Linköpings universitet

Storlek: px
Starta visningen från sidan:

Download "Linköpings universitet"

Transkript

1 Översikt Kognitionsvetenskaplig introduktionskurs Föreläsning lgoritmer, Turingmaskiner, Programmering, rtificiell Intelligens mm lgoritmer Beräkningsbarhet Turingmaskiner Komplexitet atorer och program Symbolmaskin nnika Silvervarg Beskriva och orsaka beteende CiltLab/HCS/I (Programmeringsspråk) rtificiell Intelligens Intelligenta agenter Sökning som problemlösning Shakey ett exempel på planering En algoritm Beskriver en process Löser ett (en typ av) problem Implementeras vanligtvis i datorprogram Fungerar för en begränsad typ av indata En algoritm - onald Knuth Ett algoritmiskt problem består av en beskrivning av alla möjliga indata och önskad utdata för dessa Kan ses som en funktion: lgoritm(indata) = utdata Flödesdiagram En ändlig uppsättning regler som bestämmer en följd av operationer som löser en specifik typ av uppgift Kännetecken: Ändlighet Bestämdhet Indata Utdata Effektivitet The Friendship lgorithm Start Instruktion loop Instruktion J Villkor NEJ Instruktion Stop 7 Linköpings universitet 1

2 The Friendship lgorithm Multiplikation som addition 0 * 3 = 0 1 * 3 = 3 2 * 3 = * 3 = * 3 = En (rekursiv) algortim för multiplikation En (rekursiv) funktion för multiplikation In: Två positiva tal, a och b Ut: Produkten av talen, c lgoritm: Om a = 0 så är c = 0 Om a = 1 så är c = b I annat fall är c = b + produkten av (a 1) och b I python def multiply(a, b): if (a == 1): return b elif (a == 0): return 0 else: return b + multiply(a - 1, b) Beräkningsbarhet Turingmaskin 1936 beskrev lan Turing en enkel abstrakt maskin som kan beräkna alla rekursuva funktioner 1936 visade lonso Church att allt som kan beräknas kan beräknas med rekursiva funktioner Church-Turings tes: llt som kan beräknas kan beräknas av en Turingmaskin Ett oändligt långt band med celler (fungerar som minne, indata och utdata) I varje cell en symbol En cell kan läsas En cell kan ändra innehåll Ett tillstånd Instruktioner/program <Tillstånd, In, NyttTillstånd, Ut, Förflyttning> <S1, ä, S2, ae, 1R> Linköpings universitet 2

3 Turingmaskin Turingmaskin instruktion 5 elements current state current symbol new symbol move new state move right 1 1 1R # # # # # # # Turingmaskin - additionsprogram current current new move state symbol symbol new state Universella Turingmaskiner = En dator Skip first number 1 1 1R En turingmaskin som har instruktionerna för en turingmaskin på ett eller samma band som används för indata/utdata Kräver ca 20 instruktioner Change middle + 1 1R Reached end # # 1L B elete last B 1 # halt B B B # # # # # # # # Beräkningsbarhet lgoritmer Komplexitet lla algortimer terminerar inte et finns ingen algortim för att avgöra om en algoritm terminerar eller ej (The halting problem) lla algoritmer kan inte beräknas med rimliga resurser Minnes- och tidsåtgång ntal variabler, storlek på och antal datastrukturer etc ntal ( enkla ) operationer Programmeringsspråkberoende Ordo-notation Ett problem flera algoritmer Vilken algoritm som väljs beror på resursförbrukning Tid Minne Snabba algoritmer kräver ofta mer minne och minnessnåla algoritmer tar ofta längre tid Linköpings universitet 3

4 Effektivitetsklasser O(logN) logaritmisk O(N) linjär O(N logn) O(n 2 ) polynomisk O(2 n ) exponentiell (kombinatorisk explosion) N O(log N) O(N) O(N log N) O(N²) O(2N) N O(log N) O(N) O(N log N) O(N²) O(2N) 24 Effektivitetsklasser Vad är program och programmering Indata = n O(log n) O(n) O(n 2 ) O(2 n ) Overflow atorn är en symbolmaskin, en processor av symbolisk information atorn har gränssnitt till omgivningen Symboliska (tangentbord och datorskärm), eller Fysiska (sensorer och motorer) Indata (tangentbord, mus, mikrofon, pekplatta, scanner ), och Utdata (dataskärm, högtalare, skrivare ) Vad är program och programmering Ett program efinierar och representerar ett avsett beteende Orsakar beteendet e händelser som leder från representationen till beteendet är instrumentella, de är ej bestämda av programmet ndra effekter som orsakas av programmet men varken är representerade eller instrumentella kallas sidoeffekter Vad är program och programmering Programmering är att Utforma ett beteende Representera beteendet i ett lämpligt programmeringsspråk etta ställer krav på: Fullständighet Exakthet dvs att program måste vara tydliga och precisa, utan utrymme för tolkning eller oklarheter Linköpings universitet 4

