Sökning och sortering. Linda Mannila
|
|
- Gun Ivarsson
- för 6 år sedan
- Visningar:
Transkript
1 Sökning och sortering Linda Mannila
2 Denna föreläsning Sökningsalgoritmer Sorteringsalgoritmer Modulen time
3 Sökning Vanlig uppgift i datorsammanhang Exempel: Hitta en viss person i ett register Söka efter ett telefonnummer I sorteringsalgoritmer (hitta max, hitta min) Olika sökalgoritmer Sekventiell (linjär) sökning Binärsökning
4 Sekventiell (linjär) sökning Linear search Går igenom alla element i en lista från början Jämför det aktuella elementet i listan med det vi söker efter Om det element vi tittar på är det vi söker har hittat elementet och kan sluta Annars gå framåt ett steg i listan, jämför med det vi söker efter etc. Om vi kommer till slutet av listan och inte har hittat elementet avsluta
5 Sekventiell sökning Fördelar? Simpel Snabb om det eftersökta elementet finns i början av listan Nackdelar? Långsam om det eftersökta elementet inte finns i början av listan (kräver en massa jämförelser)
6 Binärsökning Binary search För sorterade datasamlingar Börjar med att titta på det mittersta elementet i en lista, jämför det med det vi söker efter Om det vi söker efter är mindre än det vi tittar på kan skippa högra delen av listan och upprepa processen på den vänstra halvan Om det vi söker är större än det vi tittar på skippa vänstra halvan Om det vi söker är det vi tittar på avsluta, vi har hittat vårt element
7 Binärsökning Sorted Array Compare X to the middle value of the array. If X=Y, (the middle element) we are done. If X < Y, we continue our search confine the search to first half only. If X > Y, we continue our search confine the search to second half.
8 Binärsökning Fördelar? Snabb Nackdelar? Kräver att data är sorterat... Men det kan lösas med en snabb sorteringsalgoritm, så i praktiken inget problem
9 Sökning linear_for.py linear_while.py binary.py
10 Tidtagning Modulen time >>> import time >>> dir(time) [' doc ', ' name ', 'accept2dyear', 'altzone', 'asctime', 'clock', 'ctime', 'daylight', 'gmtime', 'localtime', 'mktime', 'sleep', 'strftime', 'strptime', 'struct_time', 'time', 'timezone', 'tzname']
11 Exempel -time # Returnerar info om den lokala tiden som en tupel >>> time.localtime() (2007, 11, 26, 17, 30, 16, 0, 330, 0) # Returnerar info om den lokala tiden som en sträng >>> time.asctime() 'Mon Nov 26 17:32: ' # Returnerar info om Greenwich-tiden som en tupel >>> time.gmtime() (2007, 11, 26, 15, 30, 19, 0, 330, 0) # Returnerar processorns tid i sekunder >>> time.clock() Kan användas för tidtagning # Pausar exekveringen för så många sekunder som man # skickar som argument till funktionen >>> time.sleep(2)
12 Exempel import time lista = range(100000) # t1 innehåller starttiden (i sekunder) t1 = time.clock() # Kör funktionen linear_search(lista, 750) # t2 innehåller sluttiden (i sekunder) t2 = time.clock() # Räknar ut exekveringstiden (i sekunder) exek_tid = t2-t1 # Skriver ut tiden (i sekunder och millisekunder) print "Exekveringen tog %0.4f sekunder" % exek_tid print "Exekveringen tog %0.4f millisekunder" % (exek_tid * 1000)
13 Sökning Exempel med tidtagning search.py search_avg.py Med lite avancerade features för den som är intresserad Illustrerar hur man kan skicka funktioner som argument till en annan funktion Krävs ej för kursen search_func_as_params.py search_func_as_params_nicer_output.py
14 Sortering Bubble sort Selection sort Insertion sort Merge sort Quicksort Rekursiva torsdagens tema
15 Bubble sort Enklaste sorteringsalgoritmen Tyvärr också den minst effektiva Grundidén är att gå igenom en lista med element upprepade gånger, se på två närliggande element åt gången och byta plats på dem ifall de kommer i fel ordning Flashdemo: bubble.swf
16 Selection sort Från början är hela listan osorterad Grundidén är att hela tiden välja ut det största elementet i den osorterade delen av listan och byta plats med det och det sista elementet i den osorterade delen av listan. Samtidigt ökar antalet element i den sorterade delen med ett och antalet i den osorterade delen minskar med ett. Flashdemo: selection.swf
17 Insertion sort Från början är hela listan osorterad. Grundidén är att samla de sorterade elementen i rätt ordning i början av listan. Ett element i taget från den osorterade delen insätts på rätt plats i den sorterade delen. Samtidigt ökar antalet element i den sorterade delen med ett och antalet i den osorterade delen minskar med ett. Flashdemo: insertion.swf
