Marco Kuhlmann, Institutionen för datavetenskap, Linköpings universitet 17 mars 2014
|
|
- Mikael Forsberg
- för 8 år sedan
- Visningar:
Transkript
1 Tentamen Marco Kuhlmann, Institutionen för datavetenskap, Linköpings universitet 17 mars 2014 Inga hjälpmedel är tillåtna. Maximal poäng finns angiven för varje fråga. Maximal poäng på hela tentamen är 32; 16 poäng ger säkert godkänt. Det går bra att besvara flera frågor på samma papper. Del A Besvara alla frågor i denna del. Varje fråga ger 2 poäng. 1. Vid språkteknologiskt korpusarbete tokeniserar man helst texter så att skiljetecken som komma och punkt utgör egna token. (a) Varför gör man det? (b) Varför resonerar man annorlunda när det gäller förkortningspunkter? (a) För att få bättre underlag till t.ex. frekvenslistor. Om man inte avskiljer skiljetecken från orden så kommer t.ex. hon och hon. att betraktas tillhöra olika ordtyper. (b) Om man tokeniserar så att skiljetecken i förkortningar utgör egna token så bryts t.ex. bl.a. ner till bl.a. bl och a, token som inte är önskvärda ingångar i en frekvenslista. 2. I en svensk korpus finner vi följande frekvenser för några utvalda ord och ordsekvenser: med: ; tanke: 400; på: ; med tanke: 260; tanke på: 270; med tanke på: 250 Vad är den Maximum Likelihood-uppskattade sannolikheten 𝑃(på med tanke) om vi använder (a) trigramsannolikheter, (b) en omskrivning till bigramsannolikheter? (a) trigramsannolikheter: 𝑃(på med tanke) frekvens(med tanke på) 250 = frekvens(med tanke) 260 (b) omskrivning till bigramsannolikheter: 𝑃(tanke med) 𝑃(på tanke) frekvens(med tanke) frekvens(tanke på) = frekvens(med) frekvens(tanke)
2 3. (a) Vilka typer av sannolikheter ingår i en Hidden Markov-modell för ordklasstaggning? (b) Vilka konkreta sannolikheter måste man ha skattat för att i en sådan modell kunna räkna ut den kombinerade sannolikheten för följande taggade mening? Jag/PN äter/vb (a) Övergångssannolikheter på formen 𝑃(tagg föregående tagg) och observationssannolikheter på formen 𝑃(ord tagg). (b) 𝑃(PN -BOS-), 𝑃(Jag PN), 𝑃(VB PN), 𝑃(äter VB), 𝑃(-EOS- VB) 4. Nedanstående tabell visar reglerna i en probabilistisk kontextfri grammatik. Rita två olika frasstrukturträd (parseträd) enligt denna grammatik och ange deras sannolikheter. S VP Lotta cykeln VP V V lånar 1,00 0,25 0,75 1,00 1,00 Två olika frasstrukturträd: S S Lotta VP V Lotta lånar cykeln VP V lånar Lotta Det första trädet har sannolikhet 0,25 0,75; det andra trädet har sannolikhet 0,25 0,25. 2
3 5. Nedanstående graf visar en liten del av WordNet. (a) Förklara vad noderna och bågarna representerar. (b) Bestäm avståndet (eng. pathlength) mellan nickel och budget och utifrån detta avstånd räkna ut den semantiska likheten mellan de två orden. standard, criterion, measure, touchstone medium of exchange, monetary system currency money coinage, mintage, specie, metal money fund, monetary fund coin budget nickel scale, graduated table, ordered series Richter scale dime (a) Varje nod representerar en mängd av ömsesidigt synonyma ord, en s.k. synset. (b) Avståndet (pathlength) mellan nickel och budget är 7. Utifrån detta kan man räkna ut den semantiska likheten mellan de två orden som 1/(pathlength + 1) = 1/8. 6. Ett automatiskt system för författaridentifikation ska hitta texter som är skrivna av författaren A. En utvärdering av systemet på en guldstandard ger följande resultat, där + betyder att texten är skriven av A och betyder att texten inte är skriven av A. Räkna ut systemets precision och recall. system + system guldstandard guldstandard 0 19 Precision: 1/(1 + 0) = 1/1 = 100%. Recall: 1/(1 + 3) = 1/4 = 25%. 3