5 Naturliga kontra Formella språk Programmeringsspråk (nivåer) Naturliga språk Växt fram Oändliga Flertydiga, vaga Föränderliga Svåra att fomalisera Formella språk Konstruerade för visst syfte Relativt små Precisa, explicita, entydiga Oföränderliga Kontrollerbara (Formaliserbara) Programmeringsspråk (nivåer) Programmeringsspråk (paradigm) Maskinspråk atorns språk Binärkod med 1 och 0 ssemblerspråk Mnemoniskt maskinspråk t ex MOV.#0FFH Högnivåspråk Programmerarens språk Ett formellt språk besläktat med naturligt språk Manipulativa/imperativa Kronologiskt ordnade kommandon T ex Fortran (54), Cobol (59), Basic (64), Pascal (71), C (72) Funktionella och relationella Utgår ifrån matematiska funktioner och relationer t ex LISP (58), ML (72), Prolog (72) Objektorienterade Objekt med egenskaper och beteenden t ex Simula (67), Smalltalk (76), C++ (83), Java (95) Programmering i kognitionsvetenskap Vad är I? studiet av kognition hos naturliga och artificiella system verktyg för undersökning av modeller I Kognitiv modellering Språkteknologi Verktyg för protoyper och systemutveckling Interaktionsprogrammering Webbprogrammering och databaser Verktyg för analys och empiriska undersökning Kognitionspsykologiska laborationer Språkvetenskaplig databehandling Empiriska undersökningar enkäter, statistik etc rtificial Intelligence is the art of making computers work the way they do in the movies rtificial Intelligence is the study of how to make computers do things at which, at the moment, people are better. (Elaine Rich) rtificial Intelligence is the study of mental faculties through the use of computational models. (Eugene Charniak & rew Mcermott) Understand and build intelligent entities (Russel & Norvig) 37 Linköpings universitet 5

6 Mål med I Stark vs Svag I System som kan: Tänka som en människa Tänka rationellt Stark I Maskiner kan tänka, dvs vara intelligenta Svag I Maskiner kan bete sig intelligent, dvs simulera intelligens Handla som en människa Handla rationellt Intelligenta agenter Intelligent agent Vad är en intelligent agent? ar för intelligenta agenter Typer av intelligenta agenter Enkel reflexstyrd Modellbaserad Målstyrd Nyttostyrd (Sjäv)lärande Rationell Handla så bra som möjligt Mäta agentens utförande Mappa från varseblivningssekvenser till handlingar Vad agenten vet om omgivningen Varseblivningshistoria Handlingar utonom gentens handlingar beror bara på agentens kunskap samt vad den varseblir Rationell agent Ex. ammsugaragent gent Percept genttyp Utförandemått Handlingar gentprogram ammsugaragent Städa rent och gå hem, effektivt Rum, damm, hinder Suga, framåt, vänster, höger, stäng av Väggsensor, dammsensor, hemmasensor Handlingar Linköpings universitet 6

7 ndra exempel på agenter genttyp Utförandemått Enkel reflexstyrd agent Medicinsk diagnos Frisk patient min. kostnad Satellit bildanalys Riktig kategorisering Plockrobot Interaktiv lärare ntal delar i rätt låda Maximal renhet, avkastning, säkerhet Maximera studentens poäng Patient, sjukhus, personal Bilder från satellit Rullband med delar, lådor Raffinaderi, operatörer Studenter Ställa frågor, Symptom, tester, diagnoser, patientsvar, behandlingar datainmatning Visa kategorisering Robotarm Ventiler, pumpar, displayer, värmare Visa övningar, föreslå, rätta Bildpunkter Kamera, robotsensorer Temperatur, tryck, kemiska sensorer Tangentbord Raffinaderikontroll Villkorshandlingsregler gent Hur världen ser ut nu Vad jag skall göra nu Enkel reflexstyrd agent Problem rules = { dirt : suck, bump : turn-left, } genten kan inte gå systematiskt Intelligent dammsugaragent Modellbaserad reflexstyrd agent Hur undviker vi att agenten blir stående i ett hörn eller vid ett hinder? Tillstånd För att kunna göra en sväng krävs en sekvens av handlingar därmed behövs ett minne (internt tillstånd) som beskriver vad agenten har gjort och eventuellt planerar att göra Hur världen utvecklas Vad mina handlingar medför Hur världen ser ut nu Villkors-handlingsregler Vad jag skall göra nu gent Linköpings universitet 7

8 Målstyrd dammsugaragent Målstyrd agent Målet är att suga upp all smuts och stänga av sig på hemmarutan Tillstånd Konsekvensen av hypotetiska handlingar (eller sekvenser) prövas Sökning och Planering Helt observerbar omgivning Hur världen utvecklas Vad mina handlingar medför Hur världen ser ut nu Hur den blir om jag gör Mål Vad jag skall göra nu gent Nyttobaserad agent Nyttobaserad agent Hur ska agenten välja om det finns flera handlingsekvenser som uppfyller målet? Utgå ifrån nyttan och värdera handlingsaleternativ nvändbart vid Målkonflikt, nyttofunktionen ger ett mått som bas för valet Osäkerhet av utfall, nyttofunktionen kan vägas mot sannolikheten för att målet nås Tillstånd Hur världen utvecklas Vad mina handlingar medför Nytta Hur världen ser ut nu Hur den blir om jag gör Hur glad jag blir i det tillståndet Vad jag skall göra nu gent Yttre standard Kritiserare Inlärningselement Återkoppling Utförandeelement Mål gent som lär sig Förändringar Kunskap Sökning som problemlösning Tillståndsrymd med: Initialtillstånd Operationer som beskriver effekten av en handling som en funktion av tillståndsförändringar Måltest Vägkostnad Sökstrategi som genererar en lösning på problemet Problemgenerator gent 62 Linköpings universitet 8

