Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

Relevanta dokument
Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

För maxpoäng krävs klar och tydlig redovisning av korrekt tankegång med korrekt svar. Uppgift Godtagbara svar 15. a) 1 Redovisning med korrekt svar.

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:...

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

För maxpoäng krävs klar och tydlig redovisning av korrekt tankegång med korrekt svar.

För maxpoäng krävs klar och tydlig redovisning av korrekt tankegång med korrekt svar.

Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... A B C D

Bedömningsanvisningar Del II Uppgift 14, bedömningsmatris, (4/4/3) *

Del I DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp: Vilket tal pekar pilen på? Svar: (1/0/0)

Information till eleverna

Matematik. Bedömningsanvisningar. Vårterminen 2012 ÄMNESPROV. Del B1 och Del B2 ÅRSKURS

Matematik. Kursprov, vårterminen Bedömningsanvisningar. För samtliga skriftliga delprov

Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs

Matematik. Bedömningsanvisningar. Vårterminen 2010 ÄMNESPROV. Delprov C ÅRSKURS

Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar Delprov B, C, D, E. Årskurs

Matematik. Bedömningsanvisningar. Vårterminen 2012 ÄMNESPROV. Del C ÅRSKURS

Matematik. Kursprov, höstterminen Bedömningsanvisningar. För samtliga skriftliga delprov

Matematik. Bedömningsanvisningar. Vårterminen 2010 ÄMNESPROV. Delprov B ÅRSKURS

Matematik. Kursprov, vårterminen Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS

Inledning...5. Bedömningsanvisningar...5 Allmänna bedömningsanvisningar...5 Bedömningsanvisningar Delprov B...6 Bedömningsanvisningar Delprov C...

Matematik. Kursprov, höstterminen Bedömningsanvisningar. För samtliga skriftliga delprov

Bedömningsanvisningar

Ämnesprov i matematik. Bedömningsanvisningar. Skolår 9 Vårterminen Lärarhögskolan i Stockholm

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov B och Delprov C

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov B och Delprov C

Innehåll. Inledning... 3

Inledning...4. Bedömningsanvisningar...4 Allmänna bedömningsanvisningar...4 Bedömningsanvisningar Delprov B...5 Bedömningsanvisningar Delprov C...

Kravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng.

Exempelprov. Matematik. Bedömningsanvisningar

1CInnehåll: Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se. Pluggtips Formelsamlingen.se. Formelsamling Nationella prov från tidigare år

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov D

Exempelprov. Matematik. Bedömningsanvisningar

Inledning Kravgränser Provsammanställning... 18

Matematik. Kursprov, vårterminen Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.

Bedömingsanvisningar Del II vt 2010

Exempelprov. Matematik. Bedömningsanvisningar

Bedömningsanvisningar

NpMa2b ht Kravgränser

NpMa2b vt Kravgränser

Bedömningsexempel. Matematik kurs 1c

Bedömningsanvisningar

Resultat från nationella provet i matematik kurs 1c höstterminen 2018

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov B och Delprov C

Matematik. Kursprov, vårterminen Lärarinformation för muntlig del. Lärarmaterial Elevmaterial Elevmaterial, engelsk version

Bedömningsanvisningar

Matematik. Kursprov, vårterminen Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Bedömningsanvisningar

Matematik. Kursprov, vårterminen Elevhäfte. Del III. Elevens namn och klass/grupp

Nationellt kursprov i MATEMATIK KURS A Våren Del I

16. Max 2/0/ Max 3/0/0

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005

Bedömningsexempel. Matematik kurs 1b

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov B ÅRSKURS

Bedömningsanvisningar

Resultat från kursprovet i matematik 1c höstterminen 2016 Karin Rösmer Axelson & Mattias Winnberg PRIM-gruppen

NpMa3c vt Kravgränser

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2002

Tips 1. Skolverkets svar 14

Matematik. Kursprov, vårterminen Elevhäfte. Del III. Elevens namn och klass/grupp

Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

1BInnehåll: Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se. Pluggtips Formelsamlingen.se. Formelsamling Nationella prov från tidigare år