4 7. En enkel metod för att tagga filmrecensioner med polariteter är att använda en Naive Bayesklassificerare. Ange klassificerarens beslutsregel och förklara den. Beslutsregel (𝑟 = recensionen; 𝑤 = ord i 𝑟): 𝑝 = arg max 𝑃(𝑝) 𝑃(𝑤 𝑝) 𝑝 𝑤 Klassificeraren väljer den polaritet 𝑝 som maximerar den sannolikhet som specificeras till höger om arg max. Denna sannolikhet är produkten av priorisannolikheten för polariteten 𝑝, som betecknas 𝑃(𝑝), och den betingade sannolikheten för recensionen 𝑟 givet 𝑝. I Naive Bayes approximeras denna sannolikhet genom produkten av alla ordsannolikheter, 𝑃(𝑤 𝑝). 8. (a) Vad innebär entitetsextraktion (eng. named entity recognition)? (b) Hur kan entitetsextraktion hanteras som ett taggningsproblem? (a) Entitetsextraktion går ut på att hitta och klassificera ord eller andra textenheter som tillhör i förväg definierade semantiska kategorier som namn på personer, organisationer och platser. (b) Man kan använda BIO-kodningen som går ut på att tagga det första ordet (token) i en textenhet som betecknar en entitet med B (beginning), varje följande ord med I (inner) och varje ord som inte tillhör en entitet med O (outer). Med denna kodning kan entitetsextraktion hanteras som ordklasstaggning. 9. Utifrån följande svensk mening, ange en översättning till engelska som är (a) fluent men inte faithful, (b) faithful men inte fluent. Han jämförde äpplen och päron. (a) He compared apples and pears. (b) Apples and oranges he compared. (Yoda-språk!) 10. En central modul i ett frågebesvarande system är en analysator som bestämmer frågans svarstyp. Förklara vad som menas med en svarstyp och ge några exempel på möjliga svarstyper. Begreppet svarstyp avser den entitetstyp eller mera allmänt den semantiska kategori som det förväntade svaret syftar på. En fråga kan till exempel syfta på en person eller en plats, men även på mera generella kategorier som sammanfattning eller förklaring. 4
5 Del B Välj två frågor och besvara dem utförligt. Varje fråga kan ge maximalt 6 poäng. 1. Utjämning (eng. smoothing) är en teknik som används när man bygger statistiska språkmodeller. Förklara vad det innebär och varför man använder det. Beskriv därefter utförligt den utjämningsteknik som kallas Add-1 (eller Laplace). Utjämning innebär att man modifierar en sannolikhetsmodell genom att omfördela sannolikhetsmassan så att fördelningen blir mera jämn. Ett bra sätt att förklara och motivera utjämning är att utgå från ett konkret exempel, som MLE-skattning av unigramsannolikheter utifrån en textkorpus. För ord som förekommer förhållandevis ofta i korpusen kan MLE-skattning ge goda resultat. Men ju mindre omfattning korpusen har, desto mera sannolikt är det att några ord kommer att ha väldigt låg frekvens eller totalt saknas i korpusen. Utjämning innebär då att man omfördelar sannolikhetsmassan så att högfrekventa ord får lägre sannolikhet än de egentligen borde ha enligt deras relativa frekvens i korpusen, och lågfrekventa ord får högre sannolikhet (1 p). Detta gör att sannolikhetsfördelningen blir mera jämn. Det man också åstadkommer är att man ger lite sannolikhet till ord som inte förkommer i träningsdatan (1 p). Viktigt i sammanhanget är att man i förväg måste definiera en mängd ord som man vill tilldela sannolikheter, en s.k. vokabulär (1 p). Den huvudsakliga anledningen till varför man gör smoothing är att man vill ha robusta sannolikhetsmodeller som kan användas på andra data än dem i träningsmängden (1 p). Vid Add-1-smoothing höjer man frekvensen (inte sannolikheten!) av varje ord med 1 (1 p). För att det ska bli en sannolikhetsfördelning måste man även höja nämnaren, nämligen med antalet totala ord i vokabulären (1 p). 2. I flera typer av system kan recall inte mätas på det vanligaste sättet, dvs. genom att dela antalet fall där systemet och guldstandard överensstämmer med det totala antalet fall i guldstandarden. Ange två applikationer där detta inte fungerar så bra, förklara varför, och beskriv något eller några mått som används i stället. Exempel på applikationer är entitetsextraktion, maskinöversättning, informationssökning och textsammanfattning. För varje exempel får man 1 p för att ange det och ytterligare 1 p för att förklara varför recall inte kan mätas på det vanliga sättet. Sedan får man 2 p för en utförlig förklaring av ett alternativt mått (som t.ex. BLEU); alternativt 1 p per mått för en kortare förklaring. 3. En probabilistisk parser ska räkna ut den mest sannolika syntaktiska analysen för en given mening. Förklara varför denna uppgift är beräkningsmässigt utmanande. Beskriv därefter två metoder för att bemöta denna utmaning. Parsning är beräkningsmässigt utmanande eftersom mängden av möjliga parseträd växer exponentiellt med meningens längd och grammatikens storlek. (1 p) För att illustrera detta kan man t.ex. rita upp alla parseträd för några korta meningar. Ett alternativ är att argumentera att i en grammatik med 𝑟 regler så finns det 𝑂(𝑟𝑛 ) olika parseträd med 𝑛 noder. (1 p) Exempel på metoder 5