9 Exempel - Problemformulering Exempel Sökträd 3 missionärer och 3 kannibaler skall korsa en flod i en båt som rymmer 2 personer. et får aldrig finnas fler kannibaler än missionärer för då äter kannibalerna upp missionärerna Exempel på tillståndsformulering Starttillstånd (3, 3, 0, 0, 1) eller hellre (3, 3, 1) Måltillstånd (0, 0, 0) Vägkostnad = Sökstrategier Kunskapsrepresentation Blind sökning Utan kunskap om målet Heuristisk sökning Utnyttjar en gissning (heuristik) om hur långt från målet en nod är Sökning i spelförande program Minimax lfa-beta cutoff Mänsklig kunskap Representerad i en form som passar datorer Måste kunna representera Fakta Relationer mellan fakta Procedurell kunskap Satslogik Predikatlogik Enkel representation Varje symbol står för en sats som svarar mot ett tillstånd i världen Logiska konnektiv,, Inga variabler Exempel: Kogvetare är glada typer: KogvetareÄrGladaTyper et finns inte sura kogvetare: etfinnssurakogvetare Kraftfullare Beskriver objekt, egenskaper hos objekt samt relationer mellan objekt nvänder variabler Kvantifierare,, Ger mer kompakta representationer än satslogik Exempel Kogvetare är glada typer: x Kogvetare(x) Glad(x) Typ(x) et finns inte sura kogvetare: x (Kogvetare(x) Sur(x)) Linköpings universitet 9

10 Områden inom I Planering Shakey Sökning Planering Kunskapsrepresentation Maskininlärning Tillämpning: Språkteknologi Bildigenkänning Expersystem Spel atutvinning Linköpings universitet 10

Artificiell intelligens

Artificiell intelligens 2013-08-13 Introduktion Artificiell intelligens Vad är AI? Olika mål Intelligenta agenter Områden inom AI Arne Jönsson HCS/IA Vad är AI? Intelligens: Förmågan till tänkande och analys (Svenska ORboken)

Läs mer

729G43 Artificiell intelligens. Introduktion. Introduktion. Kursöversikt. Kursens organisation. Arne Jönsson HCS/IDA

729G43 Artificiell intelligens. Introduktion. Introduktion. Kursöversikt. Kursens organisation. Arne Jönsson HCS/IDA Introduktion 729G43 Artificiell intelligens Introduktion Kursöversikt Mål med AI Historia Intelligenta agenter Arne Jönsson HCS/IA Kursöversikt Intelligenta agenter 1 Fö, 2+3 Lab Problemlösning och sökning

Läs mer

729G43 Artificiell intelligens Introduktion. Arne Jönsson HCS/IDA

729G43 Artificiell intelligens Introduktion. Arne Jönsson HCS/IDA 729G43 Artificiell intelligens Introduktion Arne Jönsson HCS/IDA Introduktion Kursöversikt Mål med AI Historia Intelligenta agenter Kursöversikt Intelligenta agenter 1 Fö, 4 Lab Problemlösning och sökning

Läs mer

Imperativ programmering

Imperativ programmering Imperativ programmering 1DL126 3p Imperativ programmering Jesper Wilhelmsson ICQ: 20328079 Yahoo: amigajoppe MSN / epost: jesperw@it.uu.se Rum: 1335 Tel: 471 1046 Imperativ programmering Vilka programmeringsspråk

Läs mer

de var svåra att implementera och var väldigt ineffektiva.

de var svåra att implementera och var väldigt ineffektiva. OBS! För flervalsfrågorna gäller att flera alternativ eller inget alternativ kan vara korrekt. På flervalsfrågorna kan man bara ha rätt eller fel, dvs frågan måste vara helt korrekt besvarad. Totalt kan

Läs mer

Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.

Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står skrivna: Oändligt

Läs mer

Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.

Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Föreläsning 9: Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står

Läs mer

Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1

Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1 Algoritmer Lars Larsson VT 2007 Lars Larsson Algoritmer 1 1 2 3 4 5 Lars Larsson Algoritmer 2 Ni som går denna kurs är framtidens projektledare inom mjukvaruutveckling. Som ledare måste ni göra svåra beslut

Läs mer

Program & programmering

Program & programmering Program & programmering Vad är program? Satser och instruktioner, toggla igenom exempel Program på olika nivåer, för olika maskiner, för olika saker Tolka program; kompilator, intepretator, binärbytekod,

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Algoritmanalys Tidskomplexitet, Rumskomplexitet

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Datastrukturer och algoritmer Föreläsning 5 Algoritmer & Analys av Algoritmer Algoritmer Vad är det? Innehåll Mer formellt om algoritmer beräkningsbarhet Att beskriva algoritmer Analysera algoritmer Exekveringstid,

Läs mer

Linköpings universitet

Linköpings universitet 2016-08-24 Vad är kognition? tt ta in, lagra och bearbeta information: Kognitionsvetenskaplig introduktionskurs Perception Information tas in och flödar genom begränsade informationskanaler Föreläsning

Läs mer

Översikt. Stegvis förfining. Stegvis förfining. Dekomposition. Algoritmer. Metod för att skapa ett program från ett analyserat problem

Översikt. Stegvis förfining. Stegvis förfining. Dekomposition. Algoritmer. Metod för att skapa ett program från ett analyserat problem Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS-regeln Procedurell dekomposition DRY-regeln Algoritmer Sortering och sökning Stegvis förfining Metod för att skapa ett program från

Läs mer

Vad behövs för att skapa en tillståndsrymd?

