif & else and & or Loopar [kap 9] for
Inför provet Provet skrivs för hand och är uppdelad i två delar. Den första delen är på E-nivå och den andra delen är på C- och A-nivå. För att det ska bli enklare för er att träna inför provet så har
Datalogi för E Övning 3
Datalogi för E Övning 3 Mikael Huss hussm@nada.kth.se AlbaNova, Roslagstullsbacken 35 08-790 62 26 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1343/datae06 Dagens program Att skapa egna
Inlämningsuppgiften. Föreläsning 9 Innehåll. Träd. Datastrukturer i kursen
Föreläsning 9 Innehåll Inlämningsuppgiften De föreläsningar som inlämningsuppgiften bygger på är nu klara. Det är alltså dags att börja arbeta med inlämningsuppgiften. Träd, speciellt binära träd egenskaper
RSA-kryptografi för gymnasiet. Jonas Gustafsson & Isac Olofsson
RSA-kryptografi för gymnasiet Jonas Gustafsson & Isac Olofsson HT 2010 Innehåll 1 Grundläggande beräkningsmetoder och begrepp 5 1.1 Mängder.............................. 5 1.2 Kvot och rest...........................
Algebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2005 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 2 november 2005 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre
Hemligheternas Matematik
En redogörelse för den matematiska aspekten av assymetrisk kryptering - hur man med matematik kan utbyta information i hemlighet trots att all kommunikation avlyssnas. Av: Hvitfeldtska gymnasiet Carl Smedstad
Kryptering. Krypteringsmetoder
Kryptering Kryptering är att göra information svårläslig för alla som inte ska kunna läsa den. För att göra informationen läslig igen krävs dekryptering. Kryptering består av två delar, en algoritm och
DD1314 Programmeringsteknik
Skolan för Datavetenskap och kommunikation DD1314 Programmeringsteknik Föreläsning 1 o print o variabler o reserverade ord o input o kommentarer o beräkningar o datatyper o if-satser Kursinformation Programmering:
Övning 2. (Länkade) Listor, noder
Per Sedholm DD30 (tilda3) 03-09-03 Övning Listor, pekare, binära träd, rekursion, komplexitet (Länkade) Listor, noder. Ta bort andra noden (a) Skriv en sats som tar bort andra noden ur en länkad lista.
C++ Lektion Tecken och teckenfält
C++ Lektion Tecken och teckenfält Teori Hittills har alla variabler du jobbat med varit olika typer av tal, men du kan också deklarera variabler som håller bokstavstecken. Denna variabeltyp kallas för
Grundläggande kryptering & chiffer
Grundläggande kryptering & chiffer Allmänt om kryptering För att inte hackers ska kunna snappa upp den information som skickas över nätet så bör man använda sig av någon form av kryptering, d.v.s. förvrängning
DEL I. Matematiska Institutionen KTH
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF63 och SF63, den 25 maj 2 kl 8.-3.. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen.
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 9 Anton Grensjö grensjo@csc.kth.se 9 november 2017 1 Idag Bevis av NP-fullständighet Labbteoriredovisning inför labb 4 2 Teori Teori När vi talar om NP-fullständighet
Nämnarens kryptoskola fördjupning. Enkel transposition
Nämnarens kryptoskola fördjupning 26. Enkel transposition Hittills har ni sett krypton som bygger på att en bokstav ersätts med en annan bokstav, ett annat tecken eller några siffror. Sådana krypton kallas
Automatateori (2) Idag: Sammanhangsfria språk. Dessa kan uttryckas med Grammatik PDA
Automatateori (2) Idag: Sammanhangsfria språk Dessa kan uttryckas med Grammatik PDA Grammatik = språkregler Ett mer kraftfullt sätt att beskriva språk. En grammatik består av produktionsregler (andra ord
Kryptering. Av: Johan Westerlund Kurs: Utveckling av webbapplicationer Termin: VT2015 Lärare: Per Sahlin
