Intel Silverthornes front-end
|
|
- Maja Öberg
- för 6 år sedan
- Visningar:
Transkript
1 EITF60 Datorarkitekturer med operativsystem Intel Silverthornes front-end Jonas Persson 4 december 2017 Sammanfattning I denna rapport undersöks designalternativ för att minska en processors energiförbrukning med avseende på dess pipeline. Detta görs genom att ta reda på hur Intel designat pipelinen på deras processor Silverthorne, rapportens fokus läggs på processorns front-end block.
2 Innehåll 1 Inledning och bakgrund Syfte och metod Teori Silverthorns front-end fetch decode Prestanda vs. energiförbrukning Diskussion och slutsats 5 4 Referenser 6
3 1 INLEDNING OCH BAKGRUND 1 Inledning och bakgrund På grund av mobila enheters begränsade batterikapacitet och att nästan varannan människa äger en smartphone idag (Poushter 2016) finns det en stor marknad för energieffektiva processorer. För att uppnå god prestandanivå använder sig i princip alla processorer sedan 1985 av pipelining (Hennesy et al. 2007) det gäller även Intel Silverthorne, som är första mikroprocessorn i Intel Atom familjen. Innan denna processor lanserades 2008 lade Intel inte så mycket fokus på energieffektivitet, därför saknade de en processor som matchade mobilmarknadens krav på energieffektivitet, värmeutveckling och fysisk storlek. Intels Silverthorne designades från grunden med målen att minska energiförbrukning, behålla full x86 kompabilitet samt uppnå acceptabel prestanda. För att uppnå deras mål fick högprestanda funktioner som out-of-order exekvering, microoperation transformation samt aggressiv spekulativ exekvering väljas bort. Silverthorne skiljer sig därför en hel del från Intels tidigare processorer (wikichip.org 2017). 1.1 Syfte och metod Syftet med denna rapport är att undersöka vad som kan göras för att minska en processors energiförbrukning vad gäller dess pipeline. Detta görs genom att ta reda på hur Intel designat pipelinen på deras processor Silverthorne, fokus kommer läggas på processorns front-end block, mer specifikt instruction fetch och instruction decode. 1
4 2 TEORI 2 Teori Most low-power, low-performance processors, such as Cortex-A7/A53 and Atom, are in-order designs because OOO logic consumes a lot of power for a relatively small performance gain. (Patterson 2015) Som nämndes i inledningen fick hög-prestanda funktioner som t ex out-of-order exekvering väljas bort. Silverthorne består alltså av en in-order men även dual-issue pipeline, denna stegs superscalar pipeline är illustrerad i F ig. 1. Med dualissue menas att processorn kan hantera två instruktioner samtidigt, detta fungerar dock endast om dessa två instruktioner redan finns i instruktions cache L1 (Geyer et al. 2011). IF1 IF2 IF3 ID1 ID2 ID3 SC IS IRF AG DC1 DC2 EX1 FT1 FT2 IWB / DC1 Fetch Decode Dispatch Source Operand Read Data Cache Access Execute Exception & MT Handling Commit IP1 IP2 PreDecode Fig. 1 Silverthornes pipeline - (BCD 2017) / CC BY-NC-ND Silverthorns front-end För samtliga x86-baserade processorer har front-end delen av en pipeline två huvudsakliga uppgifter, att hämta instruktioner ( Fetch) och att avkoda instruktioner ( Decode) (Cepeda 2011). Jämfört med Intels högprestanda arkitekturer är Silverthornes front-end (som kan ses i F ig. 2) ganska simpel, som nämnts tidigare har funktioner valts bort, men även decode-delen har förenklats. Processorn har stöd för Simultaneous multithreading (SMT) vilket var ovanligt för energieffektiva processorer på denna tiden. För Silverthornes front-end innebär detta att instruktionskön och prefetch buffern har fördubblats för varje tråd, resten av resurserna får trådarna tävla om. Trådarna får alltså samsas om instruktionscacheminnet L1. Enligt Intel förbättras prestandan med procent med SMT medan energiförbrukningen ökar med procent (wikichip.org 2017). 2
5 2.2 fetch 2 TEORI UROM Branch Prediction Unit Front-End Cluster Per-thread Queues XLAT/ FL XLAT/ FL 2-wide Inst. Length Decoder Per Thread Prefetch Buffers Cache Inst. TLB Per thread FP Register File Per thread Integer Register File Memory Execution Cluster AGU AGU DL1 prefetcher ALU Shuffle SIMD multiplier FP multiplier FP move FP ROM FP divider ALU FP adder ALU Shifter Data Cache ALU JEU Integer Execution Cluster Data TLBs PMH Fill Buffers Fault/ Retire L2 Cache BIU APIC Bus Cluster FSB FP store FP/SIMD execution cluster Fig. 2 Block diagram av Silverthorne med front-end cluster högst upp - (Gerosa et al. 2008) 2.2 fetch Silverthornes Fetch (IF) del är indelad i tre pipeline steg och kan gå igenom 8 bytes per tråd under en klockcykel. Instruktionsflödet kommer från L1 som är ett 8-way set associative, 32KB stort instruktions cache, därefter passerar instruktionerna en serie prefetch buffers vidare till avkodningsdelen (Wang 2009). Aggressiv spekulation har valts bort när Silverthorne togs fram, men processorn har en two-level adaptive branch predictor med en 4096 posters Branch History Table (BHT) och en 128 posters Branch Target Buffer (BTB). Branch predictorn registrerar alltid-tagna och aldrig-tagna hopp medan ovillkorliga hopp ej registreras. Eftersom BTB är mycket mindre än BHT kan det hända att ett hopp är korrekt gissat som taget men det saknas en post i BTB för var hoppet ska tas, i detta fall blir straffet cirka sju klockcykler. Skulle en felgissning (misprediction) uppstå är straffet klockcykler (wikichip.org 2017)(Fog 2017). 3