Vad behövs för att skapa en tillståndsrymd? OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

IT OCH PROGRAMMERING I SKOLAN. Jan Erik Moström Peter Vinnervik

IT OCH PROGRAMMERING I SKOLAN. Jan Erik Moström Peter Vinnervik IT OCH PROGRAMMERING I SKOLAN Jan Erik Moström Peter Vinnervik VILKA ÄR VI OCH VAD KOMMER VI ATT PRATA OM? Jan Erik Moström - undervisar på institutionen för datavetenskap Peter Vinnervik - doktorand vid

Läs mer

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg Introduktion till programmering D0009E Föreläsning 1: Programmets väg 1 Vad är en dator? En maskin vars beteende styrs av de innehållet (bitmönster) som finns lagrade i datorns minne (inte helt olikt förra

Läs mer

Kognitionsvetenskap Kandidatprogrammet

Kognitionsvetenskap Kandidatprogrammet Kognitionsvetenskap Kandidatprogrammet Mattias Arvola Programansvarig 1 2 3 4 5 6 HUR TÄNKER FOLK EGENTLIGEN? 7 HUR TÄNKER FOLK EGENTLIGEN? VAD ÄR EN TANKE? HUR ÄR SPRÅK UPPBYGGT? VAD BETYDER BILDER? VAD

Läs mer

Viktiga begrepp. Algoritm. Array. Binärkod. Blockprogrammering. Bugg / fel och felsökning. Dataspel. Dator

Viktiga begrepp. Algoritm. Array. Binärkod. Blockprogrammering. Bugg / fel och felsökning. Dataspel. Dator Viktiga begrepp Den här ordlistan är till för dig som går kursen Om Programmering. Eftersom detta är en grundläggande kurs har vi i vissa fall gjort en del förenklingar. En del begrepp är svåra att förenkla,

Läs mer

Introduktion till Datalogi DD1339. Föreläsning 1 8 sept 2014

Introduktion till Datalogi DD1339. Föreläsning 1 8 sept 2014 Introduktion till Datalogi DD1339 Föreläsning 1 8 sept 2014 Kontaktuppgifter & Info: Kurskod: DD1339, 19hp Kursomgång: inda14 Kursansvarig: Christian Smith, ccs@kth.se Michael Minock, minock@kth.se Dilian

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Innehåll Föreläsning 5 Algoritmer Experimentell komplexitetsanalys Kapitel 2.1-2.2, Kapitel 12.1-12.4 Algoritmer Algoritm Definition: Algoritm är en noggrann plan, en metod för att stegvis utföra något

Läs mer

Asymptotisk komplexitetsanalys

Asymptotisk komplexitetsanalys 1 Asymptotisk komplexitetsanalys 2 Lars Larsson 3 4 VT 2007 5 Lars Larsson Asymptotisk komplexitetsanalys 1 Lars Larsson Asymptotisk komplexitetsanalys 2 et med denna föreläsning är att studenterna skall:

Läs mer

729G75: Programmering och algoritmiskt tänkande. Tema 1, föreläsning 1 Jody Foo

729G75: Programmering och algoritmiskt tänkande. Tema 1, föreläsning 1 Jody Foo 729G75: Programmering och algoritmiskt tänkande Tema 1, föreläsning 1 Jody Foo Föreläsningsöversikt Kursinfo / Om kursen Algoritmer Objektorienterad programmering i praktiken terminologi använda objekt

Läs mer

Genicore AB. Modellbaserad ansats. En liten firma i Göteborg som gör stora datasystem. Systemspråk - När modellen är systemet. torsdag 10 maj 2012

Genicore AB. Modellbaserad ansats. En liten firma i Göteborg som gör stora datasystem. Systemspråk - När modellen är systemet. torsdag 10 maj 2012 Genicore AB En liten firma i Göteborg som gör stora datasystem Modellbaserad ansats Systemspråk - När modellen är systemet 1 Core Modellbaserad ansats i 3 delar Metodik Språk System Datateknik 3:e generationen

Läs mer

Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6

Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6 Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6? DAGENS AGENDA Komplexitet Ordobegreppet Komplexitetsklasser Loopar Datastrukturer Några nyttiga regler OBS! Idag jobbar

Läs mer

Imperativ programmering. Föreläsning 2

Imperativ programmering. Föreläsning 2 Imperativ programmering 1DL126 3p Föreläsning 2 Imperativ programmering Kännetecken för imperativa språk: Programmet består av en serie instruktioner. Olika språk har olika uppsättningar av instruktioner.

Läs mer

Objektorienterad modellering och diskreta strukturer. 13. Problem. Sven Gestegård Robertz. Datavetenskap, LTH

Objektorienterad modellering och diskreta strukturer. 13. Problem. Sven Gestegård Robertz. Datavetenskap, LTH Objektorienterad modellering och diskreta strukturer 13. Problem Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik och härledning predikatlogik och substitution mängder

Läs mer

729G74 IT och programmering, grundkurs. Tema 1, Föreläsning 2 Jody Foo,

729G74 IT och programmering, grundkurs. Tema 1, Föreläsning 2 Jody Foo, 729G74 IT och programmering, grundkurs Tema 1, Föreläsning 2 Jody Foo, jody.foo@liu.se Föreläsningsöversikt Kommande moment Vad är ett program? Vad händer när man kör ett program? Programmeringsspråk Python

Läs mer

Föreläsning 1. Introduktion. Vad är en algoritm?

Föreläsning 1. Introduktion. Vad är en algoritm? Några exempel på algoritmer. Föreläsning 1. Introduktion Vad är en algoritm? 1. Häll 1 dl havregryn och ett kryddmått salt i 2 1 2 dl kallt vatten. Koka upp och kocka gröten ca 3minuter. Rör om då och

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. 1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer

Läs mer

Kunskapsrepresentation

Kunskapsrepresentation Kunskapsrepresentation Hur representeras information? Representationer som bevarar strukturen perceptionsbaserad kunskapsrepresentation Representationer som bevarar innebörden meningsbaserad kunskapsrepresentation

Läs mer

Algoritmanalys. Inledning. Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016

Algoritmanalys. Inledning. Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016 Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016 Algoritmanalys Inledning Exempel 1: x n När vi talade om rekursion presenterade vi två olika sätt att beräkna x n, ett iterativt: x n =

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 10 Anton Grensjö grensjo@csc.kth.se 9 november 2017 1 Idag En konstruktionsreduktion Fler bevis av NP-fullständighet 2 Teori Repetition Ett problem tillhör

Läs mer

Kognitionsvetenskapligt kandidatprogram

Kognitionsvetenskapligt kandidatprogram Utbildningsplan för Kognitionsvetenskapligt kandidatprogram Bachelor Programme in Cognitive Science 180 Högskolepoäng Kognitionsvetenskap är ett tvärvetenskapligt kunskaps- och forskningsområde som studerar

Läs mer

Asymptotisk analys innebär att... man försöker uppskatta vad som händer för stora indatamängder.