6 för att undvika denna komplexitet är dynamisk programmering och heuristisk sökning. En kort beskrivning av en metod ger 1 p; en mera utförlig beskrivning ger 2 p. 4. Det finns för närvarande ett stort intresse inom både akademin och industrin i metoder för att analysera språk i sociala medier. Ange några skäl till detta. Diskutera därefter några av de utmaningar som språkteknologin ställs inför när den ska tillämpas på texter från Twitter och Facebook snarare än t.ex. tidningar och lexikon. Man får 1 p för varje skäl, dock högst 2 p. Exempel på skäl: attitydanalys (attityder mot produkter, opinioner, förutsäga trender); lingvistiska intressen (analysera talspråk och språkutveckling). Man får 1 p för varje utmaning, dock max 4 p. För att få poäng måste man diskutera en utmaning, inte bara ange den. Exempel på utmaningar: annorlunda form och struktur (felstavningar, inkompletta och ogrammatiska meningar, konstiga tecken); högre utsträckning av ironi och subtilitet; flerspråkighet; stor språklig variation (över tiden, bland grupper); relevans av ickespråklig kommunikation (smileys, bilder); stora datamängder som kommer in i realtid. 6
Tentamen Del A. Marco Kuhlmann
TDDD01 Språkteknologi (2016) Tentamen 2016-03-16 Marco Kuhlmann Tentamen består två delar, A och B. Varje del omfattar ett antal frågor à 3 poäng. Del A omfattar 8 frågor som kan besvaras kortfattat. Det
Lingvistiska grundbegrepp
729G09 Språkvetenskaplig databehandling (2016) Lingvistiska grundbegrepp Marco Kuhlmann Institutionen för datavetenskap Vad är korpuslingvistik? Korpuslingvistik handlar om att undersöka språkvetenskapliga
Tentamen 2016-01-13. Marco Kuhlmann
TDDD02 Språkteknologi för informationssökning (2015) Tentamen 2016-01-13 Marco Kuhlmann Denna tentamen består av 10 frågor. Frågorna 8 10 ligger på en högre kunskapsnivå än de övriga och kräver utförliga
TDDD02 Språkteknologi för informationssökning (2016) Ordpredicering. Marco Kuhlmann Institutionen för datavetenskap
TDDD02 Språkteknologi för informationssökning (2016) Ordpredicering Marco Kuhlmann Institutionen för datavetenskap Ordpredicering Ordpredicering innebär att föreslå eller välja ord i en given kontext.
TDDD02 Språkteknologi för informationssökning (2016) Semantisk analys. Marco Kuhlmann Institutionen för datavetenskap
TDDD02 Språkteknologi för informationssökning (2016) Semantisk analys Marco Kuhlmann Institutionen för datavetenskap Semantik pragmatik semantik analys generering syntax morfologi Denna föreläsning ordbetydelsebestämning
ORDKLASSTAGGNING. Marco Kuhlmann Institutionen för datavetenskap
ORDKLASSTAGGNING Marco Kuhlmann Institutionen för datavetenskap Ordpredicering n-gram-modeller (definition, skattning) den brusiga kanalen: P(R F) = P(F R) P(R) redigeringsavstånd, Levenshtein-avstånd
TDDD02 Språkteknologi för informationssökning (2016) Ordklasstaggning. Marco Kuhlmann Institutionen för datavetenskap
TDDD02 Språkteknologi för informationssökning (2016) Ordklasstaggning Marco Kuhlmann Institutionen för datavetenskap Ordklasstaggning Tagga varje ord i en sekvens av ord (oftast en mening) med dess korrekta
Fil: /home/lah/undervisning/sprakteknologi/ohbilder/oh1_kv.odp. Tjänster
Taligenkänning 729G17/729G66 Språkteknologi 1 Vad är språkteknologi? Vad är språkteknologi? Kursens mål och uppläggning Att analysera textdata Korpusar och korpusarbete Textanalys med reguljära uttryck
TDDD02 Språkteknologi för informationssökning (2016) Introduktion. Marco Kuhlmann Institutionen för datavetenskap
TDDD02 Språkteknologi för informationssökning (2016) Introduktion Marco Kuhlmann Institutionen för datavetenskap Vad är språkteknologi? Vad är språkteknologi? Språkteknologi är all teknologi som skapas
TDDD02 Språkteknologi för informationssökning / Ordpredicering. Marco Kuhlmann Institutionen för datavetenskap
TDDD02 Språkteknologi för informationssökning / 2015 Ordpredicering Marco Kuhlmann Institutionen för datavetenskap Ordpredicering Ordpredicering innebär att föreslå eller välja ord i en given kontext.