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Sortering Selectionsort, Bubblesort,
Föreläsning 11 Datastrukturer (DAT037)
Föreläsning 11 Datastrukturer (DAT037) Fredrik Lindblad 1 4 december 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Quicksort. Koffman & Wolfgang kapitel 8, avsnitt 9
Quicksort Koffman & Wolfgang kapitel 8, avsnitt 9 1 Quicksort Quicksort väljer ett spcifikt värde (kallat pivot), och delar upp resten av fältet i två delar: alla element som är pivot läggs i vänstra delen
Programmering för språkteknologer II, HT2014. Rum
Programmering för språkteknologer II, HT2014 Avancerad programmering för språkteknologer, HT2014 evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Idag - Sökalgoritmer
Magnus Nielsen, IDA, Linköpings universitet
Föreläsning 7 Introduktion till sortering TDDC91,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 24 september 2018 Magnus Nielsen, IDA, Linköpings universitet 7.1 1
Sökning och sortering
Sökning och sortering Programmering för språkteknologer 2 Sara Stymne 2013-09-16 Idag Sökning Analys av algoritmer komplexitet Sortering Vad är sökning? Sökning innebär att hitta ett värde i en samling
Föreläsning 11 Innehåll
Föreläsning 11 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Heapsort behandlades i samband med prioritetsköer. Undervisningsmoment:
Sortering. Intern/ extern? Antaganden. Vad kan vi kräva? Rank sort. Rank sort. På en nod/ distribuerad? Jämförelsebaserad/ icke jämförelsebaserad?
Sortering Föreläsning : Sorteringsalgoritmer Sortering: att ordna data i någon sekventiell ordning Sortering förekommer som del i många applikationer Kanonisk form för sorterat data? Skall den sorterade
Problemlösning och funktioner Grundkurs i programmering med Python
Hösten 2009 Dagens lektion Problemlösningsstrategier Repetition av funktioner Mer om funktioner 2 Problemlösningsstrategier 3 PROBLEMLÖSNINGSSTRATEGIER Strategier Det finns ett flertal olika ansatser till
Tommy Färnqvist, IDA, Linköpings universitet
Föreläsning 8 Sortering och urval TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 1 oktober 2013 Tommy Färnqvist, IDA, Linköpings universitet 8.1 Innehåll Innehåll 1 Sortering
Översikt. Stegvis förfining. Stegvis förfining. Dekomposition. Algoritmer. Metod för att skapa ett program från ett analyserat problem
Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS-regeln Procedurell dekomposition DRY-regeln Algoritmer Sortering och sökning Stegvis förfining Metod för att skapa ett program från
Sätt att skriva ut binärträd
Tilpro Övning 3 På programmet idag: Genomgång av Hemtalet samt rättning Begreppet Stabil sortering Hur man kodar olika sorteringsvilkor Inkapsling av data Länkade listor Användning av stackar och köer
Objektorienterad programmering Föreläsning 10. Copyright Mahmud Al Hakim Sorteringsalgoritmer
Objektorienterad programmering Föreläsning 10 Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Agenda Fält fort. Fält som parametrar Parameterfält params Parametrar till Main Listor ArrayList
F9 - Polymorfism. ID1004 Objektorienterad programmering Fredrik Kilander
F9 - Polymorfism ID1004 Objektorienterad programmering Fredrik Kilander fki@kth.se Polymorfism - flerformighet Vi vet vad metoden heter (signaturen) Men vi vet inte vid anropet exakt vilken metod som faktiskt
Sökning och sortering. Sökning och sortering - definitioner. Sökning i oordnad lista. Sökning med vaktpost i oordnad lista
Sökning och sortering Sökning och sortering - definitioner Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man
Sökning och sortering
Sökning och sortering Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man mycket data och många sökningar måste
samt lite algoritmer en kortfattad introduktion för studenter på Intro:DV
O, P, N och NP samt lite algoritmer en kortfattad introduktion för studenter på Intro:DV DSV En enkel algoritm Ponera att du spelar poker och har fått korten till höger. Eftersom det bara rör sig om fem
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6? DAGENS AGENDA Komplexitet Ordobegreppet Komplexitetsklasser Loopar Datastrukturer Några nyttiga regler OBS! Idag jobbar
Tentamen med lösningsförslag Datastrukturer för D2 DAT 035
Tentamen med lösningsförslag Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.)