Resultat från kursprovet i matematik 1a och 1b vårterminen 2015 Karin Rösmer, Katarina Kristiansson och Niklas Thörn PRIM-gruppen

Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar Delprov B, C, D, E. Årskurs

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs

Matematik. Ämnesprov, läsår 2015/2016. Bedömningsanvisningar 1. Årskurs

Np MaA vt Innehåll

Bedömningsanvisningar

DIGITALA VERKTYG ÄR INTE TILLÅTNA

Resultat från kursprovet i matematik 1a och 1b vårterminen 2016 Karin Rösmer Axelson PRIM-gruppen

3. Instruktioner för att genomföra provet

Uppgift 1-6. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.

I den här uppgiften ska du undersöka förhållandet mellan parabelarean och rektangelarean.

Välj två värden på volymen x och avläs i figuren motsvarande värden på vattenytans höjd h. Beräkna ändringskvoten för de avlästa värdena.

Bedömningsanvisningar

Matematik. Kursprov, vårterminen Del B. Elevhäfte. Elevens namn och klass/grupp

Inledning Kravgränser Provsammanställning... 21

Inledning Kravgränser Provsammanställning... 18

Bedömningsanvisningar

Matematik. Kursprov, vårterminen Elevhäfte. Del III. Elevens namn och klass/grupp

Anvisningar Delprov B

7. Max 0/1/1. Korrekt kombinerad ekvation och påstående i minst två fall med korrekt svar

Anvisningar Del I. Namn: Födelsedatum: Komvux/gymnasieprogram: Provtid

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del I

Ma2bc. Prov

Matematik. Kursprov, vårterminen Del B. Elevhäfte. Elevens namn och klass/grupp

Inledning. Resultat från kursprovet i matematik 1c höstterminen 2017 Katarina Kristiansson & Karin Rösmer Axelson PRIM-gruppen

DIGITALA VERKTYG ÄR INTE TILLÅTNA

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp: Vilket tal ska stå i rutan för att likheten ska stämma?

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2007

KONVENT. Plugga tillsammans inför de nationella proven i matematik. Pluggtips Formelsamlingen.se

Bedömningsexempel. Matematik kurs 1a

Nationellt kursprov i MATEMATIK KURS A Våren Del I

Transkript:

Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1c Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds t.o.m. 2012-06-30.

Bedömningsanvisningar Del I Del I består både av uppgifter där endast svar ska anges samt uppgifter som kräver redovisning. Till kortsvarsuppgifterna finns godtagbara svar och poäng som detta svar är värt. Till uppgifter som kräver redovisning ska eleverna lämna fullständiga lösningar. För maxpoäng krävs klar och tydlig redovisning av korrekt tankegång med korrekt svar. Till de enskilda uppgifterna finns korrekta svar och bedömningsanvisningar för delpoäng. Uppgift Godtagbara svar 1. 31 Poäng (1/0/0) 2. 2 9 3. 20 % per år (1/0/0) (2/0/0) +E B+E M 4. x = 100 (0/1/0) 5. 2y Korrekt tecknat uttryck där a och b är utbytta mot respektive uttryck. Redovisning med korrekt svar. 6. 1,5x 2 000; x + 0,5x 2 000 (1/1/0) (0/1/0) +C M 7. x = 81 (0/1/0) 8. (0,-2) (0/1/0) 9. 4 (0/0/2) +A B+A PL NpMa1c vt 2012 7

10. 10 Påbörjad lösning, t.ex. parallellförflyttat några vektorer. Korrekt bestämt ett absolutbelopp. Tydligt redovisad lösning. Bedömda elevarbeten se sid 12. 11. 101; 1,01 10 2 Påbörjad lösning, t.ex. bryter ut 10 100 eller skriver bråket som två termer. Lösning med korrekt svar. 12. för vissa x-värden större än Korrekt svar med en knapphändig eller ofullständig motivering. Tydlig och fullständig motivering. Bedömda elevarbeten se sid 13. 13. a) y=145 x ; y=180 x 35 Godtagbart svar. (1/1/1) +A K (0/1/1) +C B +A P (0/1/1) +C R +A PL (0/1/0) +C B b) 0 < y < 145 ; y > 0 och y < 145 Anger godtagbar värdemängd (y är mellan 0 och 145 ; 0 y 145 ). Anger korrekt värdemängd med symboler. (0/0/2) +A B +A K NpMa1c vt 2012 8