Partiell parsning Parsning som sökning
Språkteknologi: Parsning Parsning - definition Parsningsbegrepp Chartparsning Motivering Charten Earleys algoritm (top-down chartparsning) Partiell parsning (eng. chunking) med reguljära uttryck / automater
Språkteknologi och Open Source
Språkteknologi och Open Source Erik Edin F01 erikedin@kth.se 15 oktober 2004 1 1 Open Source Open Source är en rörelse som syftar till att skriva datorprogram som släpps fria utan kommersiella intressen.
Taltaggning. Rapport av Daniel Hasselrot 781105-0157, d98-dha@nada.kth.se 13 oktober 2003
Taltaggning av Daniel Hasselrot 781105-0157, d98-dha@nada.kth.se 13 oktober 2003 Sammanfattning Denna rapport är skriven i kursen Språkteknologi och behandlar taggning av årtal i en text. Metoden som används
TDDD02 Språkteknologi för informationssökning (2016) Textklassificering. Marco Kuhlmann Institutionen för datavetenskap
TDDD02 Språkteknologi för informationssökning (2016) Textklassificering Marco Kuhlmann Institutionen för datavetenskap Textklassificering Skräppostfiltrering spam ham Författaridentifiering Alexander Hamilton
Tekniker för storskalig parsning: Grundbegrepp
Tekniker för storskalig parsning: Grundbegrepp Joakim Nivre Uppsala Universitet Institutionen för lingvistik och filologi joakim.nivre@lingfil.uu.se Tekniker för storskalig parsning: Grundbegrepp 1(17)
Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann
Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin,
TDDA94 LINGVISTIK, 3 poäng tisdag 19 december 2000
Lars Ahrenberg, sid 1(5) TENTAMEN TDDA94 LINGVISTIK, 3 poäng tisdag 19 december 2000 Inga hjälpmedel är tillåtna. Maximal poäng är 36. 18 poäng ger säkert godkänt. Del A. Besvara alla frågor i denna del.
poäng i del B Lycka till!
TDDD02 Språkteknologi för informationssökning (2016) Tentamen 2017-01-11 Examinator: Marco Kuhlmann Denna tentamen består av två delar: 1. Del A består av 5 uppgifter som prövar din förståelse av de grundläggande
Probabilistisk logik 1
729G43 Artificiell intelligens / 2016 Probabilistisk logik 1 Marco Kuhlmann Institutionen för datavetenskap Osäkerhet 1.01 Osäkerhet Agenter måste kunna hantera osäkerhet. Agentens miljö är ofta endast
Syntaktisk parsning (Jurafsky & Martin kapitel 13)
Syntaktisk parsning (Jurafsky & Martin kapitel 13) Mats Wirén Institutionen för lingvistik Stockholms universitet mats.wiren@ling.su.se DH2418 Språkteknologi DA3010 Språkteknologi för datorlingvister Föreläsning
Lösningsförslag till tentamen i Språkteknologi 2D1418,
Lösningsförslag till tentamen i Språkteknologi 2D1418, 2004-10-18 1. Stavningskontroll utan ordlista (10 poäng) a) Med 29 bokstäver i alfabetet och en specialbokstav för ordbörjan/ordslut så finns det
FriendlyReader. Språkteknologi för sammanfattningar och ökad läsbarhet. Målgruppsegmentering. Arbetsgång
FriendlyReader Språkteknologi för sammanfattningar och ökad läsbarhet Mål:! Öka den digitala delaktigheten genom att underlätta för personer med lässvårigheter att tillgodogöra sig textuellt baserad information
Kombinatorik och sannolikhetslära
Grunder i matematik och logik (2018) Kombinatorik och sannolikhetslära Marco Kuhlmann Sannolikhetslära Detta avsnitt är för det mesta en kompakt sammanfattning av momentet sannolikhetslära som ingår i
händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.
Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning
Probabilistisk logik 2
729G43 Artificiell intelligens / 2016 Probabilistisk logik 2 Marco Kuhlmann Institutionen för datavetenskap Översikt Probabilistiska modeller Probabilistisk inferens 1: Betingad sannolikhet Probabilistisk
Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014).
UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). 9 Sannolikhet Detta kapitel
Modellering med kontextfri grammatik Kontextfri grammatik - definition En enkel kontextfri grammatik Klasser av formella språk
Modellering med kontextfri grammatik Kontextfri grammatik - definition Kontextfri grammatik (CFG) definition modellering av frasstruktur andra exempel Dependensgrammatik Trädbanker Varianter av kontextfri
Skrivstöd. Joakim Nivre. Introduktion till språkteknologi. Skrivstöd. Inledning. Orsaker till stavfel. Detektering av icke-ord
Joakim Nivre / 30 Varför bry sig om stavning? Stavfel kan skapa missförstånd Stavfel kan dölja innehåll Standardiserad stavning underlättar många uppgifter Slå upp ord i ordbok Identifiera svårlästa ord
Prov i DAT 312: Algoritmer och datastrukturer för systemvetare
Prov i DAT 312: Algoritmer och datastrukturer för systemvetare Jacek Malec Datavetenskap, LU 11 april 2003 Datum 11 april 2003 Tid 14 19 Ansvarig lärare Jacek Malec (tel. 03 9890431) Hjälpmedel inga Antal
Statistisk grammatikgranskning
Statistisk grammatikgranskning Johnny Bigert johnny@nada.kth.se Traditionell grammatikgranskning Hitta stavningsfel och grammatiska fel: Regler Lexikon Traditionell grammatikgranskning Fördelar: Säkert
Tekniker för storskalig parsning
Tekniker för storskalig parsning Introduktion Joakim Nivre Uppsala Universitet Institutionen för lingvistik och filologi joakim.nivre@lingfil.uu.se Tekniker för storskalig parsning 1(18) Kursöversikt Kursnamn:
Tekniker för storskalig parsning
Tekniker för storskalig parsning Grundläggande begrepp och metoder Joakim Nivre Uppsala Universitet Institutionen för lingvistik och filologi joakim.nivre@lingfil.uu.se Tekniker för storskalig parsning
Föreläsning 5: Modellering av frasstruktur. 729G09 Språkvetenskaplig databehandling Lars Ahrenberg
Föreläsning 5: Modellering av frasstruktur 729G09 Språkvetenskaplig databehandling Lars Ahrenberg 2014-05-05 1 Översikt Introduktion generativ grammatik och annan syntaxforskning Att hitta mönster i satser
Tentamen, Distribuerade System/Programvaruarkitektur 2001-08-24
Tentamen, Distribuerade System/Programvaruarkitektur 2001-08-24 FÖRSÄTTSBLAD Inlämnas ifyllt tillsammans med tentan. Skriv namn på samtliga blad. Ange nedan vilka uppgifter du besvarat. Uppgift Besvarad
Markovkedjor. Patrik Zetterberg. 8 januari 2013
Markovkedjor Patrik Zetterberg 8 januari 2013 1 / 15 Markovkedjor En markovkedja är en stokastisk process där både processen och tiden antas diskreta. Variabeln som undersöks kan både vara numerisk (diskreta)
HUMANISTISKA FAKULTETEN. Språkteknologi, masterprogram, högskolepoäng
Utbildningsplan Dnr G 2017/293 HUMANISTISKA FAKULTETEN Språkteknologi, masterprogram, 60-120 högskolepoäng Master in Language Technology (One year Programkod: H2MLT 1. Fastställande Utbildningsplanen är
- ett statistiskt fråga-svarsystem
- ett statistiskt fråga-svarsystem 2010-09-28 Artificiell intelligens II Linnea Wahlberg linwa713 1 Innehåll Introduktion... 1 Grundprinciper för asked!... 2 Retrieval model... 4 Filter model... 6 Komponenter...