Föreläsning 12 Innehåll
Föreläsning 12 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Datavetenskap (LTH) Föreläsning 12 VT 2018 1 / 40 Sortering Varför
Sökning i ordnad lista. Sökning och sortering. Sökning med vaktpost i oordnad lista
Sökning och sortering Sökning i oordnad lista Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man mycket data
Föreläsning 12 Innehåll
Föreläsning 12 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Datavetenskap (LTH) Föreläsning 12 HT 2017 1 / 38 Sortering Varför
Tenta i Grundläggande programmering DD klockan
Tenta i Grundläggande programmering DD1331 2017-10-20 klockan 14.00 16.00 Marcus Dicander, KTH CST Tillåtna hjälpmedel: En Pythonbok, skrivmaterial, mat, medicin och vattenflaska. Otillåtna hjälpmedel:
Sortering. Brute-force. Sortering Ordna element enligt relation mellan nyckelvärden
Sortering Brute-force Sortering Ordna element enligt relation mellan nyckelvärden Flera olika algoritmer med olika fördelar Brute-force Gå igenom alla permutationer och hitta den där elementen ligger i
Planering av ett större program, del 2 - for och listor. Linda Mannila
Planering av ett större program, del 2 - for och listor Linda Mannila 9.10.2007 Vad kan vi nu? Primitiva datatyper Tal, strängar, booleska värden Utskrift Indata Felhantering Funktioner och moduler (grunder)
Föreläsning 5 Innehåll
Föreläsning 5 Innehåll Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Datavetenskap (LTH) Föreläsning 5 VT 2019 1 / 39 Val av algoritm och datastruktur
Ordlistor, filhantering och ut på webben. Linda Mannila 20.11.2007
Ordlistor, filhantering och ut på webben Linda Mannila 20.11.2007 Vad kan vi nu? Primitiva datatyper Tal, strängar, booleska värden Samlingsdatatyp Listan Utskrift Indata Felhantering Funktioner och moduler
Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen
Datastrukturer och algoritmer Föreläsning 15 Inför tentamen 1 Innehåll Kursvärdering Vi behöver granskare! Repetition Genomgång av gammal tenta 2 Första föreläsningen: målsättningar Alla ska höja sig ett
Föreläsning ALGORITMER: SÖKNING, REGISTRERING, SORTERING
Föreläsning 11 12 ALGORITMER: SÖKNING, REGISTRERING, SORTERING Seminarier: Fredagsklubben för dig som tycker att programmering är svårt (0 eller möjligen 1 poäng på delmålskontrollen) inte avsedda för
Föreläsning 5 Innehåll. Val av algoritm och datastruktur. Analys av algoritmer. Tidsåtgång och problemets storlek
Föreläsning 5 Innehåll Val av algoritm och datastruktur Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Det räcker inte med att en algoritm är korrekt
String [] argv. Dagens Agenda. Mer om arrayer. Mer om arrayer forts. String [] argv. argv är variabelnamnet. Arrayer och Strängar fortsättning
Dagens Agenda String [] argv String [] argv Arrayer och Strängar fortsättning Booleska operatorer if, for, while satser Introduktion till algoritmer public static void main(string [] argv) argv är variabelnamnet
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift
6 Rekursion. 6.1 Rekursionens fyra principer. 6.2 Några vanliga användningsområden för rekursion. Problem löses genom:
6 Rekursion 6.1 Rekursionens fyra principer Problem löses genom: 1. förenkling med hjälp av "sig själv". 2. att varje rekursionssteg löser ett identiskt men mindre problem. 3. att det finns ett speciellt
Objektorienterad Programmering DAT043. Föreläsning 10 13/2-18 Moa Johansson (delvis baserat på Fredrik Lindblads material)
Objektorienterad Programmering DAT043 Föreläsning 10 13/2-18 Moa Johansson (delvis baserat på Fredrik Lindblads material) 1 Sökning och Sortering: Binärsökning Problem: Hitta ett element i en godtycklig
Föreläsning 11 Innehåll. Sortering. Sortering i Java. Sortering i Java Comparable. Sortering. O(n 2 )-algoritmer: urvalssortering insättningssortering
Föreläsning 11 Innehåll Sortering O(n 2 )-algoritmer: urvalsering insättningsering O(n log n)-algoritmer: Merge Quick Heap behandlades i samband med prioritetsköer. Undervisningsmoment: föreläsning 11,
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre
Språket Python - Del 1 Grundkurs i programmering med Python
Hösten 2009 Dagens lektion Ett programmeringsspråks byggstenar Några inbyggda datatyper Styra instruktionsflödet Modulen sys 2 Ett programmeringsspråks byggstenar 3 ETT PROGRAMMERINGSSPRÅKS BYGGSTENAR
Introduktion till programmering SMD180. Föreläsning 9: Tupler
Introduktion till programmering Föreläsning 9: Tupler 1 1 Sammansatta datatyper Strängar Sekvenser av tecken Icke muterbara Syntax: "abcde" Listor Sekvenser av vad som helst Muterbara Syntax: [1, 2, 3]
Programmering II (ID1019) :00-11:00
ID1019 Johan Montelius Programmering II (ID1019) 2015-06-11 08:00-11:00 Instruktioner Du får inte ha något materiel med dig förutom skrivmateriel. Mobiler etc, skall lämnas till tentamensvakten. Svaren
Föreläsning 5. Rekursion
Föreläsning 5 Rekursion Föreläsning 5 Algoritm Rekursion Rekursionsträd Funktionsanrop på stacken Binär sökning Problemlösning (möjliga vägar) Algoritm En algoritm är ett begränsat antal instruktioner/steg
Objektorienterad programmering E. Algoritmer. Telefonboken, påminnelse (och litet tillägg), 1. Telefonboken, påminnelse (och litet tillägg), 2
Objektorienterad programmering E Algoritmer Linjär sökning Binär sökning Tidsuppskattningar Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk; dess syntax och semantik, bibliotek
Problemlösning och algoritmer
Problemlösning och algoritmer Human Centered Systems Inst. för datavetenskap Linköpings universitet Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS regeln Procedurell dekomposition
Rekursiva algoritmer sortering sökning mönstermatchning
Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 6-7 Rekursiva strukturer rekursiva definitioner rekursiva funktioner rekursiva bevis: induktion - rekursion strukturell
Datastrukturer och algoritmer. Innehåll. Tabell. Tabell - exempel. Gränsyta till Tabell. Tabell. Modell. Hashtabell Relation, lexikon.