Bedömningsanvisningar Del II Uppgift 14, bedömningsmatris, (4/4/3) * FÖRMÅGOR E C A Begrepp Procedurer Eleven bestämmer längd och bredd för minst två A-format. Eleven markerar minst två av punkterna rätt i koordinatsystemet. Problemlösning Eleven bestämmer antalet A6-ark. Eleven bestämmer A0- arkets area på ett godtagbart sätt, t.ex. genom att analysera längd och bredd eller jämföra med arean av ett A4-ark. Eleven använder symbolisk algebra, t.ex. anger formeln för den räta linjen. L L +A PL Matematiska modeller Eleven redovisar på något sätt att förhållandet mellan längd och bredd för A-serien är konstant. Eleven anger förhållandet mellan längd och bredd för A-serien, t.ex. längd:bredd = 1,4 gäller för alla i A-serien. +C M +A M Matematiska resonemang Eleven drar enkla slutsatser om de angivna tidningarna, t.ex. tidningen TDB följer inte mönstret. Eleven drar välgrundade slutsatser om de angivna tidningarna utifrån modellen. +E R +C R Kommunikation Eleven använder representationer med viss anpassning till syfte och situation i en strukturerad lösning som omfattar större delen av uppgiften. Eleven använder matematiska symboler och andra representationer med god anpassning till syfte och situation i en välstrukturerad och fullständig lösning. +C K +A K * För att underlätta bedömningen av diagrammet kan korrekta punkter på en OH-film vara en hjälp. Bedömda elevarbeten se sid 14 25. NpMa1c vt 2012 9

Bedömningsanvisningar Del III Till så gott som alla uppgifter ska eleverna lämna fullständiga lösningar. Elevlösningarna ska bedömas med E-, C- och A-poäng. Positiv poängsättning ska tillämpas, dvs. eleverna ska få poäng för lösningarnas förtjänster och inte poängavdrag för deras brister. För de flesta uppgifterna gäller följande allmänna bedömningsanvisningar. För maxpoäng krävs klar och tydlig redovisning av korrekt tankegång med korrekt svar. Till de enskilda uppgifterna finns korrekta svar och bedömningsanvisningar för delpoäng. Uppgift Godtagbara svar 15. a) 1 Redovisning med korrekt svar. Poäng (1/0/0) b) 3 0,9 (0,866); ; (även negativa motsvarigheter, t.ex. 0,9) 2 Bestämt värdet av vinkel v. Korrekt behandling av vinklar och trigonometriska uttryck i redovisningen. 16. a) 134 520 kr Redovisning med godtagbart svar. (1/2/0) +C B +C K (2/0/0) L b) 50,9 %; 51 % Påbörjad lösning, t.ex. korrekt beräknad årsränta (6 850 kr). Redovisning med godtagbart svar. 17. 1/6; 6/36; 17 %; 0,17 Visat olika sätt att få fram differensen tre eller visat utfallsrummet. Tydlig redovisning med korrekt svar. Bedömda elevarbeten se sid 26. 18. 41,8, 48,2 och 90 ; 42, 48 och 90 Påbörjad lösning, t.ex. tecknat en korrekt trigonometrisk ekvation. Lösning med godtagbar bestämning av båda vinklarna. 19. 17 % Påbörjad lösning som innehåller en upprepad procentuell förändring. Lösning med godtagbart svar (även prövning). Använder en effektiv lösningsmetod, t.ex. kvadratroten ur 1,37. Bedömda elevarbeten se sid 27. (1/2/0) +C BL (1/2/0) +C K (0/3/0) L +C K (1/1/1) +E B +A P NpMa1c vt 2012 10