6 2.3 decode 2 TEORI 2.3 decode Även Decode (ID) delen är indelad i tre pipeline steg och kan avkoda instruktioner med upp till tre prefixes varje klockcykel, det tar dock många fler cykler för komplexa instruktioner. Silverthornes avkodningsdel skiljer sig nämnvärt från de flesta moderna x86 arkitekturer (wikichip.org 2017). Moderna x86 arkitekturer omvandlar komplexa x86 instruktioner till mindre så kallade micro-operations (µops), den komplexa logiken som behövs för detta är hyfsat energikrävande (Solomon et al. 2003). Silverthorne gör nästan ingen sådan omvandling. Dess pipeline är anpassad så att den kan exekvera vanliga x86 instruktioner som enkla atomiska operationer bestående av ett destinationsregister och upp till tre källregister. Med atomiska operationer menas i princip operationer som säger till processorn gör detta och tillåt inga avbrott under tiden (Atomic Operations in Hardware 2007). Processorn kan även göra så kallade lockstep instruktioner vilket innebär att den exekverar instruktioner som utför en minnesaccess och en aritmetisk operation som två separata instruktioner under en klockcykel. Komplexa x86 instruktioner som t ex cosinus-beräkningar blir fortfarande omvandlade till µops (genom att skickas till MicroCode ROM - MSROM) till kostnaden av två cykler. Alla instruktioner som har fler än tre prefixes eller är längre än 8 bytes långa blir direkt skickade till MSROM (wikichip.org 2017). Enligt Intel är detta inga problem eftersom cirka 96 procent av alla instruktioner exekveras som direkt översatta (1:1) macro-ops eller sammanslagna enkla µops (Wasson 2008). Eftersom processorn är designad att hantera instruktioner av varierande längd får Silverthornes två identiska avkodare hjälp av en föravkodare (predecoder) som fastställer gränser för var en instruktion börjar och slutar genom att markera en bit. Det tar två klockcykler att föravkoda och lagra i L1-cachen, markeringen av instruktionens gränser sparas i L1 så att upprepade operationer inte föravkodas mer än en gång. Anledningen till att Silverthorns pipeline varierar mellan 16 och 19 steg är att en cache miss kostar tre extra steg. De tre extra stegen är för att komma ikapp och att räkna ut gränserna för instruktionen. Det går dock att undvika dessa tre extra steg i de fall processorn samtidigt kan avkoda nästa instruktion (wikichip.org 2017). 2.4 Prestanda vs. energiförbrukning Jämfört med Intel Pentium M 705 från 2003, vars prestanda är på samma nivå som Intel Silverthorne enligt notebookcheck.net, förbrukar den sistnämnda betydligt mindre energi. Pentium processorn har en TDP (Thermal Design Power) på 24,5 W medan Silverthornes TDP är 0,65 W. 4
7 3 DISKUSSION OCH SLUTSATS 3 Diskussion och slutsats Med undantag för vilken prestandavinst och energiförbrukning som SMT bidrar med, har denna rapport dessvärre inte lyckats att på mätbart sätt visa hur mycket energieffektivitet just Silverthornes front-end har bidragit med. Däremot visar rapportens granskning av Silverthorne hur processorns front-end designats för att uppnå energieffektivitet. De flesta åtgärder som gjorts för att minska energiförbrukning är att exkludera komplex prestandahöjande logik. Att exkludera prestandahöjande funktioner kan tyckas vara mindre imponerande, dock presterar Silverthorne likvärdigt med den fem år äldre Pentium M 705 fast med betydligt mindre energiförbrukning, vilket är ett framsteg i sig. Intel har trots detta inte lyckats så bra på marknaden för mobila enheter, den domineras istället av ARM processorer (vox.com 2016), vad det beror på ligger utanför denna rapports ramar. Det bör nämnas att information till rapporten till viss del hämtats ifrån wikichip.org. På denna sida har allmänheten möjlighet att redigera innehåll och kan därför anses som mindre trovärdig källa. Anledning till att denna källa används trots detta var avsaknaden av information i form av vetenskapliga artiklar. Med facit i hand skulle studie av en ännu äldre processor valts eftersom det finns mer trovärdig information om dessa, detta är något som kommer dras lärdom ifrån till framtida rapporter. 5
8 4 REFERENSER 4 Referenser Geyer, R, Georgi, A, and Nagel, W 2011, Coarse Grained Parallelized Scientific Applications on a Cost Efficient Intel Atom Based Cluster, Procedia Computer Science, 4, Proceedings of the International Conference on Computational Science, ICCS 2011, pp Solomon, B, Mendelson, A, Ronen, R, Orenstien, D, and Almog, Y 2003, Micro-operation cache: a power aware frontend for variable instruction length ISA, IEEE Transactions On Very Large Scale Integration (VLSI) Systems, 11, 5, pp Fog, Agner, 2017, The microarchitecture of Intel, AMD and VIA CPUs An optimization guide for assembly programmers and compiler makers, Technical University of Denmark Wang, P, Collins, D, Weaver, C, Kuttanna, B, Salamian, S, Chinya, G, Schuchman, E, Schilling, O, Doil, T, Steibl, S, Wang, H, 2009, Intel Atom Processor Core Made FPGA-Synthesizable, In Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays (FPGA 