Kryptering Av: Johan Westerlund Kurs: Utveckling av webbapplicationer Termin: VT2015 Lärare: Per Sahlin Inledning Den här rapporten ska hjälpa en att få insikt och förståelse om kryptering. Vad betyder
TDDI16: Datastrukturer och algoritmer
. TDDI16: Datastrukturer och algoritmer Lab 2: Knäcka lösenord Höstterminen 2018 2018-06-27 1 Upplägg Första delen av instruktionen, avsnitt 2 till 7, innehåller en fullständig beskrivning av problemet
Tentamen i Grundläggande Programvaruutveckling, TDA548
Tentamen i Grundläggande Programvaruutveckling, Joachim von Hacht/Magnus Myreen Datum: 2017-08-14 Tid: 14.00-18.00 Hjälpmedel: Lexikon Engelskt-Valfritt språk. Betygsgränser: U: -23 3: 24-37 4: 38-47 5
Byggmästarkrypto lärarsida
Nämnarens kryptoskola 7. Byggmästarkrypto lärarsida Svar och kommentarer Övning 7A: Svar: Boken om My är bra. Övning 7B: Svar: Ge mig nyckeln! Övning 7C: Svar: Övning 7E: Svar: Övning 7F: Svar: Var är
1/15/2013. DD1310/DD1314/DA3009 Programmeringsteknik. Lärandemål... Vilka läser kursen? ...fler lärandemål VARFÖR? Föreläsning 1
Skolan för Datavetenskap och kommunikation DD1310/DD1314/DA3009 Programmeringsteknik Föreläsning 1 Kursinfo Diagnostiskt prov Python-intro: print variabler reserverade ord input kommentarer beräkningar
Kryptering HEMLIG SKRIFT SUBSTITUTION STEGANOGRAFI KRYPTOGRAFI
1/7 Kryptering Se kap. 6 HEMLIG SKRIFT STEGANOGRAFI Dolt data KRYPTOGRAFI Transformerat data - Transposition (Permutation) Kasta om ordningen på symbolerna/tecknen/bitarna. - Substitution Byt ut, ersätt.
Ordbokskodning. Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning)
Datakompression fö 6 p.1 Ordbokskodning Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Man skapar en ordbok som innehåller 2 b olika sekvenser av symboler
Exempel, minnesfri binär källa. Ordbokskodning. Lempel-Zivkodning. Lempel-Zivkodning, forts.
Datakompression fö 6 p.3 Datakompression fö 6 p.4 Ordbokskodning Exempel, minnesfri binär källa Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Man skapar
Kravspecifikation Fredrik Berntsson Version 1.1
Kravspecifikation Fredrik Berntsson Version 1.1 Status Granskad FB 2016-02-01 Godkänd FB 2015-02-01 Dokumenthistorik Version Datum Utförda ändringar Utförda av Granskad 1.0 2015-02-01 Första versionen
Tentamen i Introduktion till programmering
Tentamen i Introduktion till programmering Kurskod: Skrivtid: D0009E 09:00-13:00 (4 timmar) Totalt antal uppgifter: 7 Totalt antal poäng: 38 Tentamensdatum: 2014-05-17 Jourhavande lärare: Tillåtna hjälpmedel:
Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd
Innehåll Föreläsning 12 Sökträd Sökning Sökning och Sökträd 383 384 Binärt sökträd Används för sökning i linjära samlingar av dataobjekt, specifikt för att konstruera tabeller och lexikon. Organisation:
Tentamen i Grundläggande Programvaruutveckling, TDA548
Tentamen i Grundläggande Programvaruutveckling, Joachim von Hacht/Magnus Myreen Datum: 2016-12-20 Tid: 08.30-12.30 Hjälpmedel: Engelskt-Valfritt språk lexikon Betygsgränser: U: -23 3: 24-37 4: 38-47 5
Grundfrågor för kryptosystem
Kryptering Ett verktyg, inte en tjänst! Kryptering förvandlar normalt ett kommunikationssäkerhetsproblem till ett nyckelhanteringsproblem Så nu måste du lösa nycklarnas säkerhet! 1 Kryptering fungerar
Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18:00
Lösningar för tenta i TMV200 Diskret matematik 2018-08-31 kl 1:00 18:00 1 Om argumentet inte är giltigt går det att hitta ett motexempel, dvs en uppsättning sanningsvärden för vilka alla hypoteserna är
Föreläsning 7: Syntaxanalys
DD2458, Problemlösning och programmering under press Föreläsning 7: Syntaxanalys Datum: 2007-10-30 Skribent(er): Erik Hammar, Jesper Särnesjö Föreläsare: Mikael Goldmann Denna föreläsning behandlade syntaxanalys.