20. 2 520 Påbörjad lösning där alla faktorer ingår, dock utan att vara det minsta möjliga talet med motivering om varför några tal kan uteslutas. Redovisad korrekt lösning. Bedömda elevarbeten se sid 28. 21. Beskrivning av Annas eller Eriks lösning. Tydlig analys av ett av lösningsförslagen. Tydlig analys av båda lösningsförslagen. Bedömda elevarbeten se sid 29. 22. a) Svar i intervallen (5 15) kr och (81 89) kr Godtagbart svar för ena lampan. Godtagbart svar för båda lamporna. b) Kostnad lågenergilampa 220 kr och nio glödlampor 810 kr (Svar i intervallen (200 250) kr respektive (750 850) kr.) Påbörjad lösning, t.ex. jämför livslängd hos en lågenergilampa med en glödlampa. Bestämmer kostnaden för flera glödlampor. Bestämmer förbrukningskostnaden för lågenergilampan. Tydlig redovisning med jämförelse av totala kostnaderna för lamporna. 23. a) 6 månader Redovisning med korrekt svar. (1/1/2) +E B +C B +A PL+A R (1/1/1) +E R +C R +A R (2/0/0) +E B (1/1/2) +A B +A K (1/0/0) L b) År 1433 Påbörjad lösning, t.ex. ersatt M med 2012 i formeln redovisad korrekt beräkning med korrekt svar (avrundat till hela år). c) Ett islamiskt år är 32/33 av ett gregorianskt år. Ger någon motivering om än knapphändig. Tydlig motivering. Bedömda elevarbeten se sid 30. d) År 20526 Påbörjad lösning, t.ex. satt M =H eller påbörjad prövning. Lösning med godtagbart svar. Valt och använt algebraisk lösningsmetod. Bedömda elevarbeten se sid 31. (3/0/0) +E M +E M (0/2/2) +C M+C R +A M+A R (0/2/2) L +A P+A PL NpMa1c vt 2012 11

Kravgränser Maxpoäng Detta prov kan ge maximalt 89 poäng fördelade på 30 E-poäng, 35 C-poäng och 24 A-poäng. Provbetyget E För att få provbetyget E ska eleven ha erhållit minst 20 poäng. Provbetyget D För att få provbetyget D ska eleven ha erhållit minst 32 poäng varav minst 11 poäng på lägst nivå C. Provbetyget C För att få provbetyget C ska eleven ha erhållit minst 44 poäng varav minst 20 poäng på lägst nivå C. Provbetyget B För att få provbetyget B ska eleven ha erhållit minst 54 poäng varav minst 7 poäng på nivå A. Provbetyget A För att få provbetyget A ska eleven ha erhållit minst 64 poäng varav minst 12 poäng på nivå A. Provbetyg E Provbetyg D Provbetyg C Provbetyg B Provbetyg A Totalpoäng Minst 20 poäng Minst 32 poäng Minst 44 poäng Minst 54 poäng Minst 64 poäng Nivåkrav Minst 11 poäng på lägst nivå C Minst 20 poäng på lägst nivå C Minst 7 poäng på nivå A Minst 12 poäng på nivå A NpMa1c vt 2012 33

Kursprov, vårterminen 2012 Matematik Lärarinformation för muntlig del Lärarmaterial Elevmaterial Elevmaterial, engelsk version 1c Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds t.o.m. 2012-06-30.