09), ACM, pp Wasson, S, 2008, Intel s Atom processor unveiled, The Tech Report, Available at: Patterson, J, 2015, Modern Microprocessors - A 90-Minute Guide!, Lighterra.com, Available at: wikichip.org, 2017, Bonnell - Microarchitectures - Intel, Available at: Cepeda, S, 2017, Pipeline Speak: Learning More About Intel R Microarchitecture Codename Sandy Bridge Intel R Software, software.intel.com, Available at: Poushter, Jacob, 2016, Smartphone Ownership and Internet Usage Continues to Climb in Emerging Economies - But advanced economies still have higher rates of technology use, Pew Research Center Gerosa, G, Curtis, S, D Addeo, M, Kuttanna, B, Merchant, F, Patel, B, Taufique, M, Samarchi, H, A Sub-1W to 2W Low-Power IA Processor for Mobile Internet Devices and Ultra-Mobile PCs in 45nm Hi-K Metal Gate CMOS 2008, 2008 IEEE International 6
9 4 REFERENSER Solid-State Circuits Conference - Digest Of Technical Papers, Solid-State Circuits Conference, ISSCC Digest Of Technical Papers. IEEE International, p. 256 Hennessy, J, Patterson, D, Arpaci-Dusseau, A, 2007, Computer architecture : a quantitative approach, 4. uppl., Elsevier, Inc. Vox.com, 2016, Intel made a huge mistake 10 years ago. Now 12,000 workers are paying the price, Available at: Notebookcheck.net, 2017, Intel Atom Z500, Available at: Atomic Operations in Hardware, Lecture 25, Computer Science and Engineering, CSE 378, University of Washington, 2007, Available at: Operations.pdf 7
Pipelining i Intel Pentium II
Pipelining i Intel Pentium II John Abdulnoor Lund Universitet 04/12/2017 Abstract För att en processor ska fungera måste alla komponenter inuti den samarbeta för att nå en acceptabel nivå av prestanda.
Arm Cortex-A8 Pipeline
Marcus Havrell Dahl - 941206 Arm Cortex-A8 Pipeline Sammanfattning Arm Cortex-A8 processorn är en energisnål men samtidigt kraftfull enhet. Beroende på implementationen kan den ha en klockhastighet på
Datorarkitekturer med operativsystem ERIK LARSSON
Datorarkitekturer med operativsystem ERIK LARSSON Dator Primärminne Instruktioner och data Data/instruktioner Kontroll Central processing unit (CPU) Fetch instruction Execute instruction Programexekvering
Lunds Tekniska Högskola Datorarkitektur med operativsystem EITF60. Superscalar vs VLIW. Cornelia Kloth IDA2. Inlämningsdatum:
Lunds Tekniska Högskola Datorarkitektur med operativsystem EITF60 Superscalar vs VLIW Cornelia Kloth IDA2 Inlämningsdatum: 2018-12-05 Abstract Rapporten handlar om två tekniker inom multiple issue processorer
Närliggande allokering Datorteknik
Närliggande allokering Datorteknik ERIK LARSSON TID Problem: Minnet blir fragmenterat Paging Demand paging Sida (S) Dela upp primärminnet i ramar (frames) och program i sidor (pages) Program 0 RD.0 1 RD.1
Digitala System: Datorteknik ERIK LARSSON
Digitala System: Datorteknik ERIK LARSSON Huvudled (H) Trafikljus för övergångsställe Trafikljus för huvudled (H) Trafikljus: Sväng vänster (H->T) Gående - vänta Trafikljus för tvärgata (T) Tvärgata (T)
Datorteknik ERIK LARSSON
Datorteknik ERIK LARSSON Så här långt. FÖ2 RISC/CISC FÖ1 Primärminne Instruktioner och data Address Instruction 00001000 0000101110001011 00001001 0001101110000011 00001010 0010100000011011 00001011 0001001110010011
Hantering av hazards i pipelines
Datorarkitektur med operativsystem Hantering av hazards i pipelines Lisa Arvidsson IDA2 Inlämningsdatum: 2018-12-05 Abstract En processor som använder pipelining kan exekvera ett flertal instruktioner
Datorteknik ERIK LARSSON
Datorteknik ERIK LARSSON Programexekvering (1) Hämta instruktion på 00001000 (där PC pekar) Fetch (2) Flytta instruktionen 0000101110001011 till CPU (3) Avkoda instruktionen: 00001 MOVE, 01110001 Adress,
Datorarkitekturer med operativsystem ERIK LARSSON
Datorarkitekturer med operativsystem ERIK LARSSON Semantic gap Alltmer avancerade programmeringsspråk tas fram för att göra programvaruutveckling mer kraftfull Dessa programmeringsspråk (Ada, C++, Java)
Pipeline hos ARM Cortex-A53 och ARM Cortex-A73
Lunds universitet Pipeline hos ARM Cortex-A53 och ARM Cortex-A73 Kevin Eriksson EITF60 Kursansvarig: Erik Larsson 2017-12-04 Innehållsförteckning Syfte 2 Sammanfattning 2 Jämförelse 3 Pipelinebredd 3 Out
IBM POWER4, den första flerkärniga processorn och dess pipelines.
IBM POWER4, den första flerkärniga processorn och dess pipelines. 5 DECEMBER 2016 FÖRFATTARE: OSCAR STRANDMARK EXAMINATOR: ERIK LARSSON Abstract Rapporten redovisar IBM:s POWER-serie, generation ett till
Datorteknik ERIK LARSSON
Datorteknik ERIK LARSSON Fetch-Execute Utan pipelining: Tid: 1 2 3 4 5 6 Instruktion 1 Instruktion 2 Instruktion 3 Fetch Execute Fetch Execute Fetch Execute Med pipelining: Tid: 1 2 3 4 Instruktion 1 Instruktion
Pipelining i Intel 80486
Lunds Universitet Pipelining i Intel 80486 EITF60 Datorarkitekturer med operativsystem Martin Wiezell 2017-12-04 Abstract This paper gives a brief description of the instruction pipeline of the Intel 80486
Processor pipelining genom historien (Intel i9-intel i7)
Processor pipelining genom historien (Intel i9-intel i7) Besnik Redzepi Lunds Universitet Abstrakt/Sammanfattning Syftet med denna uppsats är att jämföra Intels nya generation processorer och deras pipelining.