Asymptotisk analys innebär att... man försöker uppskatta vad som händer för stora indatamängder. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

729G75: Programmering och algoritmiskt tänkande. Tema 1. Föreläsning 1 Jody Foo

729G75: Programmering och algoritmiskt tänkande. Tema 1. Föreläsning 1 Jody Foo 729G75: Programmering och algoritmiskt tänkande Tema 1. Föreläsning 1 Jody Foo Föreläsningsöversikt Kursinfo / Om kursen Algoritmer Objektorienterad programmering i praktiken terminologi använda objekt

Läs mer

CS - Computer science. Datateknik Informationsbehandling Datalogi Datavetenskap (ÅA 2008)

CS - Computer science. Datateknik Informationsbehandling Datalogi Datavetenskap (ÅA 2008) CS - Computer science Datateknik Informationsbehandling Datalogi Datavetenskap (ÅA 2008) Vad datateknik INTE är: Att studera datorer Att studera hur man skriver datorprogram Att studera hur man använder

Läs mer

Kognitionsvetenskapligt kandidatprogram Bachelor Programme in Cognitive Science 180 Högskolepoäng

Kognitionsvetenskapligt kandidatprogram Bachelor Programme in Cognitive Science 180 Högskolepoäng Utbildningsplan för Kognitionsvetenskapligt kandidatprogram Bachelor Programme in Cognitive Science 180 Högskolepoäng Kognitionsvetenskap är ett tvärvetenskapligt kunskaps- och forskningsområde som studerar

Läs mer

Fråga 5 (1 poäng) För att definiera ett sökproblem krävs...

Fråga 5 (1 poäng) För att definiera ett sökproblem krävs... OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

729G74 IT och programmering, grundkurs. Tema 1, Föreläsning 2 Jody Foo,

729G74 IT och programmering, grundkurs. Tema 1, Föreläsning 2 Jody Foo, 729G74 IT och programmering, grundkurs Tema 1, Föreläsning 2 Jody Foo, jody.foo@liu.se Föreläsningsöversikt Kurslogistik Begreppspresentationer Uppgifter i diskret matematik Uppgifter i Python Tema 1:

Läs mer

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten. OS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

729G74 IT och programmering, grundkurs. Tema 1, Föreläsning 3 Jody Foo,

729G74 IT och programmering, grundkurs. Tema 1, Föreläsning 3 Jody Foo, 729G74 IT och programmering, grundkurs Tema 1, Föreläsning 3 Jody Foo, jody.foo@liu.se Föreläsningsöversikt Kurslogistik Diskret matematik & Uppgifter i Python Kompletteringar Tema 1: Olika perspektiv

Läs mer

Asymptotisk analys innebär att... man försöker uppskatta vad som händer för stora indatamängder.

Asymptotisk analys innebär att... man försöker uppskatta vad som händer för stora indatamängder. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna kan man bara ha rätt eller fel, dvs frågan måste vara helt korrekt besvarad för att man skall

Läs mer

PROGRAMMERINGSMETODIK

PROGRAMMERINGSMETODIK PROGRAMMERINGSMETODIK 1 Metaforer för programmering Hierarki, modularitet, överblick Programbyggnadskunskap Utvecklingsprocessen Kategorier av programspråk Programmering som allmän konst Metaforer för

Läs mer

Sökning och sortering

Sökning och sortering Sökning och sortering Programmering för språkteknologer 2 Sara Stymne 2013-09-16 Idag Sökning Analys av algoritmer komplexitet Sortering Vad är sökning? Sökning innebär att hitta ett värde i en samling

Läs mer

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Antag att följande träd genereras i ett spelförande program om vi applicerar evalueringsfunktionen

Antag att följande träd genereras i ett spelförande program om vi applicerar evalueringsfunktionen 1. Komplexiteten hos en agent beror mycket på vilken omgivning den skall verka i. Vad innebär det att en omgivning är stokastisk, episodisk och dynamisk? Ge exempel på en omgivning som är stokastisk, episodisk

Läs mer

el o;; Utbildningsplan för Kognitionsvetenskapligt kandidatprogram Bachefor Programmein Cognitive Science 180 Högskolepoäng

el o;; Utbildningsplan för Kognitionsvetenskapligt kandidatprogram Bachefor Programmein Cognitive Science 180 Högskolepoäng el o;; Utbildningsplan för Kognitionsvetenskapligt kandidatprogram Bachefor Programmein Cognitive Science 180 Högskolepoäng Kognitionsvetenskap är ett tvärvetenskapligt kunskaps- och forskningsområde som

Läs mer

Dataabstraktion. TDDD73 Funktionell och impterativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap

Dataabstraktion. TDDD73 Funktionell och impterativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap Dataabstraktion TDDD73 Funktionell och impterativ programmering i Python Föreläsning 12 Peter Dalenius Institutionen för datavetenskap 2013-11-12 Översikt Vad är abstraktion? Vad är en abstrakt datatyp?