Datastrukturer och algoritmer Föreläsning 7 Tabell, hashtabell Relation & lexikon Innehåll Tabell Tabell Hashtabell Relation, lexikon Modell Uppslagsbok Organisation Ändlig avbildning av argument på värden
Algoritmanalys. Inledning. Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016
Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016 Algoritmanalys Inledning Exempel 1: x n När vi talade om rekursion presenterade vi två olika sätt att beräkna x n, ett iterativt: x n =
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 14:00-19:00
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 170117 kl. 14:00-19:00 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilagarna. *** OBS *** Betygsgräns:
Föreläsning 2 Datastrukturer (DAT037)
Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet
Föreläsning 3 Programmeringsteknik och C DD1316. Innehåll i listor. Uppdateringsoperatorer. +,* och listor. Listor. Indexering
Föreläsning 3 Programmeringsteknik och C DD1316 Innehåll i listor En lista kan innehålla element av olika typer: [ hej, 151, 10.59] uppdateringsoperatorer listor tupler strängar for-slingor importera moduler
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som
TDDC74 Lab 02 Listor, sammansatta strukturer
TDDC74 Lab 02 Listor, sammansatta strukturer 1 Översikt I denna laboration kommer ni att lära er mer om: Mer komplexa rekursiva mönster, procedurer och processer. Hur man kan hantera listor och andra enklare
Föreläsning 13. Rekursion
Föreläsning 13 Rekursion Rekursion En rekursiv metod är en metod som anropar sig själv. Rekursion används som alternativ till iteration. Det finns programspråk som stödjer - enbart iteration (FORTRAN)
Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1
Algoritmer Lars Larsson VT 2007 Lars Larsson Algoritmer 1 1 2 3 4 5 Lars Larsson Algoritmer 2 Ni som går denna kurs är framtidens projektledare inom mjukvaruutveckling. Som ledare måste ni göra svåra beslut
Algoritmer. Två gränssnitt
Objektorienterad programmering E Algoritmer Sökning Linjär sökning Binär sökning Tidsuppskattningar Sortering Insättningssortering Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk;
Övning 4. Hashning, sortering, prioritetskö, bästaförstsökning. Hitta på en perfekt hashfunktion för atomer. Hur stor blir hashtabellen?
Per Sedholm DD1320 (tilda12) 2012-09-20 Övning 4 Hashning, sortering, prioritetskö, bästaförstsökning 1. Perfekt hashfunktion Hitta på en perfekt hashfunktion för atomer. Hur stor blir hashtabellen? Vi
Algoritmer och effektivitet. Föreläsning 5 Innehåll. Analys av algoritmer. Analys av algoritmer Tidskomplexitet. Algoritmer och effektivitet
Föreläsning 5 Innehåll Algoritmer och effektivitet Algoritmer och effektivitet Att bedöma, mäta och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Undervisningsmoment: föreläsning 5, övningsuppgifter
Laboration: Whitebox- och blackboxtesting
Tilda11 höstterminen 2011 Laboration: Whitebox- och blackboxtesting Mål med laborationen Du ska lära dig begreppen white-box testing och black-box testing Du ska öva dig på att konstruera testfall Du ska
Innehåll. Sökning och hashtabeller. En bilsamling att söka i. En bil-klass att söka efter. Hur hittar vi alla bilar som uppfyller ett annat villkor
Innehåll Sökning och hashtabeller Henrik Bergström henrikbe@dsv.su.se Sökning i linjära strukturer Söka efter många objekt Sökning efter ett objekt Sekventiell sökning Binär sökning Sökning efter godtyckligt
Datastrukturer D. Föreläsning 2
Datastrukturer D Föreläsning 2 Jämförelse mellan olika sorteringsalgoritmer n Selection sort T(n) Insertion sort T(n) 2 1 1 1 Merge sort T(n) 4 6 3-6 4-5 8 28 7-28 12-17 16 120 15-120 32-49 Analysis of
Övningsuppgifter #11, Programkonstruktion och datastrukturer
Övningsuppgifter #11, Programkonstruktion och datastrukturer Lösningsförslag Elias Castegren elias.castegren@it.uu.se Övningar 1. 1 2. 2 3. Ett binomialträd med rang n har 2 n noder. En binomial heap innehåller
Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering
2D1458, Problemlösning och programmering under press Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering Datum: 2007-09-04 Skribent(er): Anders Malm-Nilsson och Niklas Nummelin Föreläsare:
Några saker till och lite om snabbare sortering
Några saker till och lite om snabbare sortering Generellt om avbrott Generera avbrott Snabb sortering principer Snabb sortering i Scheme och Python QuickSort (dela städat slå ihop) Mergesort (dela slå
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2010-03-16 Skrivtid: 4 timmar Kontaktperson: Nicolina Månsson Poäng / Betyg: Max 44 poäng
Sortering. Om du följt dessa steg korrekt så ska böckerna nu vara sorterade.