Hyper Threading Intels implementation av SMT. Datorarkitekturer med operativsystem - EITF60. Felix Danielsson IDA2
Hyper Threading Intels implementation av SMT Datorarkitekturer med operativsystem - EITF60 Felix Danielsson IDA2 Sammanfattning Simultaneous multithreading (SMT) är en teknik som används i processorer
Datorsystem 2 CPU. Förra gången: Datorns historia Denna gång: Byggstenar i en dators arkitektur. Visning av Akka (för de som är intresserade)
Datorsystem 2 CPU Förra gången: Datorns historia Denna gång: Byggstenar i en dators arkitektur CPU Visning av Akka (för de som är intresserade) En dators arkitektur På en lägre nivå kan vi ha lite olika
Multi-ported cache En rapport om några lösningar till att få flera minnesaccesser simultant.
Multi-ported cache En rapport om några lösningar till att få flera minnesaccesser simultant. Sammanfattning När processorns klockhastighet ökar medför det en ökning av instruktioner vilket såklart ökar
Parallellism i CDC 7600, pipelinens ursprung
Lunds universitet Parallellism i CDC 7600, pipelinens ursprung Henrik Norrman EITF60 Datorarkitekturer med operativsystem Kursansvarig: Erik Larsson 4 december 2017 INNEHÅLL Parallellism i CDC 7600 Innehåll
Tentamen den 18 mars svar Datorteknik, EIT070
Lunds Universitet LTH Tentamen den 18 mars 2015 - svar Datorteknik, EIT070 Skrivtid: 14.00-19.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng För betyg 4 krävs 30
Fetch-Execute. Datorteknik. Pipelining. Pipeline diagram (vid en viss tidpunkt)
Datorteknik ERIK LRSSON Fetch- Utan pipelining: Tid: 1 2 3 4 5 6 Instruktion 1 Instruktion 2 Instruktion 3 Fetch Fetch Fetch Med pipelining: Tid: 1 2 3 4 Instruktion 1 Instruktion 2 Instruktion 3 Fetch
TSEA28 Datorteknik Y (och U)
Praktiska kommentarer TSEA8 Datorteknik Y (och U) Föreläsning Kent Palmkvist, ISY Dagens föreläsning RISC Mer information om hur arkitekturen fungerar Begränsningar Lab extra tillfälle för redovisning
Prestandapåverkan på databashanterare av flertrådiga processorer. Jesper Dahlgren
Prestandapåverkan på databashanterare av flertrådiga processorer av Sammanfattning Behandling av information bli vanligare i dagens samhälle och för att klara denna uppgiften används ofta en databashanterare
Grundläggande datavetenskap, 4p
Grundläggande datavetenskap, 4p Kapitel 2 Datamanipulation, Processorns arbete Utgående från boken Computer Science av: J. Glenn Brookshear 2004-11-09 IT och Medier 1 Innehåll CPU ALU Kontrollenhet Register
Spekulativ exekvering i CPU pipelining
Spekulativ exekvering i CPU pipelining Max Faxälv Datum: 2018-12-05 1 Abstrakt Speculative execution is an optimisation technique used by modern-day CPU's to guess which path a computer code will take,
Datorarkitekturer med operativsystem ERIK LARSSON
Datorarkitekturer med operativsystem ERIK LARSSON Parallellberäkning Konstant behov av högre prestanda Prestanda har uppnåtts genom: Utveckling inom halvledarteknik Tekniker som:» Cacheminne» Flera bussar»
