Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp



Relevanta dokument
Matematik. Kursprov, vårterminen Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp: Vilket tal ska stå i rutan för att likheten ska stämma?

Matematik. Kursprov, vårterminen Elevhäfte. Del III. Elevens namn och klass/grupp

b) Hur stor andel av den första månadens återbetalning utgör räntekostnad?

Matematik. Kursprov, vårterminen Elevhäfte. Del III. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen Elevhäfte. Del III. Elevens namn och klass/grupp

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:...

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... A B C D

Del I DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp: Vilket tal pekar pilen på? Svar: (1/0/0)

1CInnehåll: Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se. Pluggtips Formelsamlingen.se. Formelsamling Nationella prov från tidigare år

Matematik. Kursprov, vårterminen Del B. Elevhäfte. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen Del B. Elevhäfte. Elevens namn och klass/grupp

Matematik. Kursprov, höstterminen Delprov B. Elevens namn och klass/grupp

1BInnehåll: Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se. Pluggtips Formelsamlingen.se. Formelsamling Nationella prov från tidigare år

Matematik. Kursprov, vårterminen Del B. Elevhäfte. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen Del D. Elevhäfte. Elevens namn och klass/grupp

Matematik. Kursprov, höstterminen Delprov B. Elevens namn och klass/grupp

Matematik. Kursprov, höstterminen Delprov D. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

KONVENT. Plugga tillsammans inför de nationella proven i matematik. Pluggtips Formelsamlingen.se

Matematik. Kursprov, höstterminen Delprov D. Elevens namn och klass/grupp

Matematik. Kursprov, höstterminen Delprov D. Elevens namn och klass/grupp

Nationellt kursprov i MATEMATIK KURS A Våren Del II

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

Uppgift 1-9. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans.

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

DIGITALA VERKTYG ÄR INTE TILLÅTNA

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

Anvisningar Delprov B

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN Del II

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del I

Till några uppgifter behöver endast svar anges. De är markerade med Endast svar krävs.

DIGITALA VERKTYG ÄR INTE TILLÅTNA

Ma2bc. Prov

Uppgift 1-7. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.

Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 53 poäng varav 22 E-, 18 C- och 13 A-poäng.

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Tidsbunden Del II

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5

NpMa2c vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 57 poäng varav 20 E-, 20 C- och 17 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del II

Ma2bc. Komvux, Lund. Prov

NpMa2a vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 55 poäng varav 22 E-, 19 C- och 14 A-poäng.

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Anvisningar Delprov B

Matematik. Delprov C. Vårterminen 2009 ÄMNESPROV ÅRSKURS. Elevens namn

NpMa2b vt Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 57 poäng varav 20 E-, 19 C- och 18 A-poäng.

Anvisningar Delprov B

Tips 1. Skolverkets svar 14

Ma2bc. Komvux, Lund. Prov 2. a-övningsprov.

För maxpoäng krävs klar och tydlig redovisning av korrekt tankegång med korrekt svar. Uppgift Godtagbara svar 15. a) 1 Redovisning med korrekt svar.

Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 55 poäng varav 22 E-, 19 C- och 14 A-poäng.

Exempelprov. Matematik. Del D

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.

Provet består av tre skriftliga delprov (Delprov B, C och D). Tillsammans kan de ge 57 poäng varav 20 E-, 19 C- och 18 A-poäng.

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.

Komvux/gymnasieprogram:

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Tidsbunden del

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

Nationellt kursprov i MATEMATIK KURS A Våren Del I

Bedömningsexempel. Matematik kurs 1c

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN Del II

Ma3bc. Komvux, Lund. Prov kap

Uppgift 1-9. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Ma3bc. Komvux, Lund. Prov kap3-4/

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN Del I

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del II

Uppgift 1-9. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 kortsvarsuppgifter med miniräknare 4

Matematik. Del C. Vårterminen 2012 ÄMNESPROV ÅRSKURS. Elevens namn

DIGITALA VERKTYG ÄR INTE TILLÅTNA

Övningsprov 3 inför lilla nationella Ma1 NA18 ht18

Delprov C. Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008.

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Matematik. Ämnesprov, läsår 2012/2013. Delprov D. Årskurs. Elevens namn och klass/grupp

Matematik. Ämnesprov, läsår 2013/2014. Delprov D. Årskurs. Elevens namn och klass/grupp

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6

Matematik. Kursprov, vårterminen Bedömningsanvisningar. För samtliga skriftliga delprov

Skriv ditt namn, födelsedatum och gymnasieprogram på alla papper du lämnar in.

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5

Bedömningsanvisningar Del II Uppgift 14, bedömningsmatris, (4/4/3) *

MATEMATIK KURS A Våren 2005

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN Tidsbunden del

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6

Matematik. Delprov B. Vårterminen 2009 ÄMNESPROV. Del B1 ÅRSKURS. Elevens namn

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2002

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del I

Transkript:

Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1c Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds t.o.m. 2012-06-30.