Sortering Den sorteringsalgoritm som vi använder oss kallas selection sort (urvalssortering) och är en av många existerande sorteringsalgoritmer. Dess funktionssätt beskrivs kanske bäst genom ett konkret
Föreläsning REPETITION & EXTENTA
Föreläsning 18 19 REPETITION & EXTENTA Programmeringsteknik på 45 minuter Klasser och objekt Variabler: attribut, lokala variabler, parametrar Datastrukturer Algoritmer Dessa bilder är inte repetitionsbilder
Vad har vi pratat om i kursen?
Vad har vi pratat om i kursen? Föreläsning 1 & 2 Systemminnet och systemstacken Rekursion Abstrakta datatyper Föreläsning 3 ADT:n Länkad lista Föreläsning 4 ADT:n Kö ADT:n Stack Föreläsning 5 Komplexitet
729G74 IT och programmering, grundkurs. Tema 3. Föreläsning 2 Jody Foo,
729G74 IT och programmering, grundkurs Tema 3. Föreläsning 2 Jody Foo, jody.foo@liu.se Föreläsningsöversikt Repetition: syntax-quiz Fler for-loopar (över listor och dictionaries) range() Nästlade strukturer
1 Standardalgoritmer. 1.1 Swap. 1.2 Sök minsta värdet i en array
1 Standardalgoritmer En algoritm är en beskrivning av en metod för att låsa någon uppgift. Man specificerar indata och utdata. Indatat ges av metodargument och utdata ges som regel av returtypen. 1.1 Swap
Datastrukturer och algoritmer
Datastrukturer och algoritmer Föreläsning 16 2 Innehåll Snabbrepetition Exempeltentamen Kursutvärdering Mina målsättningar Kursens mål: 3 Rolig och viktig kurs Bli en bättre programmerare och inse att
Grafer, traversering. Koffman & Wolfgang kapitel 10, avsnitt 4
Grafer, traversering Koffman & Wolfgang kapitel 1, avsnitt 4 1 Traversering av grafer De flesta grafalgoritmer innebär att besöka varje nod i någon systematisk ordning precis som med träd så finns det
Programmering II (ID1019) :00-17:00
ID1019 Johan Montelius Programmering II (ID1019) 2014-03-10 14:00-17:00 Förnamn: Efternamn: Instruktioner Du får inte ha något materiel med dig förutom skrivmateriel. Mobiler etc, skall lämnas till tentamensvakten.