Kompilatorer och interpretatorer
1 of 6 Örebro universitet Institutionen för teknik Thomas Padron-McCarthy (Thomas.Padron-McCarthy@oru.se) Tentamen i Kompilatorer och interpretatorer för Dataingenjörsprogrammet m fl lördag 7 november
Datorlingvistisk grammatik
Datorlingvistisk grammatik Kontextfri grammatik, m.m. http://stp.lingfil.uu.se/~matsd/uv/uv11/dg/ Mats Dahllöf Institutionen för lingvistik och filologi Februari 2011 Denna serie Formella grammatiker,
Tentamen, Algoritmer och datastrukturer
UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och
729G17 Språkteknologi / Introduktion. Marco Kuhlmann Institutionen för datavetenskap
729G17 Språkteknologi / 2016 Introduktion Marco Kuhlmann Institutionen för datavetenskap Vad är språkteknologi? Vad är språkteknologi? Språkteknologi är all teknologi som skapas för att förstå eller generera
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 2009
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 009 Skrivtid: 5 timmar (13-18) Hjälpmedel: Miniräknare,
Optimeringslära 2013-11-01 Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min
TDDD02 Språkteknologi för informationssökning / Textsammanfattning. Marco Kuhlmann Institutionen för datavetenskap
TDDD02 Språkteknologi för informationssökning / 2015 Textsammanfattning Marco Kuhlmann Institutionen för datavetenskap Textsammanfattning Textsammanfattning går ut på att extrahera den mest relevanta informationen
Artificiell Intelligens
Omtentamen Artificiell Intelligens Datum: 2014-02-20 Tid: 14.00 18.00 Ansvarig: Resultat: Hjälpmedel: Gränser: Anders Gidenstam Redovisas inom tre veckor Inga G 8p, VG 12p, Max 16p Notera: Skriv läsbart!
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk
TDDD02 Språkteknologi för informationssökning / 2015. Textklassificering. Marco Kuhlmann Institutionen för datavetenskap
TDDD02 Språkteknologi för informationssökning / 2015 Textklassificering Marco Kuhlmann Institutionen för datavetenskap Textklassificering UK China Elections Sports congestion London Olympics Beijing recount
TDP Regler
Regler Student får lämna salen tidigast en timme efter tentans start. Vid toalettbesök eller rökpaus ska pauslista utanför salen fyllas i. All form av kontakt mellan studenter under tentans gång är strängt
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
b) NY KURS (Ange kursnamn, årskurs, önskad läsperiod, schemablocksplacering. Bifoga utkast till kursplan.)
LINKÖPINGS TEKNISKA HÖGSKOLA Tekniska fakultetskansliet FÖRSLAG TILL PROGRAMNÄMND INFÖR ÅR NÄMND/NÄMNDER: Förslagsställare (Namn, funktion, Inst/Enhet) FÖRSLAGET GÄLLER: a) EXISTERANDE KURS (Ange kurskod
TENTAMEN TDDB53. Programmering i Ada för MI (provkod TEN2) den 7 april 2010 kl Institutionen för datavetenskap, IDA Olle Willén mars 2010
Linköpings universitet Institutionen för datavetenskap, IDA Olle Willén mars 2010 Tentamen TDDB53 TENTAMEN TDDB53 (provkod TEN2) den 7 april 2010 kl 8 12 Jour: Emil Nielsen, tel 070 499 89 88 Hjälpmedel:
TENTAMEN I STATISTIKENS GRUNDER 1
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:
Linköpings universitet Artificiell Intelligens II 729G11 HT Maskinöversättning. med hjälp av statistik. Erik Karlsson
Maskinöversättning med hjälp av statistik Erik Karlsson erika669@student.liu.se Innehåll Inledning... 1 Bakgrund och historia... 2 Historia... 2 Klassiska designer... 2 Direkt översättning... 2 Interlingua...
Maskinöversättning möjligheter och gränser
Maskinöversättning möjligheter och gränser Anna Sågvall Hein 2015-02-17 Tisdagsföreläsning USU 2015-02-17 Anna Sågvall Hein Översikt Vad är maskinöversättning? Kort tillbakablick Varför är det så svårt?
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken får ha anteckningar,
Språkteknologi vt09. Diskursmodellering. Diskursmodell: exempel. Koherensrelationer. Koreferens. Att bestämma koherensrelationer
Språkteknologi vt09 Diskursmodellering Diskursmodellering koherensrelationer anaforisk referens Informationsutvinning Mallar Delproblem Namnigenkänning Referensresolution Mallifyllning / Relationsigenkänning
Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.