Datorteknik TSIU02 Lab 2 Morsesändare v0.7
Inledning För att skriva program i något programspråk förenklar det att ha ett strukturerat angreppssätt. I assembler får man strukturen genom omsorgsfull användning av subrutiner. Som exempel på en mer
Tentamen ID1004 Objektorienterad programmering October 29, 2013
Tentamen för ID1004 Objektorienterad programmering (vilande kurs), 29 oktober 2013, 9-13 Denna tentamen examinerar 3.5 högskolepoäng av kursen. Inga hjälpmedel är tillåtna. Tentamen består av tre sektioner.
Tentamen TMV210/MMGD10 Inledande Diskret Matematik, D1/GU
Tentamen TMV210/MMGD10 Inledande Diskret Matematik, D1/GU 2015-10-24 kl. 8.30 12.30 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Matteo Molteni, telefon: 0703 088 304 Hjälpmedel:
Länkade listor, stackar och köer
Länkade listor, stackar och köer I fortsättningen ska vi ta upp några olika abstrakta datatyper. De kan ses som enkla verktyg i en verktygslåda som ska göra det lättare att programmera. Några av dessa
Skurlängdskodning. aaaabbbbbbbccbbbbaaaa. Man beskriver alltså sekvensen med ett annat alfabet än det ursprungliga.
Datakompression fö 4 p1 Skurlängdskodning Ibland har man källor som producerar långa delsekvenser av samma symbol Det kan då vara praktiskt att istället för att beskriva sekvensen som en följd av enstaka
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-16 Idag Mängder, avbildningar. Hashtabeller. Sortering. Pseudokod Blandning av programmeringsspråk, matematisk notation och naturligt
Krypteringteknologier. Sidorna 580-582 (647-668) i boken
Krypteringteknologier Sidorna 580-582 (647-668) i boken Introduktion Kryptering har traditionellt handlat om skydda konfidentialiteten genom att koda meddelandet så att endast mottagaren kan öppna det
OBJEKTORIENTERAD PROGRAMVARUUTVECKLING. Övningstentamen 1
Institutionen för Data- och informationsteknik JSk TENTAMEN OBJEKTORIENTERAD PROGRAMVARUUTVECKLING Övningstentamen 1 OBS! Det kan finnas kurser med samma eller liknande namn på olika utbildningslinjer.
Föreläsning 9: Talteori
DD2458, Problemlösning och programmering under press Föreläsning 9: Talteori Datum: 2007-11-13 Skribent(er): Niklas Lindbom och Daniel Walldin Föreläsare: Per Austrin Den här föreläsningen behandlar modulär
Föreläsning 5 Mer om funktioner, villkor
Föreläsning 5 Mer om funktioner, villkor Grundkurs i programmering Jan Lönnberg Institutionen för datateknik -universitetets högskola för teknikvetenskaper 15.9.2011 Varför? Det finns sammanhang där ett
SCB :-0. Uno Holmer, Chalmers, höger 2 Ex. Induktiv definition av lista. // Basfall
Rekursiva funktioner Föreläsning 10 (Weiss kap. 7) Induktion och rekursion Rekursiva funktioner och processer Weiss 7.1-3 (7.4, 7.5.3 utgår) Fibonaccital (7.3.4) Exempel: Balansering av mobil (kod se lab
DD1321, Tentamen i tillämpad programmering och datalogi Lördagen den 18 dexember 2010 kl 13 18
KTH, Nada, Alexander Baltatzis DD1321, Tentamen i tillämpad programmering och datalogi Lördagen den 18 dexember 2010 kl 13 18 Maxpoäng 100p, godkänt 50p. Bonus max 10p adderas. Resultatet anslås på mina
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del II
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del II 1 Modulär- eller kongruensaritmetik Euklides algoritm RSA-algoritmen G. Gripenberg Aalto-universitetet 17 oktober 2013 2 Grupper och permutationer
Tentamen, Algoritmer och datastrukturer
UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och
Ordlistor, filhantering och ut på webben. Linda Mannila 20.11.2007
Ordlistor, filhantering och ut på webben Linda Mannila 20.11.2007 Vad kan vi nu? Primitiva datatyper Tal, strängar, booleska värden Samlingsdatatyp Listan Utskrift Indata Felhantering Funktioner och moduler
Föreläsning 2 Programmeringsteknik och Matlab DD1312. Programspråk. Utskrift på skärmen