GOTO och lägen. Några saker till och lite om snabbare sortering. GOTO och lägen (3) GOTO och lägen (2)
Några saker till och lite om snabbare sortering GOTO och lägen GOTO hemskt eller ett måste? CASE enkla val över diskreta värdemängder Snabb sortering principer Snabb sortering i Scheme och Pascal QuickSort
TDDI16 Datastrukturer och algoritmer. Algoritmanalys
TDDI16 Datastrukturer och algoritmer Algoritmanalys 2017-08-28 2 Översikt Skäl för att analysera algoritmer Olika fall att tänka på Medelfall Bästa Värsta Metoder för analys 2017-08-28 3 Skäl till att
Några saker till och lite om snabbare sortering
Några saker till och lite om snabbare sortering GOTO hemskt eller ett måste? CASE enkla val över diskreta värdemängder Snabb sortering principer Snabb sortering i Scheme och Pascal QuickSort (dela städat
Databaser - Design och programmering. Minnesteknik. Minnesteknik, forts. Hårddisk. Primärminne (kretsteknik) Fysisk design av databasen
Databaser Design och programmering Fysisk design av databasen att ta hänsyn till implementationsaspekter minnesteknik filstrukturer indexering Minnesteknik Primärminne (kretsteknik) Flyktigt Snabbt Dyrt
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 10 Erik Nilsson, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 10 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Lägre gräns för sortering Count sort,
Datalogi för E Övning 3
Datalogi för E Övning 3 Mikael Huss hussm@nada.kth.se AlbaNova, Roslagstullsbacken 35 08-790 62 26 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1343/datae06 Dagens program Att skapa egna
Datastrukturer och algoritmer
Datastrukturer och algoritmer Föreläsning 5 Algoritmer & Analys av Algoritmer Algoritmer Vad är det? Innehåll Mer formellt om algoritmer beräkningsbarhet Att beskriva algoritmer Analysera algoritmer Exekveringstid,
Sortering. Föreläsning 12 Innehåll. Sortering i Java. Sortering i Java Exempel. Sortering
Föreläsning 12 Innehåll Sortering Sortering O(n 2 )-algoritmer: urvalsering insättningsering O(n log n)-algoritmer: Merge Quick Varför era? För att göra sökning effektivare. För att förenkla vissa algoritmer.
3. Toppkvinnor på hög Låt lådan och de två kvinnornas famnar utgöra stackarna L, K1 respektive K2. Från början finns alla kort i L.
KTH, Nada, Erik Forslin 2D1343, LÖSNING TILL TENTAMEN I DATALOGI FÖR ELEKTRO Lördagen den 8 mars 2003 kl 14 19 Maxpoäng tenta+bonus = 50+7. Betygsgränser: 25 poäng ger trea, 35 ger fyra, 45 ger femma.
KTH, NADA, Vahid Mosavat. 1. Flervalsfrågor (5p)
KTH, NADA, Vahid Mosavat 2D1343, TENTAMEN I DATALOGI FÖR ELEKTRO Onsdagen den 31 mars 2004 kl 8-13 Maxpoäng: tenta+bonus = 50+7. Betygsgränser: 25 poäng ger trea, 35 ger fyra, 45 ger femma. Otydliga/svårlästa
SORTERING OCH SÖKNING
Algoritmer och Datastrukturer Kary FRÄMLING Kap. 9, Sid 1 C-språket 2/Kary Främling v2000 och Göran Pulkkis v2003 SORTERING OCH SÖKNING Sortering är ett av de bästa exemplen på problem där valet av lösningsalgoritm
Introduktion till programmering SMD180. Föreläsning 4: Villkor och rekursion
Introduktion till programmering Föreläsning 4: Villkor och rekursion 1 1 Några inbyggda funktioner (med resultat!) Konverterar mellan de grundläggande typerna: >>> int("32") 32 >>> int(3.999) 3 >>> float(32)
Tentamen TEN1 HI
Tentamen TEN1 HI1029 2014-03-14 Skrivtid: 8.15-13.00 Hjälpmedel: Referensblad (utdelas), papper (tomma), penna Logga in med tentamenskontot ni får av skrivvakten. Det kommer att ta tid att logga in ha
Det är principer och idéer som är viktiga. Skriv så att du övertygar rättaren om att du har förstått dessa även om detaljer kan vara felaktiga.