Läs mer

TDDI16 Datastrukturer och algoritmer. Algoritmanalys

TDDI16 Datastrukturer och algoritmer. Algoritmanalys TDDI16 Datastrukturer och algoritmer Algoritmanalys 2017-08-28 2 Översikt Skäl för att analysera algoritmer Olika fall att tänka på Medelfall Bästa Värsta Metoder för analys 2017-08-28 3 Skäl till att

Läs mer

Grundkurs i programmering - intro

Grundkurs i programmering - intro Grundkurs i programmering - intro Linda Mannila 4.9.2007 Dagens föreläsning Allmän kursinformation: mål, syfte, upplägg, examination, litteratur, etc. Hur arbetar en dator? Hur vi får datorn att förstå

Läs mer

DATORER OCH PROGRAM. Datorn är en symbolmaskin

DATORER OCH PROGRAM. Datorn är en symbolmaskin DATORER OCH PROGRAM Datorn är en symbolmaskin men kan ha såväl symboliska som fysiska gränssnitt till omvärlden Program beteendeplan och beteendegenerator Programmerade maskiner Generalitet och portabilitet

Läs mer

Linköpings universitet

Linköpings universitet 2014-09-08 Översikt Kognitionsvetenskaplig introduktionskurs Föreläsning 5 Integrationsutmaningen Vad är kognitionsvetenskap? Kort bakgrund/historik Representation och bearbetning av information Vetenskapliga

Läs mer

DATORER OCH PROGRAM. Programmerade maskiner Program beteendeplan och beteendegenerator Generalitet och portabilitet Datorn är en symbolmaskin

DATORER OCH PROGRAM. Programmerade maskiner Program beteendeplan och beteendegenerator Generalitet och portabilitet Datorn är en symbolmaskin DATORER OCH PROGRAM Programmerade maskiner Program beteendeplan och beteendegenerator Generalitet och portabilitet Datorn är en symbolmaskin men kan ha såväl symboliska som fysiska gränssnitt till omvärlden

Läs mer

Varför är logik viktig för datavetare?

Varför är logik viktig för datavetare? Varför är logik viktig för datavetare? 1. Datavetenskap handlar ofta om att automatisera processer som tidigare styrts av människor. Intuition, intelligens och mänskliga resonemang ersätts av beräkningar.

Läs mer

Funktionell programmering

Funktionell programmering Funktionell programmering TDDD73 Funktionell och imperativ programmering i Python Föreläsning 8 Peter Dalenius Institutionen för datavetenskap 2013-10-09 Översikt Vad är ett programmeringsparadigm? Vad

Läs mer

Föreläsning 5 Innehåll

Föreläsning 5 Innehåll Föreläsning 5 Innehåll Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Datavetenskap (LTH) Föreläsning 5 VT 2019 1 / 39 Val av algoritm och datastruktur

Läs mer

Problemlösning. Planering av program. Konstruktion. Programmeringsmetaforer. Problemlösning. Programmering = Problemlösning

Problemlösning. Planering av program. Konstruktion. Programmeringsmetaforer. Problemlösning. Programmering = Problemlösning Problemlösning Problemlösning Vad är problemlösning Hur ser ett problem ut? Programmering = Problemlösning Omformulering av ett problem kan i slutändan omsättas i ett program. Ett program består av en,

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 12 Anton Grensjö grensjo@csc.kth.se 10 december 2015 Anton Grensjö ADK Övning 12 10 december 2015 1 / 19 Idag Idag Komplexitetsklasser Blandade uppgifter

Läs mer

TDP002 Imperativ programmering

TDP002 Imperativ programmering TDP002 Imperativ programmering Introduktion till kursen och python Eric Elfving Institutionen för datavetenskap (IDA) Översikt Programmering En introduktion Python Köra och skriva program Python grunderna

Läs mer

TDP002 - Imperativ programmering

TDP002 - Imperativ programmering TDP002 - Imperativ programmering Introduktion till kursen och Python Eric Elfving Institutionen för datavetenskap 1 Programmering - en översikt 2 Python Inbyggda typer Satser och uttryck 1 Programmering

Läs mer

Bakgrund. Bakgrund. Bakgrund. Håkan Jonsson Institutionen för systemteknik Luleå tekniska universitet Luleå, Sverige

Bakgrund. Bakgrund. Bakgrund. Håkan Jonsson Institutionen för systemteknik Luleå tekniska universitet Luleå, Sverige Är varje påstående som kan formuleras matematiskt*) alltid antingen sant eller falskt? *) Inom Institutionen för systemteknik Luleå tekniska universitet Luleå, Sverige Exempel: 12 = 13 nej, falskt n! >

Läs mer

Språkteknologi (SV2122) Föreläsning 3: Programmering i Python

Språkteknologi (SV2122) Föreläsning 3: Programmering i Python Språkteknologi (SV2122) Föreläsning 3: Programmering i Python Richard Johansson richard.johansson@svenska.gu.se 29 januari 2014 översikt inledning första stegen grundläggande begrepp större byggstenar

Läs mer

Föreläsning 13. Träd

Föreläsning 13. Träd Föreläsning 13 Träd Träd Ett träd är en datastruktur som tillåter oss att modellera sådant som vi inte kan modellera med linjära datastrukturer. Ett datavetenskapligt träd består av noder med pilar emellan.