Anvisningar Del I och Del II Provtid Hjälpmedel Del I Del II Kravgränser 90 minuter för Del I och Del II. Vi rekommenderar att du använder högst 45 minuter för arbetet med Del I. Du får inte börja använda digitala verktyg förrän du har lämnat in dina svar på Del I. Del I: Formelblad och linjal. Del II: Digitala verktyg, formelblad och linjal. Denna del består av uppgifter som ska lösas utan digitala verktyg. På några av uppgifterna krävs redovisning, som redovisas i figuren och rutan intill uppgiften. Till övriga uppgifter krävs endast svar. Efter varje uppgift anges maximala antalet poäng som du kan få för ditt svar/din lösning. Denna del är en större uppgift som brukar ta längre tid. I rutan vid uppgiften står det vad läraren ska ta hänsyn till vid bedömningen. Provet (muntlig del samt skriftliga delar) ger totalt högst 89 poäng. Undre gräns för provbetyget E: Minst 20 poäng. D: Minst 32 poäng varav minst 11 poäng på lägst nivå C. C: Minst 44 poäng varav minst 20 poäng på lägst nivå C. B: Minst 54 poäng varav minst 7 poäng på nivå A. A: Minst 64 poäng varav minst 12 poäng på nivå A. Namn: Födelsedatum: Gymnasieprogram: Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2012-06-30. Vid sekretessbedömning ska detta beaktas. NpMa1c vt 2012

DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Bestäm värdet av 25 3x om x = 2 Svar: (1/0/0) 2. Vilket tal ska stå i rutan för att likheten ska stämma? 2 3 + + 1 =1 Svar: (1/0/0) 9 3. Adam köper en begagnad moped. Formeln y = 10 000 0,8 x beskriver mopedens värde y kronor x år senare. Hur stor är värdeminskningen i procent per år? Svar: % per år (2/0/0) 4. Lös ekvationen 9x + 10 2 = 10 3 Svar: x = (0/1/0) 5. x + y = a och x y = b Skriv ett uttryck för a b och förenkla uttrycket. Svar: (1/1/0) NpMa1c vt 2012 1

DIGITALA VERKTYG ÄR INTE TILLÅTNA 6. Om Hanna tjänade 2 000 kr mer skulle hennes månadslön vara en och en halv gång så hög som Noras. Skriv ett uttryck för Hannas månadslön då Noras månadslön är x kr. Svar: (0/1/0) 1 7. Lös ekvationen: x 2 = 9 Svar: x = (0/1/0) 8. Ange koordinaterna för vektorn! PQ!!" då P =(2,2) och Q = (2,0). Svar: (0/1/0) 9. Om x! 2 och y! "3, vilket är då det minsta värde som uttrycket 2x + y 2 kan ha? Svar: (0/0/2) 10. De tre vektorerna i figuren har absolutbeloppen 3,4 respektive 5. Bestäm längden (absolutbeloppet) av de tre vektorernas resultant. Redovisa din lösning och motivera ditt svar i figuren och/eller rutan. (1/1/1) NpMa1c vt 2012 2

DIGITALA VERKTYG ÄR INTE TILLÅTNA 11. Beräkna uttrycket: 10 102 +10 100 10 100 Svar: (0/1/1) 12. Ringa in det alternativ som gäller. Motivera ditt val i rutan nedan. Värdet av 2x + 3 är värdet av x + 2 alltid mindre än alltid lika med alltid större än för vissa x-värden större än (0/1/1) NpMa1c vt 2012 3

DIGITALA VERKTYG ÄR INTE TILLÅTNA 13. I en triangel är vinklarna angivna. y x 35 a) Skriv y som en funktion av x. Svar: (0/1/0) b) Ange funktionens värdemängd. Svar: (0/0/2) NpMa1c vt 2012 4

Del II Arkets bredd: 210 mm 14. Detta ark har längden 297 mm och bredden 210 mm. Detta format kallas A4. Om man lägger två A4-ark med långsidorna mot varandra får man ett format som kallas A3. Om man i stället viker A4-arket på mitten med kortsidorna mot varandra får man ett format som kallas A5. Fortsätter man att vika A5 på samma sätt får man ett format som kallas A6. Röstsedlar har formatet A6. Bestäm hur många sådana som får plats på ett A4-ark. Det största arket i A-serien kallas A0-ark. Bestäm hur stor area ett A0-ark har. Beskriv hur du gjorde för att lösa uppgiften. I koordinatsystemet är punkten för bredd och längd på ett A4-ark inprickad. Pricka in punkter för bredd och längd för arken A6, A5 och A3 i diagrammet. Undersök sambandet mellan längd och bredd på varje ark. Beskriv sambandet med ord och/eller formel. Visa eventuella beräkningar. En av Europas minsta dagstidningar, engelska Tryon Daily Bulletin, trycks i formatet 215 mm 280 mm. Många svenska dagstidningar, t.ex. Metro och Svenska Dagbladet, trycks i formatet tabloid 280 mm 397 mm. Pricka in dessa format i ditt diagram. Vilka slutsatser drar du? (4/4/3) Arkets längd: 297 mm Vid bedömningen av ditt arbete kommer läraren att ta hänsyn till vilka matematiska kunskaper du har visat och hur väl du har genomfört uppgiften hur väl du har förklarat ditt arbete och motiverat dina slutsatser hur väl du har redovisat ditt arbete. NpMa1c vt 2012 4

NpMa1c vt 2012 5

Kursprov, vårterminen 2012 Matematik Elevhäfte Del III 1c Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds t.o.m. 2012-06-30.