Tentamen Programmeringsteknik II 2014-0-27 Skrivtid: 0800 100 Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja alltid ny uppgift på nytt papper. Lägg
Databaser Design och programmering Minnesteknik Minnesteknik, forts Utvecklingen Hårddisk Hårddisk, forts
Databaser Design och programmering Fysisk design av databasen att ta hänsyn till implementationsaspekter minnesteknik filstrukturer indexering 1 Minnesteknik Primärminne (kretsteknik) Flyktigt Snabbt Dyrt
Föreläsning 7 Innehåll. Rekursion. Rekursiv problemlösning. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursion. Rekursivt tänkande:
Föreläsning 7 Innehåll Rekursion Rekursivt tänkande: Hur många år fyller du? Ett år mer än förra året! Rekursion Rekursiv problemlösning Binärsökning Generiska metoder Rekursiv problemlösning: Dela upp
Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd
Innehåll Föreläsning 12 Sökträd Sökning Sökning och Sökträd 383 384 Binärt sökträd Används för sökning i linjära samlingar av dataobjekt, specifikt för att konstruera tabeller och lexikon. Organisation:
Grundläggande programmering med C# 7,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: TEN1 NGC011 ADAEK17, ASYST17 samt öppen för alla
Grundläggande programmering med C# 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: TEN1 NGC011 ADAEK17, ASYST17 samt öppen för alla TentamensKod: Tentamensdatum: 180322 Tid: 09.00 13.00 Hjälpmedel:
Teoretisk del. Facit Tentamen TDDC (6)
Facit Tentamen TDDC30 2014-08-29 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Vad är skillnaden mellan synligheterna public, private och protected? (1p) Svar:public: Nåbar för
Föreläsning 9. Sortering
Föreläsning 9 Sortering Föreläsning 9 Sortering Sortering och Java API Urvalssortering Instickssortering Söndra och härska Shellsort Mergesort Heapsort Quicksort Bucketsort Radixsort Läsanvisningar och
Föreläsning 6 Innehåll. Rekursion. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursiv problemlösning. Rekursion. Rekursivt tänkande:
Föreläsning 6 Innehåll Rekursion Begreppet rekursion Rekursiv problemlösning Samband mellan rekursion och induktion Söndra-och-härska-algoritmer Dynamisk programmering Undervisningsmoment: föreläsning
Föreläsning 13 Innehåll
Föreläsning 13 Innehåll Exempel på problem där materialet i kursen används Hitta k största bland n element Histogramproblemet Schemaläggning PFK (Föreläsning 13) VT 2013 1 / 15 Hitta k största bland n
Programmering II (ID1019) :00-11:00
ID1019 Johan Montelius Programmering II (ID1019) 2015-06-11 08:00-11:00 Instruktioner Du får inte ha något materiel med dig förutom skrivmateriel. Mobiler etc, skall lämnas till tentamensvakten. Svaren
TDDC74 - Lektionsmaterial C
TDDC74 - Lektionsmaterial C Lektioner innehåller uppgifter av varierande slag. En del är mer diskussionsartade, andra mer experimentella. Ni behöver inte lämna in eller visa upp lösningarna på dessa för
Objektorienterad programmering Föreläsning 9. Copyright Mahmud Al Hakim Agenda (halvdag)
Objektorienterad programmering Föreläsning 9 Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Agenda (halvdag) Fält Grunderna Fält med komponenter av struct-typ Fält med referenser Standardklassen
Föreläsning 10 Innehåll. Prioritetsköer och heapar. ADT Prioritetskö. Interface för Prioritetskö. Exempel på vad du ska kunna
Föreläsning Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Implementering med lista ar Implementering av prioritetskö med heap Sortering
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Omega, Theta Selectionsort, Shellsort,
Några inbyggda funktioner (med resultat!) Introduktion till programmering D0009E. Föreläsning 4: Villkor och rekursion. Modulus-operatorn.
Några inbyggda funktioner (med resultat!) Introduktion till programmering D0009E Föreläsning 4: Villkor och rekursion Konverterar mellan de grundläggande typerna: >>> int("") >>> int(.999) >>> float().0
Lösning av några vanliga rekurrensekvationer
1 (8) Lösning av några vanliga rekurrensekvationer Rekursiv beräkning av X n En rekursiv funktion som beräknar x n genom upprepad multiplikation, baserat på potenslagarna X 0 = 1 X n+1 = X X n float pow(float
729G04 Programmering och diskret matematik. Python 3: Loopar
729G04 Programmering och diskret matematik Python 3: Loopar Översikt Labbar Punktnotation och strängmetoder Loopar Labb 3 Labbar? Punktnotation Punktnotation Ni har stött på punktnotation tidigare - kapitel