Läs mer

Imperativ programmering. Föreläsning 4

Imperativ programmering. Föreläsning 4 Imperativ programmering 1DL126 3p Föreläsning 4 Imperativa paradigmer Ostrukturerad programmering Strukturerad programmering Procedurell programmering Objektorienterad programmering Klassbaserad programmering

Läs mer

Turingmaskinen - en abstrakt datormodell

Turingmaskinen - en abstrakt datormodell Turingmaskinen - en abstrakt datormodell Modeller är viktiga hjälpmedel vid studiet av många fenomen. En bra modell fyller oftast följande krav: Den fångar upp det centrala i sin fysiska motsvarighet Den

Läs mer

PROGRAMMERINGSMETODIK

PROGRAMMERINGSMETODIK PROGRAMMERINGSMETODIK 1 Metaforer för programmering Hierarki, modularitet, överblick Programbyggnadskunskap Utvecklingsprocessen Kategorier av programspråk Programmering som allmän konst Metaforer för

Läs mer

TDP002 - Imperativ programmering

TDP002 - Imperativ programmering . TDP002 - Imperativ programmering Introduktion till kursen och Python Eric Elfving Institutionen för datavetenskap 14 augusti 2015 Översikt 2/29 Programmering - en översikt Python - Köra och skriva program

Läs mer

COMPUTABILITY BERÄKNINGSBARHET. Källa: Goldschlager, Lister: Computer Science A Modern Introduction 2. upplaga 1988, Prentice Hall

COMPUTABILITY BERÄKNINGSBARHET. Källa: Goldschlager, Lister: Computer Science A Modern Introduction 2. upplaga 1988, Prentice Hall COMPUTABILITY BERÄKNINGSBARHET Källa: Goldschlager, Lister: Computer Science A Modern Introduction 2. upplaga 1988, Prentice Hall Den centrala frågan: givet ett problem, kan det ha en algoritmisk lösning?

Läs mer

729G06 Föreläsning 1 Objektorienterad programmering

729G06 Föreläsning 1 Objektorienterad programmering Översikt Formalia Vad är objektorienterad programmering 729G06 Föreläsning 1 Objektorienterad programmering Definieria klasser Skapa och använda objekt Annika Silvervarg Ciltab, IDA, Linköpings universitet

Läs mer

Inledning. Vad är ett datorprogram, egentligen? Olika språk. Problemlösning och algoritmer. 1DV433 Strukturerad programmering med C Mats Loock

Inledning. Vad är ett datorprogram, egentligen? Olika språk. Problemlösning och algoritmer. 1DV433 Strukturerad programmering med C Mats Loock Inledning Vad är ett datorprogram, egentligen? Olika språk Problemlösning och algoritmer 1 (14) Varför använda en dator? Genom att variera de program som styr datorn kan den användas för olika uppgifter.

Läs mer

Grundläggande programmering med matematikdidaktisk inriktning för lärare som undervisar i gy eller komvux gy nivå, 7,5 hp

Grundläggande programmering med matematikdidaktisk inriktning för lärare som undervisar i gy eller komvux gy nivå, 7,5 hp Grundläggande programmering med matematikdidaktisk inriktning för lärare som undervisar i gy eller komvux gy nivå, 7,5 hp Dag Wedelin, bitr professor, och K V S Prasad, docent Institutionen för data- och

Läs mer

Föreläsning 8: Aritmetik och stora heltal

Föreläsning 8: Aritmetik och stora heltal 2D1458, Problemlösning och programmering under press Föreläsning 8: Aritmetik och stora heltal Datum: 2006-11-06 Skribent(er): Elias Freider och Ulf Lundström Föreläsare: Per Austrin Den här föreläsningen

Läs mer

Introduktion till formella metoder Programmeringsmetodik 1. Inledning

Introduktion till formella metoder Programmeringsmetodik 1. Inledning Introduktion till formella metoder Programmeringsmetodik 1. Inledning Fokus på imperativa program (ex. C, Java) program betyder härefter ett imperativt program Program bestäms i en abstrakt mening av hur

Läs mer

Fråga 5 (1 poäng) För att definiera ett sökproblem krävs...

Fråga 5 (1 poäng) För att definiera ett sökproblem krävs... OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

TDIU01 (725G67) - Programmering i C++, grundkurs

TDIU01 (725G67) - Programmering i C++, grundkurs TDIU01 (725G67) - Programmering i C++, grundkurs Introduktion till kursen och programmering Eric Elfving Institutionen för datavetenskap 2 september 2014 Översikt Kursinformation Personal Kursmål Upplägg

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre

Läs mer

Sätt att skriva ut binärträd

Sätt att skriva ut binärträd Tilpro Övning 3 På programmet idag: Genomgång av Hemtalet samt rättning Begreppet Stabil sortering Hur man kodar olika sorteringsvilkor Inkapsling av data Länkade listor Användning av stackar och köer

Läs mer

Tentamen: Programutveckling ht 2015

Tentamen: Programutveckling ht 2015 Tentamen: Programutveckling ht 2015 Datum: 2015-11-04 Tid: 09:00-13:00 Sal: Ansvarig: Resultat: Hjälpmedel: Maxpoäng: Betygsgränser: Anslås inom 3 veckor. Inga 40 p 20 p för G, 32 p för VG. Iakttag följande:

Läs mer

PROGRAMMERING ÅK 9 INTRODUKTION

PROGRAMMERING ÅK 9 INTRODUKTION PROGRAMMERING ÅK 9 INTRODUKTION VARFÖR PROGRAMMERING? Med programmering kan man: Skapa nästan vad som helst som är digitalt. Allt som är digitalt är uppbyggt av kod som människor har skrivit, finns i både

Läs mer

Artificial Intelligence

Artificial Intelligence Omtentamen Artificial Intelligence Datum: 2014-08-27 Tid: 09.00 13.00 Ansvarig: Resultat: Hjälpmedel: Gränser: Anders Gidenstam Redovisas inom tre veckor Inga G 8p, VG 12p, Max 16p Notera: Skriv läsbart!