Föreläsning 2 Programmeringsteknik och Matlab DD1312 Introduktion till python Variabler,datatyper, omvandling av typer sfunktioner Två olika typer av program omvandlar högnivå till lågnivå program: Interpreterande
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 1 Anton Grensjö grensjo@csc.kth.se 14 september 2015 Anton Grensjö ADK Övning 1 14 september 2015 1 / 22 Översikt Kursplanering F1: Introduktion, algoritmanalys
Datatyper och kontrollstrukturer. Skansholm: Kapitel 2) De åtta primitiva typerna. Typ Innehåll Defaultvärde Storlek
De åtta primitiva typerna Java, datatyper, kontrollstrukturer Skansholm: Kapitel 2) Uppsala Universitet 11 mars 2005 Typ Innehåll Defaultvärde Storlek boolean true, false false 1 bit char Tecken \u000
TDP Regler
Regler Student får lämna salen tidigast en timme efter tentans start. Vid toalettbesök eller rökpaus ska pauslista utanför salen fyllas i. All form av kontakt mellan studenter under tentans gång är strängt
DD1310/DD1314/DA3009 Programmeringsteknik LÄRANDEMÅL... Vilka läser kursen? ...FLER LÄRANDEMÅL. Föreläsning 1
Skolan för Datavetenskap och kommunikation DD1310/DD1314/DA3009 Programmeringsteknik Föreläsning 1 Kursinfo Python-intro: print variabler reserverade ord input kommentarer beräkningar datatyper if-satser
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 8 Anton Grensjö grensjo@csc.kth.se 12 november 2015 Anton Grensjö ADK Övning 8 12 november 2015 1 / 21 Översikt Kursplanering Ö8: Mästarprov 1, oavgörbarhet
Alla datorprogram har en sak gemensam; alla processerar indata för att producera något slags resultat, utdata.
Att förstå variabler Alla datorprogram har en sak gemensam; alla processerar indata för att producera något slags resultat, utdata. Vad är en variabel? En variabel är en plats att lagra information. Precis
Föreläsning 2 Programmeringsteknik och Matlab DD1312. Programspråk. Utskrift på skärmen
Föreläsning 2 Programmeringsteknik och Matlab DD1312 Introduktion till python Variabler, datatyper, omvandling av typer sfunktioner Två olika typer av program omvandlar högnivå till lågnivå program: Interpreterande
OBJEKTORIENTERAD PROGRAMVARUUTVECKLING
Institutionen för Data- och informationsteknik TENTAMEN OBJEKTORIENTERAD PROGRAMVARUUTVECKLING OBS! Det kan finnas kurser med samma eller liknande namn på olika utbildningslinjer. Denna tentamen gäller
Datastrukturer. föreläsning 6. Maps 1
Datastrukturer föreläsning 6 Maps 1 Avbildningar och lexika Maps 2 Vad är ett lexikon? Namn Telefonnummer Peter 031-405937 Peter 0736-341482 Paul 031-405937 Paul 0737-305459 Hannah 031-405937 Hannah 0730-732100
IS/IT-tjänst privata vårdgivare
Lathund/Rutin IS/IT-tjänst privata vårdgivare Kort information om lösenord för VGR- AD Att tänka på när du väljer nytt lösenord: 1. Krav på lösenord: minst 7 tecken långt inte identiskt med något av dina
Inledning. Vad är ett datorprogram, egentligen? Olika språk. Problemlösning och algoritmer. 1DV433 Strukturerad programmering med C Mats Loock
Inledning Vad är ett datorprogram, egentligen? Olika språk Problemlösning och algoritmer 1 (14) Varför använda en dator? Genom att variera de program som styr datorn kan den användas för olika uppgifter.
Protokollbeskrivning av OKI
Protokollbeskrivning av OKI Dokument: Protokollbeskrivning av OKI Sida 1 / 17 1 Syfte Det här dokumentet har som syfte att beskriva protokollet OKI. 2 Sammanfattning OKI är tänkt som en öppen standard
256bit Security AB Offentligt dokument 2013-01-08
Säkerhetsbeskrivning 1 Syfte Syftet med det här dokumentet är att översiktligt beskriva säkerhetsfunktionerna i The Secure Channel för att på så vis öka den offentliga förståelsen för hur systemet fungerar.
Acer edatasecurity Management
1 Acer edatasecurity Management Genom att använda avancerade kryptografiska teknologier erbjuder dig Acer edatasecurity Management en större personlig datasäkerhet och kryptering för filer och data som