0.1. INTRODUKTION 1. 2. Instruktionens opcode decodas till en språknivå som är förstålig för ALUn.
0.1. INTRODUKTION 1 0.1 Introduktion Datorns klockfrekvens mäts i cykler per sekund, eller hertz. En miljon klockcykler är en megahertz, MHz. L1 cache (level 1) är den snabbaste formen av cache och sitter
Digitala System: Datorteknik ERIK LARSSON
Digitala System: Datorteknik ERIK LARSSON Dator Primärminne Instruktioner och data Data/instruktioner Kontroll Central processing unit (CPU) Fetch instruction Execute instruction Programexekvering (1)
Hantering av hazards i multi-pipelines
Campus Helsingborg IDA2 Hantering av hazards i multi-pipelines Av: Mounir Salam Abstract Det finns tre olika problem som kan uppstå när vi kör en pipeline med flera steg. De tre problemen även så kallade
Datorarkitekturer med operativsystem ERIK LARSSON
Datorarkitekturer med operativsystem ERIK LARSSON Pipelining Tid SSA P Pipelining FI DI CO FO EI WO FI DI CO FO EI WO FI DI CO FO EI WO FI DI CO FO EI WO Superscalar pipelining FI DI CO FO EI WO FI DI
Pipelining i RISC-processorn. Joakim Lindström Institutionen för informationsbehandling Åbo Akademi E-post: jolindst@abo.fi
Pipelining i RISC-processorn Joakim Lindström Institutionen för informationsbehandling Åbo Akademi E-post: jolindst@abo.fi Innehållsförteckning 1. Inledning 2. Historia: Intel 8086 (1978) till Pentium
TSEA28 Datorteknik Y (och U)
Praktiska kommentarer TSEA8 Datorteknik Y (och U) Föreläsning Kent Palmkvist, ISY Dagens föreläsning Latens/genomströmning Pipelining Laboration tips Sorteringsalgoritm använder A > B i flödesschemat Exemplet
Emil Kristiansson Kurs: EDT621 Delmoment: Rapport. En introduktion till Smart cache
En introduktion till Smart cache 1 Sammanfattning Syftet med den här rapporten är att ge en introduktion till tekniken smart cache för läsaren. Smart cache är en teknik som låter de olika cacheminnena
Datorsystemteknik DVGA03 Föreläsning 8
Datorsystemteknik DVGA03 Föreläsning 8 Processorns uppbyggnad Pipelining Större delen av materialet framtaget av :Jan Eric Larsson, Mats Brorsson och Mirec Novak IT-inst LTH Innehåll Repetition av instruktionsformat
SIMD i Intel s P5- baserade Pentium MMX
SIMD i Intel s P5- baserade Pentium MMX Maurits Gabriel Johansson - IDA2 Datorarkitekturer med operativsystem - 4 december 2016 SIMD I INTEL S P5-BASERADE PENTIUM MMX 1 Abstrakt Moderna CPU s (Central
Minnet från processorns sida Datorteknik
Minnet från processorns sida Datorteknik ERIK LARSSON Processorn ger kommandon/instruktioner med en adress och förväntar sig data. Exempel: READ(ADR) -> DATA Fysisk adress Logisk adress READ 00001000 READ
Moment 2 Digital elektronik. Föreläsning Inbyggda system, introduktion
Moment 2 Digital elektronik Föreläsning Inbyggda system, introduktion Jan Thim 1 Inbyggda system, introduktion Innehåll: Historia Introduktion Arkitekturer Mikrokontrollerns delar 2 1 Varför lär vi oss
Hyper-Threading i Intelprocessorer
Lunds Tekniska Högskola Campus Helsingborg DATORARKITEKTURER MED OPERATIVSYSTEM EITF60 RAPPORT Hyper-Threading i Intelprocessorer 4 december 2017 Rasmus Hanning IDA2 Sammanfattning Det har sedan den första
Datorarkitekturer med operativsystem ERIK LARSSON
Datorarkitekturer med operativsystem ERIK LARSSON Översikt Reduced instruction set computers (RISC) Superscalar processors Semantic gap Alltmer avancerade programmeringsspråk tas fram för att göra programvaruutveckling
MESI i Intel Core 2 Duo
MESI i Intel Core 2 Duo Sammanfattning Denna rapport beskriver en processor (Intel Core 2 Duo) vars cache coherence protokoll är MESI. Rapporten beskriver hur processorn är uppbyggd, hur många kärnor den
SVAR TILL TENTAMEN I DATORSYSTEM, VT2013
Rahim Rahmani (rahim@dsv.su.se) Division of ACT Department of Computer and Systems Sciences Stockholm University SVAR TILL TENTAMEN I DATORSYSTEM, VT2013 Tentamensdatum: 2013-03-21 Tentamen består av totalt
What Is Hyper-Threading and How Does It Improve Performance
What Is Hyper-Threading and How Does It Improve Performance Ali Muthanna, Lunds Universitet, IDA2, EDT621 Abstract Hyper-Threading (HT) is Intel s version of simultaneous multi-threading (SMT). Hyper-Threading
Tentamen den 14 januari 2015 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng
Lunds Universitet LTH Ingenjörshögskolan, Helsingborg Tentamen den 14 januari 2015 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng Skrivtid: 08.00-13.00 Tillåtna hjälpmedel: Inga. Maximalt antal
Hur det går att minska effektutvecklingen i en processor genom att ändra pipeline
Hur det går att minska effektutvecklingen i en processor genom att ändra pipeline Linda Wapner HT2018 EITF60 Sammanfattning Effektutvecklingen i en processor har länge ökat genom att klockfrekvensen för
Hannes Larsson - IDA 2, LTH Campus Helsingborg. NEC V R 4300i. Interlock-handling EDT621
Hannes Larsson - IDA 2, LTH Campus Helsingborg NEC V R 4300i Interlock-handling EDT621 Läsperiod 2, 2017 Innehållsförteckning s.2 - Förord s.2 - Inledning s.2 - NEC VR-4305 s.3 - Pipeline s.4 - Interlocks
Tentamen den 9 januari 2018 Datorarkitekturer med operativsystem (EITF60)
Lunds Universitet LTH Tentamen den 9 januari 2018 Datorarkitekturer med operativsystem (EITF60) Skrivtid: 08.00-13.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng
Öka prestanda i Shared-Cache multi-core processorer
Öka prestanda i Shared-Cache multi-core processorer 1. Abstract Många processorer har nuförtiden flera kärnor. Det är även vanligt att dessa kärnor delar på högsta nivås cachen för att förbättra prestandan.