Förslag till svar och motiveringar för den muntliga delen Svar och motiveringar ska ses som ett servicematerial till lärare och man kan inte förvänta sig att eleverna svarar och motiverar exakt på detta sätt. S = sant; F = falskt; S/F = sant eller falskt beroende på förutsättningar. Version 1 Spelande på internet Svar och motiveringar till påståenden 1. S Andelen har minskat från 18 % till 16 %. 2. F Andelen är 3 gånger så stor som 2005. 3. S 35 % är ungefär en tredjedel. 4. S/F Ökningen är 75 %. Det är nästan en fördubbling. 5. F Det skiljer 1 procentenhet vilken utgör 33 % av andelen män. 6. F Ökningen blir 300 %. 7. S/F Andelen stämmer, men antalet i åldersgruppen är inte känt. 8. S/F Sant under antagandet att det finns lika många män som kvinnor. 9. S/F Andelen är lika stor men vi vet inte hur många som ingår i varje åldersgrupp. Åldersspannen är dessutom olika i grupperna. 10. S/F Sant under antagandet att det finns lika många män som kvinnor. 11. S Genomsnittet av stapelhöjden för män och kvinnor är detsamma som den totala andel som anges i tabellen, alltså 11 %. 12. S/F 14 % är ungefär dubbelt så mycket som 8 %, men åldersfördelningen är okänd. Svar och motiveringar till diskussionsfrågor 1. Diagrammet utvecklar delar av sista raden i tabellen. 2. 21 % måste delas med 2 för att ge den totala andelen under förutsättning att det finns lika många kvinnor som män. 3. 0 % tyder på att det var så få som spelade, att andelen inte uppgick till något som avrundat blir 1 %. Anger att antalet svarande är för få. 4. Exempelvis i ett linjediagram kan varje åldersgrupp följas under tidsperioden 2004 t.o.m. 2010. Stapeldiagram för varje år liknande diagrammet nedan. 5. 14,5-åringar räknas som 14 år i och med att åldern anges med diskreta värden. Ålder kan vara en diskret eller en kontinuerlig variabel. 6. Skrivsättet är inte direkt felaktigt men det är tydligare att skriva 25 x < 45. Övre eller undre gräns sluten. 7. Man göra om åldersindelningen, presentera endast delar av resultat, ta bort delar av y-axeln. Visualisering t.ex. med en figur där både längd och bredd visar samma förhållande d.v.s. misstolkade diagram. 8. Speltillverkaren kan rikta olika sorters reklam till olika åldersgrupper, beroende på om de redan spelar mycket eller lite. NpMa1c vt 2012 8

Version 2 Reklam på internet Svar och motiveringar till påståenden 1. S Andel 15 24 år är 45 % och andelen 25 44 år är 32 %. 2. S Andel 2008 är 42 % och andelen 2009 är 33 %. 3. F Andelen kvinnor i båda åldersgrupperna är mindre. 4. S/F Det stämmer ungefär men inte exakt. 5. S Andelen kvinnor är 30 % och andelen män 40 % d.v.s. 3/4. 6. F En ökning från 2 % till 8 % innebär en ökning med 300 %. 7. F Nej, andelen män ca 7 % och andelen kvinnor 5 % blir ungefär 30 %. Antalet okänt. 8. S/F Ja, om jämförelsen görs i procentenheter och nej, om jämförelsen görs i procent. 9. S Sant under antagandet att det finns lika många män som kvinnor. 10. S Medelvärdet av de båda staplarna blir 6. 11. S/F Samma andel i båda grupperna men antalet är okänt. Ålderspannen är dessutom olika i grupperna. 12. S/F En ökning från 23 % till 35 % är ungefär 50 % men åldersfördelningen är okänd. Svar och motiveringar till diskussionsfrågor 1. Diagrammet utvecklar delar av sista raden i tabellen. 2. 44 % måste delas med 2 för att ge den totala andelen under förutsättning att det finns lika många kvinnor som män. 3. Exempelvis i ett linjediagram kan varje åldersgrupp följas under tidsperioden 2004 tom. 2010. Stapeldiagram för varje år liknande diagrammet nedan. 4. Urvalet i nätundersökningen har troligen påverkat resultatet. Urvalet i den presenterade undersökningen framgår inte av diagram och tabell. 5. Presentera endast delar av resultat, ta bort delar av y-axeln. Visualisering t.ex. med en figur där både längd och bredd visar samma förhållande d.v.s. misstolkade diagram. 6. 14,5-åringar räknas som 14 år i och med att åldern anges med diskreta värden. Ålder kan vara en diskret eller en kontinuerlig variabel. I denna undersökning troligen diskret. 7. Skrivsättet är inte direkt felaktigt men det är tydligare att skriva 25 x < 45. Övre eller undre gräns sluten. NpMa1c vt 2012 9