Anvisningar Del III Provtid Hjälpmedel Del III 120 minuter för Del III. Digitala verktyg, formelblad och linjal. Del III består av 9 uppgifter. Till de flesta uppgifterna räcker det inte med endast svar, utan där krävs det också att du redovisar dina lösningar förklarar/motiverar dina tankegångar ritar figurer vid behov. Om en uppgift är markerad med Endast svar krävs behöver endast svaret anges. Kravgränser Provet (muntlig del samt skriftliga delar) ger totalt högst 89 poäng. Undre gräns för provbetyget E: Minst 20 poäng. D: Minst 32 poäng varav minst 11 poäng på lägst nivå C. C: Minst 44 poäng varav minst 20 poäng på lägst nivå C. B: Minst 54 poäng varav minst 7 poäng på nivå A. A: Minst 64 poäng varav minst 12 poäng på nivå A. Skriv ditt namn, födelsedatum och gymnasieprogram på de papper som du lämnar in. Illustration: Jens Ahlbom Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2012-06-30. Vid sekretessbedömning ska detta beaktas. NpMa1c vt2012

Del III 15. sin v = 0,5 a) Bestäm värdet av: 2 sin v (1/0/0) b) Bestäm värdet av: sin 2v (1/2/0) 16. I ett reklamblad fanns följande information. I återbetalning ingår amortering, ränta m.m. Renée funderar på att låna 100 000 kr med återbetalning under 10 år. a) Använd informationen i reklambladet och beräkna hur mycket som hon totalt ska ha betalat till banken då lånet är återbetalt. (2/0/0) b) Hur stor andel av den första månadens återbetalning utgör räntekostnad? (1/2/0) 17. Per kastar två sexsidiga tärningar. Han studerar differensen mellan tärningarnas antal prickar. Hur stor är sannolikheten att differensen blir tre? (1/2/0) 18. Bestäm vinklarna i en rätvinklig triangel där hypotenusan är 50 % längre än den ena katetern. (0/3/0) Np Ma 1c vt2012 4

19. Antal besökare på en hemsida ökar procentuellt lika mycket varje år, två år i rad. Bestäm den årliga ökningen i procent då den totala ökningen är 37 % under tvåårsperioden. (1/1/1) 20. Vilket är det minsta positiva heltal som är jämnt delbart med alla heltal från 1 till och med 9? Motivera ditt svar. (1/1/2) 21. Anna och Erik ska bestämma vinkelsumman i en sexhörning. De har gjort sina indelningar på olika sätt. Här ser du hur de har gjort sina indelningar och sina beräkningar: Både Anna och Erik har kommit fram till rätt resultat men på olika sätt. Redogör för hur Anna och Erik kan ha resonerat. Np Ma 1c vt2012 5 (1/1/1)

22. Milo vill jämföra kostnaden för två olika lampor. Den ena lampan är en lågenergilampa och den andra lampan är en glödlampa. Diagrammet till vänster nedan visar den totala kostnaden (inköp och förbrukning) som funktion av antal timmar som lampan är tänd. Diagrammet till höger visar genomsnittlig livslängd för de två olika typerna av lampor. a) Ungefär hur mycket kostar var och en av de två lamporna i inköp? (2/0/0) b) Jämför kostnaden för en lågenergilampas genomsnittliga livslängd med kostnaden för glödlampor under motsvarande tid. I jämförelsen ska både kostnaden för inköp och förbrukning av lampor ingå. Np Ma 1c vt2012 6 (1/1/2)

23. Gregoriansk (officiell kalender i Sverige) Kalender Islamisk Årets längd (ej skottår) 365 dagar 354 dagar Månadernas längd 28 31 dagar 29 30 dagar Antal månader 12 12 a) Hur många av årets månader har i den islamiska kalendern 30 dagar? Motivera ditt svar. (1/0/0) b) Muhammeds flykt från Mecka till Medina startar tideräkningen i den islamiska kalendern. Detta motsvarar den 15 juli år 622 i den gregorianska kalendern. Sambandet mellan årtalen i de båda kalendrarna kan beskrivas med hjälp av formeln: H = 33(M! 622) 32 där H anger årtalet i den islamiska kalendern och M anger årtalet i den gregorianska kalendern, officiell kalender i Sverige. Vilket år är det i år i den islamiska kalendern enligt formeln? (3/0/0) c) Ge en förklaring till 33 32 i formeln. (0/2/2) d) Vilket år kommer de båda kalendrarna att visa samma årtal enligt formeln? (0/2/2) Np Ma 1c vt2012 7