OS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet
Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga
Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann
Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om
TDDD02 Föreläsning 4 HT Klassificering av ord och dokument Lars Ahrenberg
TDDD02 Föreläsning 4 HT-2013 Klassificering av ord och dokument Lars Ahrenberg Översikt Ø Avslutning om ngram-modeller Dokumentrepresentation Ø Klassificering med Naive Bayes ett typexempel generell metod
TDDB56 DALGOPT Algoritmer och Optimering Tentamen , 8 13
Linköpings Tekniska Högskola 00-08-0 Institutionen för Datavetenskap David Broman / Jan Maluszynski / Kaj Holmberg TDDB6 DALGOPT Algoritmer och Optimering Tentamen 00-08-0, 8 Examinator Jan Maluszynski
Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl
1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna
Grundläggande textanalys. Joakim Nivre
Grundläggande textanalys Joakim Nivre Om kursen Ni har hittills läst Lingvistik Datorteknik Matematik Språkteknologiska tillämpningar Nu ska vi börja med språkteknologi på allvar Hur gör man text hanterbar
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken får ha anteckningar,
Mälardalens högskola Akademin för utbildning, kultur och kommunikation
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.08.09 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:
Stockholms Universitet Statistiska institutionen Patrik Zetterberg
Stockholms Universitet Statistiska institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, VT2012 2012-05-31 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan
729G09 Språkvetenskaplig databehandling
729G09 Språkvetenskaplig databehandling Föreläsning 2, 729G09, VT15 Reguljära uttryck Lars Ahrenberg 150409 Plan för föreläsningen Användning av reguljära uttryck Formella språk Reguljära språk Reguljära
TENTAMEN. TDDD12 Databasteknik TDDD46 Databasteknik. 16 augusti 2010, kl 14-18
LiTH, Linköpings tekniska högskola IDA, Institutionen för datavetenskap Jose M. Peña 2010-08-10 Lokal TER1 och TERC. Tillåtna hjälpmedel Lexikon, miniräknare. TENTAMEN TDDD12 Databasteknik TDDD46 Databasteknik
Xenotag Probabilistisk uppmärkning av xenoglosser baserat på tecken-n-gram
Xenotag Probabilistisk uppmärkning av xenoglosser baserat på tecken-n-gram Martin WARIN STP, Uppsala Universitet m warin@hotmail.com Abstract Här beskrivs en metod att identifiera ord i en text vilka är
NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT
Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Författare: Marco Kuhlmann 2013
UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Författare: Marco Kuhlmann 2013 4 Grafer En graf är en struktur av prickar förbundna med streck.
Projektförslag. Datalingvistisk projektkurs VT mars 2007
Projektförslag Datalingvistisk projektkurs VT 2007 26 mars 2007 Möjliga projekt Utvärdering Att utvärdera ett befintligt program/system utifrån ett datalingvistiskt perspektiv. Exempel: Utvärdera hur ett
Karlstads universitet Institutionen för Informationsteknologi Datavetenskap
TENTAMEN FÖR KURS DAV C03, DATAKOMMUNIKATION II 5p Sid 1 av 5 Fredag 06-03-31 kl 08.15 13.15 Ansvarig lärare: Johan Garcia, Stefan Alfredsson, Hans Hedbom Betygsgränser: Tillåtna hjälpmedel: Kalkylator
Uppgifter 6: Kombinatorik och sannolikhetsteori
Grunder i matematik och logik (2017) Uppgifter 6: Kombinatorik och sannolikhetsteori Marco Kuhlmann Kombinatorik Nivå A 6.01 En meny består av tre förrätter, fem huvudrätter och två efterrätter. På hur
Tentamen Metoder för ekonomisk analys
Tentamen Metoder för ekonomisk analys 014-08-7 Instruktioner: Denna tentamen består av två delar. Del 1 skall lösas utan miniräknare. När uppgifterna på del löses får miniräknare användas. Miniräknaren
Johan Karlsson Johka490. Statistical machine translation JOHAN KARLSSON
Johan Karlsson Johka490 Statistical machine translation JOHAN KARLSSON Innehåll Introduktion... 2 Bakgrund... 3 Statistiska maskinöversättningssystem... 3 Hur ett SMT-system fungerar... 4 Motsvarighetsmodell
2D 4D. Flaskracet. strävorna
2D 4D Flaskracet begrepp resonemang sannolikhet Avsikt och matematikinnehåll Syftet med aktiviteten är att väcka frågor och diskussioner om srum och om skillnaden mellan (antal) och (andel). Det är viktigt
Digital inkludering i det uppkopplade samhället för grupper med speciella behov. Arne Jönsson Linköpings universitet och RISE SICS East
Digital inkludering i det uppkopplade samhället för grupper med speciella behov Arne Jönsson Linköpings universitet och RISE SICS East Inkludering av alla medborgare i det digitala samhället Utlandsfödda
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 9 augusti 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
Tentamen för DD1370 Databasteknik och informationssystem
Tentamen för DD1370 Databasteknik och informationssystem 13 Mars 2014 Hjälpmedel: Inga hjälpmedel utom papper och penna Tänk på: Skriv högst en uppgift på varje blad. Använd endast framsidan på varje blad.