Parallellism i NVIDIAs Fermi GPU
Parallellism i NVIDIAs Fermi GPU Thien Lai Phu IDA2 Abstract This report investigates what kind of computer architecture, based on Flynn s taxonomy, is used on NVIDIAs Fermi-based GPU to achieve parallellism
En Von Neumann-arkitektur ( Von Neumann-principen i föreläsning 1) innebär:
Lösningsförslag för 725G45-tentan 3/11-10 1. Vad menas med Von Neumann-arkitektur? (2p) En Von Neumann-arkitektur ( Von Neumann-principen i föreläsning 1) innebär: Data och instruktioner lagras i samma
Snapdragon 810: Cacheminnet
Snapdragon 810: Cacheminnet Daniel Eckerström dat14dec@student.lu.se Sammanfattnig Snapdragon 810 innehåller två olika processor arkitekturer, ARM Cortex-A53 samt Cortex-A57. Detta för att kunna på ett
Exempeltentamen Datorteknik, EIT070,
Lunds Universitet LTH Exempeltentamen Datorteknik, EIT070, Skrivtid: xx.00-xx.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng För betyg 4 krävs 30 poäng För betyg
Datorteknik ERIK LARSSON
Datorteknik ERIK LARSSON Laborationer Gå bara på tillfällen där du är anmäld. Moment svarar mot 1.5hp, dvs 40 timmar arbete Schemalagd tid: 4*2 (lektioner)+4*4(laborationer)=20 timmar Material: Finns på
CDC en jämförelse mellan superskalära processorer. EDT621 Campus Helsingborg av: Marcus Karlsson IDA
CDC6600 - en jämförelse mellan superskalära processorer av: Marcus Karlsson Sammanfattning I denna rapport visas konkret information om hur den första superskalära processorn såg ut och hur den använde
Datorteknik. Föreläsning 6. Processorns uppbyggnad, pipelining. Institutionen för elektro- och informationsteknologi, LTH. Mål
Datorteknik Föreläsning 6 Processorns uppbyggnad, pipelining Mål Att du ska känna till hur processorn byggs upp Att du ska kunna de viktigaste byggstenarna i processorn Att du ska känna till begreppet
Datormodell. Datorns uppgifter -Utföra program (instruktioner) Göra beräkningar på data Flytta data Interagera med omvärlden
Datormodell Datorns uppgifter -Utföra program (instruktioner) Göra beräkningar på data Flytta data Interagera med omvärlden Intel 4004 från 1971 Maximum clock speed is 740 khz Separate program and data
Jacquards vävstol, 1801
Datorteknik Föreläsning 7 Historia och framtid Jacquards vävstol, 1801 1 Charles Babbage Difference Engine, 1822 Konrad Zuse, Z1, 1936 2 ENIAC, 1943 ENIAC Senare har yrket som programmerare blivit populärt
Datorteknik. Föreläsning 7 Historia och framtid. Institutionen för elektro- och informationsteknologi, LTH
Datorteknik Föreläsning 7 Historia och framtid Jacquards vävstol, 1801 Charles Babbage Difference Engine, 1822 Konrad Zuse, Z1, 1936 ENIAC, 1943 ENIAC Senare har yrket som programmerare blivit populärt
DatorsystemteknikDAVA14 Föreläsning 9
DatorsystemteknikDAVA14 Föreläsning 9 epetition: MP likainstruktioneri Exempel på instruktionstyper Processorns uppbyggnad Pipelining törre delen av materialet framtaget av :Jan Eric Larsson, Mats Brorsson
Svar till tentamen den 16 december 2013 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng
Lunds Universitet LTH Ingenjörshögskolan, Helsingborg Svar till tentamen den 16 december 2013 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng Skrivtid: 08.00-13.00 Tillåtna hjälpmedel: Inga. Maximalt
Tentamen den 14 januari 2016 Datorarkitektur med operativsystem, EDT621
Lunds Universitet LTH Tentamen den 14 januari 2016 Datorarkitektur med operativsystem, EDT621 Skrivtid: 08.00-13.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng
F2: Motorola Arkitektur. Assembler vs. Maskinkod Exekvering av instruktioner i Instruktionsformat MOVE instruktionen
68000 Arkitektur F2: Motorola 68000 I/O signaler Processor arkitektur Programmeringsmodell Assembler vs. Maskinkod Exekvering av instruktioner i 68000 Instruktionsformat MOVE instruktionen Adresseringsmoder
Tentamen den 12 januari 2017 Datorarkitektur med operativsystem, EDT621
Lunds Universitet LTH Tentamen den 12 januari 2017 Datorarkitektur med operativsystem, EDT621 Skrivtid: 8.00-13.00 Inga tillåtna hjälpmedel Uppgifterna i tentamen ger maximalt 60 poäng. Uppgifterna är
En överblick på cachedesignen i Intels mikroarkitektur Nehalem
En överblick på cachedesignen i Intels mikroarkitektur Nehalem Tillsammans med utvecklingen av cacheminnen förekommer det även ett flertal problem med att styra och organisera data. Trots att det sker
Datorteknik och datornät. Case Study Topics
Datorteknik och datornät 2003-10-30 Case Study Topics 1. General architecture - Intel 486. - To study the main features of the Intel 486 architecture. J. H. Crawford, The i486 CPU: Executing Instructions
Cacheprobe: programbibliotek för extrahering av cacheminnesparametrar
Cacheprobe: programbibliotek för extrahering av cacheminnesparametrar Gabriel Gerhardsson Cacheprobe p.1/38 Abstract Kan analytiskt ta reda på associativitet, line storlek och storlek på processorns cacheminnen
LUNDS UNIVERSITET. Parallell exekvering av Float32 och INT32 operationer
LUNDS UNIVERSITET Parallell exekvering av Float32 och INT32 operationer Samuel Molin Kursansvarig: Erik Larsson Datum 2018-12-05 Referat Grafikkort utför många liknande instruktioner parallellt då typiska
Digitalteknik och Datorarkitektur 5hp