Bedömningsmatris till Spelande på internet, max 4/5/4 Begrepp E C A Procedurer Hantera procedurer och lösa uppgifter av standardkaraktär. Eleven gör någon enkel avläsning i tabell eller diagram. Eleven gör flera korrekta avläsningar och använder dessa i beräkningar, t.ex. förhållande eller procentuella förändringar. Problemlösning Analysera och lösa matematiska problem samt tolka och värdera metoder och resultat. Eleven gör enkla tolkningar utifrån sina avläsningar och beräkningar. (t.ex. i påstående 1 6) Eleven använder begrepp och samband mellan begrepp i problemlösning genom att skilja mellan antal och andel. (t.ex. påstående 7 8 och vid enklare svar i påstående 9 12 eller i diskussionen) Eleven synliggör komplexitet i problemet, t.ex. genom att påpeka att olika helheter och grupperingar påverkar slutsatsen. (t.ex. vid utförligare svar i påstående 9 12 eller i diskussionen) Matematiska modeller Matematiska resonemang Följa, föra och bedöma matematiska resonemang. Kommunikation Muntligt kommunicera matematiska tankegångar. L L +A PL Eleven för ett enkelt resonemang kring någon eller några avläsningar. +E R Eleven bidrar med enkla omdömen vid andra elevers redovisningar eller i diskussionen. Eleven för välgrundade resonemang utifrån tabell och diagram samt bidrar med egna idéer och förklaringar vid andra elevers redovisningar eller i diskussionen. Eleven för välgrundade och nyanserade matematiska resonemang och tar del av andras argument samt vidareutvecklar egna och andras resonemang. +E R +C R +A R Eleven uttrycker sig tydligt och det är möjligt att följa förklaringarna under större delen av provtillfället. Eleven uttrycker sig med säkerhet och använder ett lämpligt matematiskt språk, t.ex. genom att genomgående korrekt använda relevanta matematiska begrepp. +2C K +2A K NpMa1c vt 2012 14

Bedömningsmatris till Reklam på internet, max 4/5/4 Begrepp E C A Procedurer Hantera procedurer och lösa uppgifter av standardkaraktär. Eleven gör någon enkel avläsning i tabell eller diagram. Eleven gör flera korrekta avläsningar och använder dessa i beräkningar, t.ex. förhållande eller procentuella förändringar. Problemlösning Analysera och lösa matematiska problem samt tolka och värdera metoder och resultat. Eleven gör enkla tolkningar utifrån sina avläsningar och beräkningar. (t.ex. i påstående 1 6) Eleven använder begrepp och samband mellan begrepp i problemlösning genom att skilja mellan antal och andel. (t.ex. i påstående 7 8 och vid enklare svar i påstående 9 12 eller i diskussionen) Eleven synliggör komplexitet i problemet, t.ex. genom att påpeka att olika helheter och grupperingar påverkar slutsatsen. (t.ex. vid utförligare svar i påstående 9 12 eller i diskussionen) Matematiska modeller Matematiska resonemang Följa, föra och bedöma matematiska resonemang. Kommunikation Muntligt kommunicera matematiska tankegångar. L L +A PL Eleven för ett enkelt resonemang kring någon eller några avläsningar. +E R Eleven bidrar med enkla omdömen vid andra elevers redovisningar eller i diskussionen. Eleven för välgrundade resonemang utifrån tabell och diagram samt bidrar med egna idéer och förklaringar vid andra elevers redovisningar eller i diskussionen. Eleven för välgrundade och nyanserade matematiska resonemang och tar del av andras argument och vidareutvecklar egna och andras resonemang. +E R +C R +A R Eleven uttrycker sig tydligt och det är möjligt att följa förklaringarna under större delen av provtillfället. Eleven uttrycker sig med säkerhet och använder ett lämpligt matematiskt språk, t.ex. genom att genomgående korrekt använda relevanta matematiska begrepp. +2C K +2A K NpMa1c vt 2012 16