Läs mer

Objektorienterad programmering

Objektorienterad programmering Objektorienterad programmering Aletta Nylén http://user.it.uu.se/~aletta Epost: aletta.nylen@it.uu.se Rum: 1216 Kursinfo Lärare: Aletta Nylén Jesper Wilhelmsson Litteratur: Object-Oriented Software Development

Läs mer

Föreläsning 2 Datastrukturer (DAT037)

Föreläsning 2 Datastrukturer (DAT037) Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet

Läs mer

Mjukvarudesign. Designprocessen. Teknisk design. Konceptuell design

Mjukvarudesign. Designprocessen. Teknisk design. Konceptuell design RE SD PD I UT IT ST AT Mjukvarudesign System Requirement Specification Inkrementell och iterativ! Konceptuell design (VAD) Systemdesign (OOA) Arkitekturell (grovkornig, UML) Teknisk design (HUR) Programdesign

Läs mer

PROBLEMLÖSNING. ! GPS! Mål medel analys! Problemlösning i programmering. Lars-Erik Janlert 2007

PROBLEMLÖSNING. ! GPS! Mål medel analys! Problemlösning i programmering. Lars-Erik Janlert 2007 PROBLEMLÖSNING! Problem & lösning! Sökträd, sökgraf! Automatisk problemlösning! Heuristik! Heuristisk sökning! GPS! Mål medel analys! Problemlösning i programmering 1 Problem (snäv mening)! Ett problem

Läs mer

Föreläsning 9 Datastrukturer (DAT037)

Föreläsning 9 Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT07) Fredrik Lindblad 27 november 207 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/20/course/dat07 Innehåll 2

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som

Läs mer

Datalogi I, grundkurs med Java 10p, 2D4112, Fiktiv tentamen, svar och lösningar och extra kommentarer till vissa uppgifter 1a) Dividera förs

Datalogi I, grundkurs med Java 10p, 2D4112, Fiktiv tentamen, svar och lösningar och extra kommentarer till vissa uppgifter 1a) Dividera förs Datalogi I, grundkurs med Java 10p, 2D4112, 2002-2003 Fiktiv tentamen, svar och lösningar och extra kommentarer till vissa uppgifter 1a) Dividera först talet 37 med 2. Använd heltalsdivision. Det ger kvoten

Läs mer

PROGRAMMERING. Ämnets syfte. Kurser i ämnet

PROGRAMMERING. Ämnets syfte. Kurser i ämnet PROGRAMMERING Ämnet programmering behandlar programmeringens roll i informationstekniska sammanhang som datorsimulering, animerad grafik, praktisk datoriserad problemlösning och användaranpassad konfiguration

Läs mer

Dataabstraktion. TDDD73 Funktionell och imperativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap

Dataabstraktion. TDDD73 Funktionell och imperativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap Dataabstraktion TDDD73 Funktionell och imperativ programmering i Python Föreläsning 12 Peter Dalenius Institutionen för datavetenskap 2014-11-19 Översikt Vad är abstraktion? Vad är en abstrakt datatyp?

Läs mer

Algoritmer och effektivitet. Föreläsning 5 Innehåll. Analys av algoritmer. Analys av algoritmer Tidskomplexitet. Algoritmer och effektivitet

Algoritmer och effektivitet. Föreläsning 5 Innehåll. Analys av algoritmer. Analys av algoritmer Tidskomplexitet. Algoritmer och effektivitet Föreläsning 5 Innehåll Algoritmer och effektivitet Algoritmer och effektivitet Att bedöma, mäta och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Undervisningsmoment: föreläsning 5, övningsuppgifter

Läs mer

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten. OS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Problemlösning och algoritmer

Problemlösning och algoritmer Problemlösning och algoritmer Human Centered Systems Inst. för datavetenskap Linköpings universitet Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS regeln Procedurell dekomposition

Läs mer

Inledande programmering med C# (1DV402) Introduktion till programmering

Inledande programmering med C# (1DV402) Introduktion till programmering Introduktion till programmering Upphovsrätt för detta verk Detta verk är framtaget i anslutning till kursen Inledande programmering med C# vid Linnéuniversitetet. Du får använda detta verk så här: Allt

Läs mer

Programmering för språkteknologer II, HT2014. Rum

Programmering för språkteknologer II, HT2014. Rum Programmering för språkteknologer II, HT2014 Avancerad programmering för språkteknologer, HT2014 evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Idag - Sökalgoritmer

Läs mer

Kandidatprogrammet i kognitionsvetenskap

Kandidatprogrammet i kognitionsvetenskap DNR LIU-2013-00294 1(9) Kandidatprogrammet i kognitionsvetenskap 180 hp Bachelor s Programme in Cognitive Science F7KK Gäller från: 2016 HT Fastställd av Fakultetsstyrelsen för filosofiska fakulteten Fastställandedatum

Läs mer

TDDC74 Programmering, abstraktion och modellering. Tentamen

TDDC74 Programmering, abstraktion och modellering. Tentamen AID-nummer: Datum: 2011-06-10 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Fredag 10 juni

Läs mer

Probabilistisk logik 1

Probabilistisk logik 1 729G43 Artificiell intelligens / 2016 Probabilistisk logik 1 Marco Kuhlmann Institutionen för datavetenskap Osäkerhet 1.01 Osäkerhet Agenter måste kunna hantera osäkerhet. Agentens miljö är ofta endast

Läs mer

6. Ge korta beskrivningar av följande begrepp a) texteditor b) kompilator c) länkare d) interpretator e) korskompilator f) formatterare ( pretty-print

6. Ge korta beskrivningar av följande begrepp a) texteditor b) kompilator c) länkare d) interpretator e) korskompilator f) formatterare ( pretty-print Datalogi I, grundkurs med Java 10p, 2D4112, 2002-2003 Exempel på tentafrågor på boken Lunell: Datalogi-begreppen och tekniken Obs! Andra frågor än dessa kan komma på tentan! 1. Konvertera talet 186 till

Läs mer