Digitalteknik och Datorarkitektur 5hp Minnes-hierarkier och Cache 12 maj 2008 karl.marklund@it.uu.se issa saker använder vi ofta Dessa saker vill vi ha nära till hands Storleken har betydelse Litet är
Utvecklingen från en 8 bitars till en 16 bitars mikroprocessor
Utvecklingen från en 8 bitars till en 16 bitars mikroprocessor Sammanfattning: Utvecklingen från processor till processor är inte lätt. Det finns många beslut som måste tas när det gäller kompatibilitet,
Multithreading in Intel Pentium 4 - Hyperthreading
Multithreading in Intel Pentium 4 - Hyperthreading Sammanfattning Hyper-threading är en implementation av SMT(Simultaneous Multithreading) teknologi som används på Intel processorer. Implementationen användes
Digitalteknik och Datorarkitektur 5hp
Foto: Rona Proudfoot (some rights reserved) Vi skall nu kolla närmare på hur det går till när en instruktion utförs. Fetch = + Digitalteknik och Datorarkitektur hp path & Control maj 2 karl.marklund@it.uu.se
Superscalar Bra: Hårdvaran löser allt: Hårdvara detekterar poten6ell parallellism av instruk6oner Hårdvara försöker starta exekvering (issue) av så
1 Superscalar Bra: Hårdvaran löser allt: Hårdvara detekterar poten6ell parallellism av instruk6oner Hårdvara försöker starta exekvering (issue) av så många instruk6oner som möjligt parallellt Hårdvara
Tentamen i Digitala system - EDI610 15hp varav denna tentamen 4,5hp
Tentamen i Digitala system - EDI610 15hp varav denna tentamen 4,5hp Institutionen för elektro- och informationsteknik Campus Helsingborg, LTH 2016-12-22 8.00-13.00 Uppgifterna i tentamen ger totalt 60
Cacheminne i en Intel Core 2 Duo-processor
Peter Hesslow EDT621 Cacheminne i en Intel Core 2 Duo-processor Abstrakt Det finns många olika sätt att bygga upp ett datorminne på, och med en flerkärnig processor så blir alternativen ännu fler. Denna
System S. Datorarkitektur - en inledning. Organisation av datorsystem: olika abstraktionsnivåer. den mest abstrakta synen på systemet
Datorarkitektur - en inledning Organisation av datorsystem: olika abstraktionsnivåer System S den mest abstrakta synen på systemet A B C Ett högnivåperspektiv på systemet a1 b1 c1 a2 b3 b2 c2 c3 En mera
Foto: Rona Proudfoot (some rights reserved) Datorarkitektur 1. Datapath & Control. December
Datorarkitektur Datapath & Control December 28 karl.marklund@it.uu.se Foto: Rona Proudfoot (some rights reserved) Vi skall nu kolla närmare på hur det går till när en instruktion utförs. Fetch PC = PC+4
En något mer detaljerad bild av en processor. De tre delarna i processorn är: Nere 3ll vänster finns e' antal register som används för a' lagra data.
1 3 4 Antag a' processorn ska exekvera instruk3onen ADD R1, R3. När instruk3onen är exekverad så a' processorn tagit innehållet i R1 och R3 och med hjälp av ALU:n är värdena adderade och resultatet är
En något mer detaljerad bild av en processor. De tre delarna i processorn är: Nere 3ll vänster finns e' antal register som används för a' lagra data.
1 2 3 Antag a' processorn ska exekvera instruk3onen ADD R1, R3. När instruk3onen är exekverad så a' processorn tagit innehållet i R1 och R3 och med hjälp av ALU:n är värdena adderade och resultatet är
Digitala System: Datorteknik ERIK LARSSON
Digitala System: Datorteknik ERIK LARSSON Översikt Minnets komponenter Minneshierarkin Cacheminne Paging Virtuellt minne Minnets komponenter Enhet för indata Primärminne (CPU) Enhet för utdata Sekundärminne
DEC Alpha instruktions Arkitektur
DEC Alpha instruktions Arkitektur David Ekberg December 4, 2017 Innehållsförteckning 1 Sammanfattning...3 2 Bakgrund...3 3 Syfte...3 4 Pipeline...4 4.1 Datatyper...4 4.2 Instruktions arkitektur...5 5 Slutsats...6
Minnets komponenter. Digitala System: Datorteknik. Programexekvering. Programexekvering. Enhet för utdata. Enhet för indata CPU.
Digitala System: Datorteknik Minnets komponenter ERIK LARSSON Enhet för indata CPU Enhet för utdata Sekundärminne Programexekvering Program i högnivåspråk.. Z:=(Y+X)*3. Kompilator Exekverbart program i
Datorteknik. Tomas Nordström. Föreläsning 2. För utveckling av verksamhet, produkter och livskvalitet.
Datorteknik Tomas Nordström Föreläsning 2 För utveckling av verksamhet, produkter och livskvalitet. Föreläsning 2 Check av övningar Von Neumann arkitekturen Minne, CPU, I/O Instruktioner och instruktionscykeln
TSEA28 Datorteknik Y (och U)
TSEA28 Datorteknik Y (och U), föreläsning 16, Kent Palmkvist 2018-05-21 3 Dagens föreläsning TSEA28 Datorteknik Y (och U) Föreläsning 16 Kent Palmkvist, ISY Mer avancerade sätt att öka prestanda Applikationsspecifika
Tentamen den 17 mars 2016 Datorteknik, EIT070
Lunds Universitet LTH Tentamen den 17 mars 2016 Datorteknik, EIT070 Skrivtid: 14.00-19.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng För betyg 4 krävs 30 poäng
HF0010. Introduktionskurs i datateknik 1,5 hp
HF0010 Introduktionskurs i datateknik 1,5 hp Välkommna - till KTH, Haninge, Datateknik, kursen och till första steget mot att bli programmerare! Er lärare och kursansvarig: Nicklas Brandefelt, bfelt@kth.se
Aktivitetsschemaläggning för flerkärninga processorer
Lunds Tekniska Högskola Datorarkitekturer med Operativsystem EDT621 Aktivitetsschemaläggning för flerkärninga processorer Tobias Lilja 5 december 2016 Innehåll 1 Inledning 3 1.1 Syfte................................