Kungliga Tekniska Högskolan 2006-03-26. Patrik Dallmann 821107-0274
Kungliga Tekniska Högskolan 2006-03-26 Patrik Dallmann 821107-0274 Patrik Dallmann dallmann@kth.se Inledning Syftet med detta arbete är att undersöka metoder för att upptäcka syftningsfel i vanlig text.
Lingvistiskt uppmärkt text
729G09 Språkvetenskaplig databehandling (2018) Lingvistiskt uppmärkt text Marco Kuhlmann Institutionen för datavetenskap Korpusdata: Ett konkret exempel 1 Genom genom ADP 2 case 2 skattereformen skattereform
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
TDDD02 Språkteknologi (2016) Syntaktisk analys. Marco Kuhlmann Institutionen för datavetenskap
TDDD02 Språkteknologi (2016) Syntaktisk analys Marco Kuhlmann Institutionen för datavetenskap Syntax pragmatik semantik analys generering syntax morfologi Syntaktisk parsning Syntaktisk parsning är uppgiften
Tentamen för DD1370 Databasteknik och informationssystem
Tentamen för DD1370 Databasteknik och informationssystem Exempeltenta för kursen ht2013 Hjälpmedel: Inga hjälpmedel utom papper och penna Tänk på: Skriv högst en uppgift på varje blad. Använd endast framsidan
Tekniker för storskalig parsning
Tekniker för storskalig parsning Introduktion till projektet Joakim Nivre Uppsala Universitet Institutionen för lingvistik och filologi joakim.nivre@lingfil.uu.se Tekniker för storskalig parsning 1(17)
EasyReader (FriendlyReader)
EasyReader (FriendlyReader) Arne Jönsson, Sture Hägglund Mål Ø Öka den digitala delaktigheten genom att underlätta för personer med lässvårigheter att tillgodogöra sig textuellt baserad information på
Tisdagen den 16 januari 2007 9-14
STOCKHOLMS UNIVERSITET TENTAMEN MATEMATISKA INSTITUTIONEN Statistik för naturvetare Avd. Matematisk statistik Tisdagen den 16 januari 2007 Tentamen för kursen Statistik för naturvetare Tisdagen den 16
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python
Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken får ha anteckningar,
Kaliningrad) låg vid bägge sidor av floden Pregel samt på
Grunder i matematik och logik (2018) Grafteori Marco Kuhlmann Grafteori är det område inom matematiken som undersöker egenskaper hos grafer. Inom grafteorin har begreppet graf en annan betydelse än graf
Efternamn förnamn ååmmdd kodnr
KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn ååmmdd kodnr Lösning till kontrollskrivning 5A, den 15 maj 2014, kl 13.00-14.00 i SF1610 Diskret matematik för CINTE och CMETE. Inga hjälpmedel
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
LINKÖPINGS UNIVERSITET TENTA 92MA31, 92MA37, 93MA31, 93MA37 / STN 2 9GMA05 / STN 1
LINKÖPINGS UNIVERSITET Matematiska institutionen TENTA 9MA31, 9MA37, 93MA31, 93MA37 / STN 9GMA5 / STN 1 1 juni 16, klockan 8.-1. Jour: Jörg-Uwe Löbus Tel: 79-687) Tillåtna hjälpmedel är en räknare, formelsamling
Exempel. Vi observerar vädret och klassificerar det i tre typer under en följd av dagar. vackert (V) mulet (M) regn (R)
Exempel Vi observerar vädret och klassificerar det i tre typer under en följd av dagar. vackert (V mulet (M regn (R Exempel Vackert idag vackert imorgon sannolikheten 0.6 Vackert idag mulet imorgon sannolikheten
TAMS79: Föreläsning 1 Grundläggande begrepp
TMS79: Föreläsning 1 Grundläggande begrepp Johan Thim 31 oktober 2018 1.1 Begrepp Ett slumpförsök är ett försök där resultatet ej kan förutsägas deterministiskt. Slumpförsöket har olika möjliga utfall.
TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Jordbävningar en enkel modell
9 september 05 FYTA Simuleringsuppgift 3 Jordbävningar en enkel modell Handledare: André Larsson Email: andre.larsson@thep.lu.se Telefon: 046-34 94 Bakgrund Jordbävningar orsakar fruktansvärda tragedier
1 Mätdata och statistik
Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt
729G17/729G66 Lexikal semantik och ordbetydelsebestämning. Olika ordbegrepp. Vad är ordbetydelse (1) Olika ordbegrepp
729G17/729G66 Lexikal semantik och ordbetydelsebestämning Olika ordbegrepp Ordbetydelser Vad är ett ord? Lemman, lexem och betydelser Semantiska relationer Semantiskt strukturerade lexikon Hitta relationer