Datorarkitektur I. Tentamen Lördag 10 April Ekonomikum, B:154, klockan 09:00 14:00. Följande gäller: Skrivningstid: Fråga
Datorarkitektur I Tentamen Lördag 10 April 2010 Ekonomikum, B:154, klockan 09:00 14:00 Examinator: Karl Marklund 0704 73 32 17 karl.marklund@it.uu.se Tillåtna hjälpmedel: Penna Radergummi Linjal Följande
Omtentamen i CDT204 - Datorarkitektur
Omtentamen i CDT204 - Datorarkitektur 2012-11-05 Skrivtid: 08.10-12.30 Hjälpmedel: Miniräknare och valfritt skriftligt (ej digitalt) material. Lärare: Stefan Bygde, kan nås på 070-619 52 83. Tentamen är
TSEA28 Datorteknik Y (och U)
TSEA28 Datorteknik Y (och U), föreläsning 16, Kent Palmkvist 2019-05-16 3 TSEA28 Datorteknik Y (och U) Föreläsning 16 Kent Palmkvist, ISY Praktiska kommentarer Lab 1-3 redovisningstillfälle Fredag 24/5
Cacheminne Intel Core i7
EDT621 Datorarkitekturer med operativsystem 7,5 hp 2015-12-07 Cacheminne i Intel Core i7 Författare: Adnan Karahmetovic Handledare: Erik Larsson Innehåll 1. Inledning... 1 1.1 Syfte... 1 1.2 Frågeställning...
Vad är en dator? Introduktion till datorer och nätverk. Pontus Haglund Institutionen för datavetenskap (IDA) 21 augusti 2018
. Vad är en dator? Introduktion till datorer och nätverk Pontus Haglund Institutionen för datavetenskap (IDA) 21 augusti 2018 Översikt 2/23 Datorns historia von Neumann-arkitekturen Operativsystem Datornät
Övning1 Datorteknik, HH vt12 - Talsystem, logik, minne, instruktioner, assembler
Övning1 Datorteknik, HH vt12 - Talsystem, logik, minne, instruktioner, assembler Talsystem Talsystem - binära tal F1.1) 2 n stycken tal från 0 till 2 n 1 F1.2) 9 bitar (512 kombinationer) Talsystem - 2-
Vad bör göras? Steg 1. RISC => pipelining. Parallellism. Pipelining. Nya LDA 13. RISC(reduced instruction set computer) Öka klockfrekvensen
Föreläsning 11 OR-datorn är för långsam! Alternativa arkitekturer kritik av OR-datorn RISC => pipelining LDA 13 (exempelvis) Hämta : 3CP 2 1 CP Absolut,1: 3 CP EXE: 4 CP Summa: 11 CP mem ADR XR SP DR TR
4. Pipelining. 4. Pipelining
4. Pipelining 4. Pipelining Det finns en pipelinad biltvätt i Linköping spoltvätttork spoltvätt tork spolning tvätt tork De tre momenten tar lika lång tid Alla bilar går igenom samma program Väntetid 1/3
LABORATION DATORTEKNIK D. Pipelining. Namn och personnummer. Version: (OS,OVA,AN)
LABORATION DATORTEKNIK D Pipelining Version: 1.4 2016 (OS,OVA,AN) Namn och personnummer Godkänd 1 blank sida 2 Innehåll 1 Inledning 5 1.1 Syfte................................. 5 1.2 Förberedelser............................
Datorteknik och datornät
Datorteknik och datornät [Computer Hardware, Architecture and Network] www.ida.liu.se/~hiic6 Zebo Peng Institutionen för datavetenskap (IDA) Linköpings universitet Objectives How does a computer work and
Effektivitetsmätning av multitrådning på ARM Cortex-A53 mikroarkitektur
Lunds universitet Effektivitetsmätning av multitrådning på ARM Cortex-A53 mikroarkitektur Johan Hermansson EITF60 Kursansvarig: Erik Larsson 4 december 2017 Sammanfattning I projektet utvecklades multitrådad
Anujan Balasingam IDA14 NAND flashminnen
Anujan Balasingam IDA14 NAND flashminnen Hur kan prestandan och kapaciteten förbättras? Kursansvarig: Erik Larsson Datorarkitektur med operativsystem 7,5 hp 04-12-2015 Innehållsförteckning 1. Inledning...
Tentamen PC-teknik 5 p
Tentamen PC-teknik 5 p Namn:. Klass:... Program: Di2, Em3, Et3 Datum: 03-08-15 Tid: 13:30-18:30 Lokal: E171 Hjälpmedel: Linjal, miniräknare, Instruktionsrepertoar för 8086 (utdelas), Lathund, Pacific C
SVAR TILL TENTAMEN I DATORSYSTEM, HT2013
Rahim Rahmani (rahim@dsv.su.se) Division of SAS Department of Computer and Systems Sciences Stockholm University SVAR TILL TENTAMEN I DATORSYSTEM, HT2013 Tentamensdatum: 2013-10-30 Tentamen består av totalt
Datorsystemteknik för E/D
Tentamen i kursen Datorsystemteknik (EDA330 för D och EDA370 för E) 19/8 2000 1(8) Tentamen i kursen Datorsystemteknik (EDA330 för D och EDA370 för E) Datorsystemteknik för E/D 19/8 2000 Tentamensdatum: