Swedish agencies and nanomaterials: Activities and developments

Storlek: px
Starta visningen från sidan:

Download "Swedish agencies and nanomaterials: Activities and developments"

Transkript

1 PM 4/12 Swedish agencies and nanomaterials: Activities and developments Swedish Chemicals Agency

2

3 Swedish agencies and nanomaterials: Activities and developments

4 Order No Sundbyberg, juni 2012 Publisher: Swedish Chemicals Agency Order address: CM Gruppen, P.O. Box 11063, SE Bromma, Sweden Phone: , Fax , kemi@cm.se The report is available as a downloadable pdf on

5 Preface The Swedish Chemicals Agency (KemI) has been assigned by the Swedish Government to produce a national action plan for a toxic-free everyday environment: Action plan for a toxicfree everyday environment protect the children better. Efforts are now going on in several areas, both in Sweden, within the EU and internationally and often in cooperation with other authorities. Reducing chemical risks in the everyday environment is one step towards attaining the Swedish Parliament s environment quality objective A Non-Toxic Environment, which is the objective that KemI is responsible for. Within the framework of the action plan, KemI compiles knowledge in KemI s report and PM series elaborated by experienced colleagues, researchers or consultants. In this way, KemI presents new and essential knowledge in publications which can be downloaded from the website In the action plan there is particular focus on health and environmental risks with nanomaterials. Therefore KemI invited to a joint meeting on 25 November 2011 to get an overview of the nanorelated activites of Swedish government authorities. This report contains presentations of the different authorities activities within the nano area and notes from the following discussion. The main objective of the workshop was to investigate the need and suitable forms for an interagency collaboration. The report was compiled and edited by Linda Schenk at the Division of Philosophy at the Royal Institute of Technology. Project leaders and contacts at KemI were Lena Hellmér and Maria Wallén. Responsible for the project at KemI was Agneta Falk-Filipsson, Head of Unit, Risk Reduction and Support The report contains a collection of texts provided by participating agencies and a summary of the interagency workshop, which does not reflect necessarily the view of KemI. The authors of the agency texts in this report are as follows: The Foundation for Strategic Environmental Research: Christopher Folkesson Welch. The Medical Products Agency: Luisa Becedas, Monica Tammela. The National Food Agency: Evelyn Jansson Elfberg, Birgitta Lund, Lars Börje Croon, Lilianne Abramsson, Kettil Svensson. The National Veterinary Institute: Karin Artursson. The Swedish Agency for Non-Proliferation and Export Controls: Linda Hinas. The Swedish Chemicals Agency: Lena Hellmér, Maria Wallén. The Swedish Civil Contingencies Agency: Claes Löfström. The Swedish Defense Research Agency: Ulrika Bergström, Lars Österlund, Håkan Wingfors, Anders Bucht. The Swedish Defense Materiel Administration: Hans Norinder, Birgit Ramfjord. The Swedish Environmental Protection Agency: Britta Hedlund. The Swedish National Board of Housing, Building and Planning: Kristina Einarsson. The Swedish National Council on Medical Ethics: Lotta Eriksson, Göran Hermerén. The Swedish Patent and Registration Office: Fredrik Wahlin. The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning: Conny Rolén and Lena Strålsjö. The Swedish Transport Administration: Malin Kotake, Jessica Simon, Hans Holmen, Mona Lundcrantz. The Swedish Work Environment Authority: Claes Trägårdh. The other text parts were written by Linda Schenk. A list of the workshop participants is provided in Appendix B.

6

7 Contents Summary... 7 Sammanfattning Introduction Scope and aim of this report Agencies summaries of nanoactivities The Foundation for Strategic Environmental Research (Mistra) The Medical Products Agency (MPA) The National Food Agency (NFA) The National Veterinary Institute (SVA) The Swedish Agency for Non-Proliferation and Export Controls (ISP) The Swedish Chemicals Agency (KemI) The Swedish Civil Contingencies Agency (MSB) The Swedish Defense Research Agency (FOI) The Swedish Defense Materiel Administration (FMV) The Swedish Environmental Protection Agency (NV) The Swedish National Board of Housing, Building and Planning (Boverket) The Swedish National Council on Medical Ethics (Smer) The Swedish Patent and Registration Office (PRV) The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) The Swedish Transport Administration (Trafikverket) The Swedish Work Environment Authority (SWEA) Joint outlook The Nano workshop What are the largest challenges within the nano field? How to reach sustainable nanomaterial innovations, i.e. to have product development to go hand in hand with research on potential risks to health and the environment? Which research is needed within the nano field from a government perspective? Should there be inter-agency cooperation in the nano field? Concluding remarks Appendix A The European Commission s recommendation for a definition of nanomaterials Appendix B Workshop invitation and program in Swedish Appendix C Presentations given at the nano-workshop... 52

8

9 Summary This report is a compilation of the activities of Swedish agencies concerning nanotechnologies and nanomaterials. The aim of this report was to gain an overview of questions that Swedish agencies are involved with, and to investigate the need for and potential of an interagency network regarding nanotechnology and nanomaterials. Invitations to an interagency nanomaterials workshop were sent out to the eleven ministries within the Government Offices of Sweden and 27 government agencies or public funding agencies that were judged to have activities or interests related to nanotechnology in Sweden. In the invitation a summary of the nano activities was also requested for the purpose of this report and 16 agencies provided a text about their activities, three of these without participating at the workshop. In total, the following 17 agencies participated during the workshop on 25 November 2011: The Foundation for Strategic Environmental Research The Medical Products Agency The Ministry of the Environment The National Board of Health and Welfare The National Food Agency The Swedish Agency for Non-Proliferation and Export Controls The Swedish Armed Forces The Swedish Chemicals Agency The Swedish Civil Contingencies Agency The Swedish Defense Research Agency The Swedish Defense Materiel Administration The Swedish Environmental Protection Agency The Swedish Governmental Agency for Innovation Systems The Swedish National Council on Medical Ethics The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning The Swedish Transport Administration The Swedish Work Environment Authority The major outcome of the workshop was the agreement on the formation of an interagency network for collaboration toexchange knowledge. This network will facilitate interactions between different agencies and will broaden the perspective of these actors. Nanomaterials constitute a number of challenges for agencies, some of which are shortly summarised here: To identify where nanomaterials can be found within each agency s sphere of responsibilities / interest area. Need for review of legislation and adjustment to nanomaterials There is a need for knowledge of the use of nanomaterials in society. Sufficient knowledge on the potential hazards of nanomaterials is lacking. Proper risk assessment methods have to be derived and used. Current risk assessment methodology is developed for substances in the bulk, but there might be additional challenges when assessing risks of nanomaterials. Measurement and detection methods are lacking in many cases. Currently there is a lack of appropriate tests for toxicological evaluation. 7

10 Sammanfattning Denna rapport är en sammanställning av verksamheten på svenska myndigheter gällande nanoteknik och nanomaterial. Syftet med projektet som redovisas i denna rapport är att få en överblick av frågor som svenska myndigheter arbetar med inom nanoområdet samt att utreda behovet av ett speciellt myndighetsnätverk angående nanoteknologi och nanomaterial. En inbjudan till ett myndighetsgemensamt seminarium om nanomaterial skickades till samtliga departement inom Regeringskansliet och 27 statliga myndigheter eller offentliga finansiärer som bedömdes ha aktiviteter eller intressen med anknytning till nanomaterial och nanoteknik i Sverige. I inbjudan efterfrågades också ett textunderlag till denna rapport. Sexton myndigheter har bidragit med en sammanfattning av sin nanomaterialsrelaterade verksamhet, tre av dessa utan att delta vid seminariet. Totalt deltog 17 myndigheter på seminariet den 25 november 2011: Arbetsmiljöverket Livsmedelsverket Läkemedelsverket Inspektionen för strategiska produkter Kemikalieinspektionen Försvarsmakten Försvarets forskningsinstitut Försvarets materielverk Miljödepartementet Myndigheten för samhällsskydd och beredskap Naturvårdsverket Socialstyrelsen Stiftelsen för miljöstrategisk forskning (Mistra) Sveriges medicinsk-etiska råd Forskningsrådet för miljö, areella näringar och samhällsbyggande (Formas) Trafikverket Vinnova Det viktigaste resultatet av workshopen var önskemålet att bilda ett myndighetsöverskridande nätverk för samarbete och informationsutbyte i nanomaterialsfrågan. Detta nätverk kommer att underlätta möten mellan olika myndigheter och kommer att bredda perspektivet för myndighetsaktörerna. Användning av nanomaterial medför en rad utmaningar för myndigheter av vilka en del kort sammanfattas här: Att identifiera var nanomaterial kan finnas inom varje myndighets ansvars- eller intresseområde. Lagstiftning måste ses över för att anpassas till nanomaterial. Behov av kännedom om spridningen av nanomaterial i samhället Kunskap om de potentiella riskerna med nanomaterial är bristfällig. Fungerande riskbedömningsmetoder måste utvecklas, nuvarande metoder är utvecklade för bulkämnen och nanomaterial kan innebära nya utmaningar för riskbedömning. Mät- och detektionsmetoder saknas i många fall. För närvarande finns en brist på lämpliga toxicitetstester. 8

11 1 Introduction Nanotechnology has a potential to bring benefits to society offering unique opportunities for novel applications, ranging from more energy efficient and faster computers and mobile phones, to stronger and more durable materials, more efficient energy harvesting and storage devices, applications based on antimicrobial or self-cleaning properties and nano-medicine. While wishing to further the beneficial opportunities, agencies also need to address the concerns regarding risks to health and the environment and there is yet no established risk management strategy for nanomaterials which complicates the issue for agencies and other stakeholders. Regulatory applicability is an important issue for many agencies. National and international regulatory frameworks for chemicals in their different applications, e.g. industrial chemicals, pharmaceuticals, cosmetics, food and food contact materials, are considered to apply also to nanomaterials. Nevertheless, it is unclear how efficiently these current pieces of legislation and regulations will manage potential risks posed by engineered nanomaterials. One example is the European chemicals legislation, REACH. In this legislation the data requirements are associated to tonnage triggers. Although nanomaterials are covered by REACH, the amounts imported or produced often are expected to be too low to trigger the requirements of safety evaluation and testing. In addition, the current state of knowledge indicates that nanomaterials might be harmful to health and the environment already at these lower amounts (due to e.g. the high specific surface area of nanomaterials compared with bulk materials). Thus REACH might not efficiently manage the risks of nanomaterials. A major obstruction to the evaluation of regulatory applicability has been lack of a generally accepted definition of the term nanomaterial. A definition of nanomaterial was, however, recommended by the European Commission in October 2011 (see Appendix A). A number of countries have in the ten past years presented national research programmes and strategies regarding nanotechnologies, but Sweden has not yet adopted such a strategy. In 2009, the Swedish governmental authority for innovation systems (Vinnova), was assigned with the task to develop a proposal for a strategy for the nanotechnology area. The strategy was to target the issue of how opportunities and risks possibly associated with the use of nanotechnology may be safeguarded and monitored in the light of the rapid expansion within the area, and has been published by Vinnova 1. Among the proposals in this document was the formation of a nanotechnology delegation, which would work towards sustainable and successful implementation of nanotechnological applications in Sweden. 1.1 Scope and aim of this report This report has as an objective to give an overview of the nano-related activities of Swedish government agencies. These agencies might for instance be regulators, supervisors funding agencies, and/or users of nanomaterials. As such, different agencies have different perspectives on the nano area, and in a joint overview new insights might be gained. The Swedish Chemicals Agency (KemI) therefore invited to a joint workshop on 25 November 2011 at which nanotechnologies and nanomaterials were to be discussed. One important aim of the workshop was to investigate the need and suitable forms for interagency collaboration. 1 Vinnova Nationell strategi för nanoteknik. Ökad innovationskraft för hållbar samhällsnytta. Vinnova. 9

12 Invitations were sent out to the eleven ministries within the Government Offices of Sweden and 27 government authorities or public funding agencies that were judged to have activities or interests related to nanotechnology in Sweden. All invited agencies were also asked to provide a summary of their nanomaterial- related activities in connection to the workshop, regardless of whether they were to participate or not. Sixteen agencies provided such summaries, and these are presented in section 2. Three agencies provided texts without participating in the workshop. At the workshop 17 agencies participated, the outline of the agenda and a summary of the discussions are presented in section 3. 2 Agencies summaries of nanoactivities The 16 agencies that have provided a summary are presented in alphabetical order in the following sections. The scope of each summary varies according to the agency s tasks and relation to nanomaterials. In the invitation the following topics were suggested as a starting point for the agency summaries: Agency participation in working groups both internally and externally, for example in the EU and the OECD. Statement of the applicability of the relevant regulations. Nanomaterials in the agency s business or action plan. A description of completed, ongoing and planned projects regarding nanomaterials. A description of the main challenges in the nanofield for the agency. The National Veterinary Institute (2.4), the Swedish National Board of Housing, Building and Planning (2.11), and the Swedish Patent and Registration Office (2.13) did not participate during the workshop described in section The Foundation for Strategic Environmental Research (Mistra) Mistra is an independent foundation which funds research aimed at providing solutions for environmental issues and sustainable development. Mistra identified the potential environmental impact of nanomaterials to be of special interest several years ago. Currently Mistra does not have any programmes with nanotechnology or nanomaterials in focus, but a number of previous projects have included nanotechnological applications or the effects of nanotechnology on society and environment (table 1). Some of these which were funded within the ProEnviro programme were cofunded with the Swedish Foundation for Strategic Research. 10

13 Table 1 Finished Mistra projects concerning nanotechnology. Title Institute Funding MSEK Period Main applicant Nanostructured photocatalysts Chalmers Michael Zäch Macrospheres for hydrogen storage Wolfram Nano Composites Ecological and social sustainable development of nanotechnology Uppsala University Uppsala University Göteborg University 4, Lars Stenmark 2, Mattias Karls 6, Hans Fogelberg Some current research programmes use nanotechnology and related technologies as a tool (table 2). For example, researchers within E4-Mistra are developing methods to increase the cost and resource effectiveness of transport systems whilst at the same time reducing the emission of partially combusted fuels and nitrous oxides using nano-particulate catalysts. MistraPharma are developing systems to monitor and reduce the occurrence of pharmaceuticals in waste water. Among the purification processes being investigated are nano-particle based methods. Table 2 Mistra programmes using nanomaterials as a tool. Title Institute Funding MSEK Period E4-Mistra Chalmers MistraPharma KTH MASE MASE Laboratorier AB 2010 Marine Paint Göteborg University Main applicant Jonas Edvardsson Christina Rudén Christopher Folkeson Welch Thomas Backhaus Outlook Mistra Mistra are currently investigating the possibilities for investing in a programme under the general title Solving Environmental Problems with Nanotechnology. A very rough division of nanotechnology has led to identification of the following areas. New nanomaterials Application of nanomaterials for solving environmental problems Environmental fate of nanomaterials Environmental and health impact of nanomaterials A possible call for programme proposals covering three of these areas may be published during

14 2.2 The Medical Products Agency (MPA) The responsibilities of MPA nanomaterial related activities are mainly connected to the EU level regulations of pharmaceuticals and cosmetics, which will be presented in the following sections. Legislation on cosmetics The new Cosmetics Regulation 1223/2009/EC 2, hereafter referred to as the regulation, contains a number of new rules concerning nanomaterials. Most of the rules are collected in a separate article on nanomaterials (Article 16). In the compulsory notification of all cosmetic products to the EU Commission product registry, six months prior to placing the products on the market companies must indicate whether their products contain ingredients in the form of nanomaterials (Article 13 paragraph 1f ). This notification must be accompanied by extensive documentation regarding, e.g. specification of the nanomaterial, toxicological profile, safety evaluation and foreseeable exposure conditions. In addition, the annual emissions should be estimated. If the Commission suspects safety of a nanomaterial, the Commission shall request the opinion of the Scientific Committee on Consumer Safety (SCCS). The Commission can if necessary, issue restrictions concerning specific cosmetic products containing nanomaterials. The Commission may also initiate a review of a nanomaterial and change the regulatory requirements specified in the previous paragraph with regard to new information and scientific developments. The Commission shall publish a list of all nanomaterials used in cosmetics and submit an annual progress report to the European Parliament which, among other things, provides statistics on the use of nanomaterials and the development of assessment methods and guidelines for safety assessment of nanomaterials. The regulation defines nanomaterial as "an insoluble or biopersistent and intentionally manufactured material with one or more external dimensions, or an internal structure, on the scale from 1 to 100 nm." (Article 2, paragraph 1 k and 3). The Commission shall, in accordance with this regulation periodically review the rules on nanomaterials and propose changes to the definition. The first review should be performed before 11 July Furthermore, the regulation establishes rules concerning labelling of nanomaterials. All ingredients present in the nanomaterial form shall be followed by "(nano)" in the list of ingredients (Article 19 paragraph 1g). In this way, consumers can get information about which products contain nanomaterials. In order to prepare for the implementation of the regulation, a working group on market surveillance in the European Commission (PEMSAC - Platform of European Market Surveillance Authorities for Cosmetics) will control nanomaterials. In 2012, cosmetic products using nanomaterials will be mapped. Thereafter, the working group intends to analyze products in order to identify content of nanomaterials during 2013 and Cut-off values have been discussed, concerning the size, distribution of particle sizes and whether this should be determined by weight or percentage of the number of particles. 2 Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Official Journal of the European Union L342/59 12

15 Nanomaterials are also discussed within international cooperation, International Cooperation on Cosmetic Regulation in which, amongst others, the European Commission participates. At the last meeting appropriate methods for characterising nanomaterials have been surveyed and discussed. Ongoing activities within the European Medicines Agency (EMA) The approval of pharmaceuticals is regulated by Directive 2001/83/EC, and thus a major part of the nanotechnology related work of MPA in the area of pharmaceuticals is performed within the framework for EMA. According to the EU regulations, the marketing company must present sufficient information to demonstrate that the benefits of the product outweigh the risks. Currently, there are no special rules for handling nanomaterials in pharmaceuticals in the approval process. However, any issues that relate specifically to the nanomaterial properties should be addressed on a case by case basis. EMA has started a number of groups in order to discuss the potential harmful properties and the innovation possibilities of nanomaterials in the pharmaceutical field. In 2010 EMA held a seminar "1st International Workshop on Nanomedicines" targeted at collecting information from member states and stakeholders. MPA was not represented at this seminar, but a report has been published and is available at the MPA s webpage 3. According to this report it was concluded that to make use of the benefits of nanotechnology for developing new pharmaceuticals (more knowledge and global expertise are needed. During the autumn of 2011, EMA was forming a multidisciplinary working group for a continued dialogue between experts in the nano field. EMA will also conduct a review of the pharmaceutical legislation and provide opportunities for scientific developments that benefit patients. Outlook MPA MPA will follow EMA s and COM s work for medical product and cosmetic products, respectively, in the nano field. 2.3 The National Food Agency (NFA) Currently, NFA participates in the EU Commission working groups on food contact materials and food additives and in an EU Council working group for the regulation of novel foods. The issue of nanotechnology is presently discussed in these working groups. Application as Member within the Efsa Scientific Network on risk assessment of nanotechnologies in food and feed is ongoing. Conditions for risk assessment of nanomaterials in food and feed Risk assessments of chemical substances comprise two important factors; exposure and toxicity. Concerning exposure to a nano substance (< 100 nm) two important properties should be taken into account in addition to the conventional standard of a weight measure, namely its very small size and its large surface area compared with its volume. According to Efsa (The European Food Safety Authority), adequate characterisation of a nano substance is essential for establishing its identity and physico-chemical forms in food products and under

16 testing conditions, i.e. the determination of physico-chemical characteristics is important for the subsequent experimental design and for the exposure assessment. Moreover, from the toxicity point of view the characterisation of the nanosubstance as present in biological fluids and tissues is important particularly for the ADME (absorption, distribution, metabolism, excretion) studies. Furthermore, toxicity test models and standard testing protocols used for non-nanoform substances may not necessarily be appropriate or optimal for the testing of nano substance.therefore the present standard toxicological methods need to be further developed or at least fine-tuned. In conclusion, there are currently uncertainties related to the identification, characterisation and detection of a nanosubstance. Similarly, there are a number of uncertainties related to the applicability of current standard biological and toxicological testing methods to nano substances. Overall this implies that at present it is not possible to carry out a proper risk assessment of a nanomaterial. Applications foreseen by EFSA The following broad categories of nanotechnology applications in the food and feed sector have been described (Chaudhry et al., 2008; Observatory-nano, 2009): - Where nanotechnology processes and materials have been employed to develop food contact materials (FCM). This category includes nanomaterial-reinforced materials (also referred to as nanocomposites), active FCM designed to have some sort of interaction with the food or environment surrounding the food, and coatings providing surfaces with nanomaterials or nanostructures. - Where food/feed ingredients have been processed or formulated to form nanostructures. This category includes applications that involve processing food ingredients at nanoscale to form nanostructures or enhance taste, texture, and consistency of the foodstuffs. - Where nanosized, nanoencapsulated, or ENM (engineered nanomaterials) ingredients have been used in food/feed. This category includes nanoscale ingredients, including additives (such as colourants, flavourings, preservatives) and processing aids (including nanoencapsulated enzymes) that can be produced for a variety of uses. - Biosensors for monitoring condition of food during storage and transportation. This category includes packaging which includes indicators. - Other indirect applications of nanotechnologies in the food and feed area, such as the development of nanosized agro-chemicals (including fertilisers, pesticides etc.), or veterinary medicines. Legislation relevant for NFA activities General legislation - Food law According to the European Parliament and Council Regulation (EU) No 178/2002 laying down the general principles and requirements of food law: Article 14.1 Food safety requirements Food shall not be placed on the market if it is unsafe. Article 17 Responsibilities Food and feed business operators at all stages of production, processing and distribution within the businesses under their control shall ensure that foods or feeds satisfy the 14

17 requirements of food law which are relevant to their activities and shall verify that such requirements are met. Article 19 Responsibilities for food: Food business operators. If a food business operator considers or has reason to believe that food which it has imported produced, processed, manufactured or distributed is not in compliance with the food safety requirements, it shall immediately initiate procedures to withdraw the food in question from the market and inform the competent authorities thereof. Food additives According to European Parliament and Council Regulation (EU) No 1333/2008 on food additives: Article 6.1 General conditions for inclusions and use of food additives in Community lists. A food additive may be included in the Community lists in Annexes II and III only if it meets the following conditions and, where relevant, other legitimate factors, including environmental factors. It does not, on the basis of the scientific evidence available, pose a safety concern to the health of the consumer at the level of use proposed: Article 12 Changes in the production process or starting materials of a food additive already included in a Community list. When a food additive is already included in a Community list and there is a significant change in its production methods or in the starting materials used, or there is a change in the particle size, for example through nanotechnology, the food additive prepared by those new methods or materials shall be considered as a different additive and a new entry in the Community lists or a change in the specifications shall be required before it can be placed on the market. Novel Food European Parliament and Council Regulation (EU) No 258/1997 concerning novel foods and novel food ingredients: Article 1.2 (f) Food and food ingredients to which has been applied a production process not currently used, where that process gives rise to significant changes in the composition or structure of the foods or food ingredients which affect their nutritional value, metabolism or level of undesirable substances. Information: Regulation of Novel food is on hold at present in the Commission as EP voted against due to the cloning item. Member states are waiting for a new proposal from the Commission with or without the question of cloning. In March 2010 the following was agreed upon by the member states. 15

18 Position (EU) No 6/2010 of the Council at first reading With the view to the adoption of a Regulation of the European Parliament and of the Councilon novel foods, amending Regulation (EC) No 1331/2008 and repealing Regulation (EC) No 258/97 AND Commission Regulation (EC) No 1852/2001. Adopted by the Council on 15 March Definition of engineered nanomaterial in proposed new regulation of Novel food: Article 3 Definitions 3.2 (a) novel food means food that was not used for human consumption to a significant degree within the Union before 15 May 1997, including: 3.2 (a) (iv) food containing or consisting of engineered nanomaterials; (which means Engineered nanomaterials are always novel food independent of significant changes.) 3.2(c) engineered nanomaterial means any internationally produced material that has one or more dimensions of the order of 100 nm or less or that is composed of discrete functional parts, either internally or at the surface, many of which have one or more dimensions of the order of 100 nm or less, including structures, agglomerates, which may have a size above the order of 100 nm but retain properties that are characteristic of the nanoscale. Properties that are characteristic of the nanoscale include: i) Those related to the large specific surface area in the materials considered; and/or ii) Specific physico-chemical properties that are different from those of the non-nanoform of the same material; Food contact material According to article 3 of the European Parliament and Council Regulation (EU) No 2035/2004: 1. Materials and articles, including active and intelligent materials and articles, shall be manufactured in compliance with good manufacturing practice so that, under normal or foreseeable conditions of use, they do not transfer their constituents to food in quantities which could: (a) endanger human health or (b) bring about an unacceptable change in the composition of the food; or (c) bring about a deterioration in the organoleptic characteristics thereof. 2. The labelling, advertising and presentation of a material or article shall not mislead the consumers. These provisions apply to all food contact materials including nanomaterial. According to article 5 of the food plastics Regulation (EU) No 10/2011 only substances evaluated by EFSA and authorised by the European Commission are allowed in the manufacture of plastic layers in plastic materials and articles. And as stated in preamble (27) of the regulation nanoparticles should be assessed on a case-by-case basis as regards their risk until more information is known about such new technology. To date the only application with nanoparticles approved is titanium nitride, as a production aid for use of up to 20 mg/kg in PET plastics. No migration to the packed food was identified. Food information to consumer Regulation of the European Parliament and of the Council (EU) No 1169/2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, 16

19 Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004,Annex to regulation on the provision of food information to consumers: 25) In order to inform consumers of the presence of engineered nanomaterials in food, it is appropriate to provide for a definition of engineered nanomaterials. Taking into account the possibility of food containing or consisting of engineered nanomaterials being a novel food, the appropriate legislative framework for that definition should be considered in the context of the upcoming review of Regulation (EC) No 258/97 of the European Parliament and of the Council of 27 January 1997 concerning novel foods and novel food ingredients. 4 Article 2.2 (t) "engineered nanomaterial" means any intentionally produced material that has one or more dimensions of the order of 100 nm or less or that is composed of discrete functional parts, either internally or at the surface, many of which have one or more dimensions of the order of 100 nm or less, including structures, agglomerates or aggregates, which may have a size above the order of 100 nm but retain properties that are characteristic of the nanoscale. Properties that are characteristic of the nanoscale include: (i) those related to the large specific surface area of the materials considered; and/or (ii) specific physico-chemical properties that are different from those of the non-nanoform of the same material. Article All ingredients present in the form of engineered nanomaterials shall be clearly indicated in the list of ingredients. The names of such ingredients shall be followed by the word "nano" in brackets. 4. Technical rules for applying paragraphs 1 and 2 of this Article are laid down in Annex VII. 5. For the purposes of achieving the objectives of this Regulation, the Commission shall, by means of delegated acts in accordance with Article 51, adjust and adapt the definition of engineered nanomaterials referred to in point (t) of Article 2(2) to technical and scientific progress or to definitions agreed at international level. Outlook of NFA The issue of nanotechnology is presently discussed within NFA and a number of people of the staff are partially engaged in this area. Regulatory projects encompass participation in the present overview initiated by KemI. Regarding research projects, some preliminary ideas about small scale laboratory projects including in vivo (and in vitro) experiments on substances occurring in food are presently discussed. Control will be a challenge. Although there are some specific restrictions/rules which apply to nanomaterials within the food legislation, as pointed out above, the flow over the Internet of nanoproducts (e.g. food supplements) and imported nanoproducts to small retailers/dealers creates an important problem. Taking into account the huge problem of characterisation and measuring nanoparticles/substances in e.g. food supplements, this completely makes it impossible to control the nanoproducts on the EU market despite the fact that there is some specific food legislation already. 4 OJ L 43, , p

20 2.4 The National Veterinary Institute (SVA) The SVA does not have any ongoing activities in the areas of nanomaterials or nanotechnology. SVA might in the future commence work with nanotechnologies in the areas of vaccine development and diagnostics. 2.5 The Swedish Agency for Non-Proliferation and Export Controls (ISP) ISP controls the export of military equipment and other products that may have both a civilian and a military use, so-called dual-use products. ISP handles cases concerning sanctions and is also the national authority for the Chemical Weapons Convention. The vision is A responsible control of strategic products our contribution to a safer world. According to the European Commission recommendations, Nanomaterial means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 per cent or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm. But fullerenes, graphene flakes and single wall carbon nanotubes with one or more external dimensions below 1 nm should be considered as nanomaterials. Military equipment In the Swedish military control list, nanomaterials or related technology is not mentioned. But it is possible that nanomaterials are controlled due to their properties and application area. Nanotechnology can be used in many ways. Materials comprising new or improved properties can be very useful for military equipment and will therefore be controlled. Dual-use products ISP participates in four international export control regimes; Wassenaar Arrangement (WA), Australia Group (AG), Nuclear Suppliers Group (NSG) and Missile Technology Control Regime (MTCR). Technical experts meet in these groups to discuss what kind of equipment and technology that should be controlled. WA focuses on conventional arms and dual-use goods and technologies. AG and NSG control transfer of dual-use goods and technology related to weapons of mass destruction, chemical and biological weapons and nuclear weapons, respectively. Dual-use products related to missiles capable of delivering such weapons are controlled by MTCR. The four international export control regimes mentioned above contribute with lists of products and technologies to Council Regulation (EC) No 428/2009. The regulation also includes chemicals related to the Chemical Weapons Convention. ISP controls export of dual-use products included in category 1-9 in appendix I to Council Regulation (EC) No 428/2009. Control paragraphs 1C003, 1E001, 3B001 and 3E001 in the regulation are examples of how ISP is affected by nano. Paragraph 1C003.c controls magnetic materials and nanocrystalline alloy stripes with special properties. Here, nanocrystalline materials are materials having a crystal grain size of 50 nm or less, as determined by X-ray diffraction. 1E001 corresponds to the technology for the development or production of materials specified in 1C. Paragraph 3B001 controls equipment for the manufacturing of semiconductor devices or materials and imprint lithography equipment capable of producing features of 180 nm or less, including nano-imprint lithography tool. Consequently paragraph 3E001 controls the technology for the development or production of materials specified in 3B. 18

21 Outlook of ISP ISP needs to stay up-to-date with new application areas for nanomaterials and nanotechnology. A main challenge will be to identify new and evolving companies in Sweden that develop potential dual-use products or arms. 2.6 The Swedish Chemicals Agency (KemI) Nanomaterials in the KemI action plan for a toxic-free everyday environment The Swedish Government has instructed the Swedish Chemicals Agency (KemI) to produce an action plan for a toxic-free everyday environment. This assignment includes reporting on measures needed in the period to reduce the risk faced by people in their everyday lives of being exposed to hazardous chemicals and was published in March 2011 ( Research in the areas of health and environmental risks of nanomaterials (NM) is an area of concern in this action plan. Nanomaterials in EU legislation As concluded by the European Commission in 2008, nanomaterials are in principle covered by the legislation for which KemI is the Swedish Competent Authority in the area where they are used. However, nanomaterials are not explicitly mentioned in the applicable legislation concerned with the hazards to health and the environment posed by the substances. The legislation is harmonised There is thus no scope for more liberal or stricter national legislation. Reach legislation The information requirements in REACH are minimal for chemical substances that are manufactured in or imported into the EU in low volumes, that is to say <1 tonnes per year, which is expected to be the case for many nanomaterials. It is still unclear whether a particular nanomaterial according to the new chemicals legislation REACH is to be regarded as a new substance or as a substance that already exists in a particular physical form. This may have a great impact on the assessment of chemical safety. In addition, nanomaterials in articles, like other substances in articles imported into the EU will in many cases not be covered by the safety assessment made in the framework of REACH. Pesticides legislation The legislation on pesticides, Regulation (EC) No 1107/2009 concerning the placing of plant protection products on the market and the Biocidal Products Directive (98/8/EC), as well as regulations linked toeu regulations. Evaluation of the data which, under the appropriate EU-regulations, are required to assess an active substance, as well as assessment of the risk posed by using this substance, are made in a joint process by the member states of the EU. In cases concerned with a plant protection product the European Food Safety Agency (EFSA) also takes part. The product approvals are made at member state level, but apply mutually to all member states. Classification and labelling legislation In principle, if there is information that leads to a substance being classified on the basis of information from larger particles, the classification also has to apply to smaller particles, 19

22 including nanoforms. Relevant examples are the bulk form of zinc oxide which is classified as hazardous to the environment and the bulk form of cadmium, which is classified as hazardous to health and the environment. The general rule for chemicals is that if new information emerges that a substance fulfils the criteria for classification and this substance has not yet been classified, this substance has to be self-classified by the companies. Nanomaterials are not mentioned in either the Dangerous Preparations Directive (1999/45/EEC) or in Directive 2006/121/2006 of the European Parliament and of the Council. Nor are nanomaterials mentioned in the Global Harmonized System of Classification and Labelling of Chemicals (CLP, regulation (EC) No 1272/2008).. An important reason is that knowledge is lacking on the relevance of available test methods for nanomaterials, whether new test methods are required and if so how these should be designed. New criteria are usually not devised until relevant test methods have been developed in the OECD and other internationally recognised organisations. It is in principle already possible today to classify nanomaterials on the basis of available test methods and classification criteria, even if there is no unique identification number for this form. On the other hand, there is particular uncertainty over the validity of negative results in tests. Specific classification of a substance at nanoscale is possible today. Previous and ongoing activities on nanomaterial KemI activities on nanomaterials comprise work on a national basis, in the OECD, in the EU and also in the Nordic co-operation. National activities KemI has for more than five years followed recent developments and has produced PMs and several reports on behalf of the Swedish Government. Activities proposed in the reports by KemI to the Ministry of the Environment to secure safe use of nanomaterials were To formulate a definition of nanomaterial (now available as a Commission Recommendation; see Appendix A) To introduce a mandatory reporting system To review the REACH and CLP regulations for applicability on nanomaterial in 2012 To promote targeted research grant programmes in the area of health and environmental risks To obtain resources to take part in the EU and OECD activities on nanomaterial To initiate co-operation between Swedish authorities dealing with nanomaterial To contribute to the SAICM (Strategic Approach to International Chemicals Management) goal of increased dissemination of information to developing countries. Different Governmental assignments resulted in the following reports: Nanotechnology high risks with small particles? KemI Report No 3/08 (in English) This report is also available in Swedish: KemI Rapport Nr 6/07 The use of nanomaterials in Sweden 2008 analysis and prognosis. KemI PM 1/09 (Summary in English) 20

23 Nanomaterials activities to identify and estimate risks. KemI PM 2/09 (Summary in English) Nanomaterials need for regulations and other measures in the EU and in Sweden KemI Report No 1/10 (Summary in English) Further, in 2009, Vinnova (Swedish Governmental Agency for Innovation Systems) was assigned with the task to develop a strategy for the nanotechnology area. This was in consultation with the Swedish Research Council (VR) and after consulting the Swedish Research Council for Environment, the Agricultural Sciences and Spatial Planning (Formas) and the Swedish Chemicals Agency (KemI). Current activities include projects on regulation of nanomaterials as well as projects concerning health and environmental risk aspects. Nordic Co-operation A number of meetings between the Nordic countries have taken place in the last few years. Issues discussed at the meetings have focused on legislation, testing methods and research needs. A Nordic contribution to the testing of nanomaterials in the OECD s Sponsorship Programme takes place through a project financed by the Nordic Chemicals Group in which KemI is represented. The project group consists of researchers from Denmark, Sweden, Finland and Norway. Silver has been chosen as test material and what is to be tested is the acute and chronic toxicity to earthworms. EU The European Commission s working group on nanotechnology - CASGNano The European Commission established in 2008 a working group on nanotechnology for competent authorities for the REACH regulation, the Competent Authorities Subgroup on Nanomaterials (CASG Nano). The group, in which KemI is active, is expected to present advice and recommendations to the European Commission and the ECHA (European Chemicals Agency) on how nanomaterials are to be handled in the various processes under the REACH regulation, e.g. registration and information in the distribution chain, evaluation and authorisations. Three so called REACH Implementation Projects with the purpose to update the REACH guidance documents to be applicable to nanomaterials were set up by CASGNano. KemI participated in the drafting of substance identification, information requirements and chemical safety assessment. KemI further commented on the Commission Recommendation on the definition of nanomaterials (COM Rec on the definition of nanomaterials by 18 Oct 2011; see Appendix A). OECD Working Party for Manufactured Nanomaterials - WPNM KemI takes part in ongoing work in the OECD (the Organisation for Economic Cooperation and Development) to bring about greater knowledge of the risks to health and the environment caused by nanomaterials. The Working Party on Manufactured Nanomaterials (WPMN) under the OECD s Chemicals Committee is to press for international collaboration on issues concerning health and environmental risks with regard to intentionally manufactured nanomaterials. The WPMN has appointed a number of steering groups for this purpose focused on information concerning research projects and research strategies, testing of representative nanomaterials (Sponsorship Programme), revision of the OECD s guidelines 21

24 for testing, exchange and comparison of data, risk assessment, alternative test methods and exposure. In addition, representatives from several of the steering groups, were tasked with developing a guidance document for the test programme (Guidance Manual for Sponsors of the OECD Sponsorship Programme for the Testing of Manufactured Nano-materials). In the Sponsorship Programme thirteen different manufactured nanomaterials are under evaluation. This investigation is dependent on voluntary contribution from industry, member countries, etc. For a Nordic input, see above under Nordic Co-operation Via the OECD/WPMN programme KemI follows the work in the global organization for standardization ISO ISO initiated during the autumn of 2005 work with standardisation within the nanotechnology area (Nanotechnology ISO/TC229) (ISO, 2009). The aim is to set standards for (i) terminology and nomenclature, (ii) measurement methods and characterisation, (iii) health and environmental aspects of nanotechnology, and (iv) material specifications. Outlook of KemI Within REACH and CLP, there are a number of issues where there is a need for guidance or modified or new regulations for nanomaterials. Such issues include substance identification, the tonnage system, testing methods, chemical safety and risk reduction measures, and information in the supply chain. There is in this respect a need for increased information on nanomaterials as compared to bulk especially considering testing methods for physical-chemical properties, information on the toxicokinetics of nanomaterials and information on environmental exposure and aquatic toxicity. Further, KemI advocates the introduction of an EU-wide mandatory reporting system for nanomaterials. A common reporting system on nanomaterials in products within the EU can be linked naturally to work on development of the REACH regulation. 2.7 The Swedish Civil Contingencies Agency (MSB) MSB is an agency with responsibilities and activities within regulatory, supervisory, operational issues as well as research funding. Currently MSB has very few activities directly related to nanomaterials. So far nanomaterials or nanotechnology has not been brought up in the plan of operation at any level at the MSB. MSB is currently not involved in any international collaboration regarding nano issues. An analysis of how the MSB regulations relate to risks and opportunities of nanotechnology is yet to be performed. As this has not been investigated so far the question whether nano issues might fall under the MSB regulations is still open. Currently no research projects directed or funded by MSB are going on in the nano area Outlook MSB MSB has not put much effort into the nano issue so far. The rapid development within the nanotechnology and the diversity of nanomaterials make it however plausible that there are a number of areas where the nano issue is, or potentially will be connected with the activities of MSB. A coming task is to compile an overview of which challenges will face the MSB and how the rapid development in the nano area will affect future work of MSB. 22

25 2.8 The Swedish Defense Research Agency (FOI) FOI The Swedish Defence Research Agency is a governmental agency under the Swedish Ministry of Defence. In the areas of nanotechnology and nanotoxicology FOI performs research within defence and security related research programs [see e.g. S. Savage, Suited to Defence, Materials World 18 (3) (2010) and Box 1, below]. Nanotechnology is a fast growing area and engineered nanoparticles are increasingly used in industrial applications, including electronics, pharmaceutical, energy, paper and pulp, and cleantech industries. There is no doubt that use of new nanotechnologies and nanomaterials will be of great value in a number of applications ranging from microelectronics, medicine, to large-scale deployment in energy systems and environmental technologies. However, nanotechnologies may also introduce new unknowns, which eventually may cause adverse effects to humans and the environment at some stage during their life-cycle. Here nanoparticles 5, either alone or in combination with other environmental pollutants, have been identified as a new potential risk. Although there will be in some cases a limited choice of materials without compromising on specific properties, life-cycle analysis at an early stage of nanotechnology development is advisable before procurement and production. We are exposed to particulate matter originating from anthropogenic sources such as fires, industrial processes, and transportation. In some industrial work places the levels may also be elevated. It is generally recognised that we will become increasingly exposed also to engineered nanoparticles during the life-cycle of nanomaterials in the forthcoming decades. Defence research is currently engaged in several nanotechnology related R&D projects, some of which have already resulted in new products 6. There is a need to scrutinise health and environmental risks of these developments. Furthermore, military and civilian personnel deployed in international peace keeping missions may be exposed to particulate emissions which are different compared with those in domestic environments. There is limited information concerning health effects of specific nanoparticles either alone or in combination with other substances. In addition to possible health aspects of the general population, there is limited information concerning specific vulnerable groups including patients with cardiovascular and respiratory diseases and children. A major challenge in the field is therefore to meet the increased release of nanoparticles with acquisition and analysis of relevant data for risk assessment, including Physico-chemical characterisation of nanoparticles under relevant exposure conditions Environmental fate Health related and environmental exposure assessment including bioavailability and biodistribution Hazard assessment and dose-response relationships Here, collaboration between producers and other stakeholders together with regulatory authorities, and researchers across several disciplines are essential. 5 A common definition is that nanoparticles have diameters < 0.1 μm, while ultrafine particles have diameters in the range μm. The latter is the size range of environmental particles coming from e.g. emissions. 6 The Swedish Armed Forces Nanotechnology Program is one such effort, which up to now has resulted in several commercial nanotechnology products. 23

26 Nanotoxicology activities at FOI Current nanotoxicology activities at FOI consist of the following activities: 1) Field measurement of particle exposure, 2) Development of air sampling strategies and sampling techniques, 3) Development of exposure systems for airborne particles, 4) Physical and chemical characterisation of environmental and manufactured nanoparticles, including size and composition of agglomerates in cells, 5) Cellular uptake and distribution of nanoparticles in biological tissues and cells, 6) Studies of oxidative stress, inflammatory response, and impact on asthma in combination with exposure to respiratory allergens. Box 1 lists recent reports and publications from FOI concerning nanotoxicology. National and international collaborations Within the field of nanotoxicology, FOI collaborates internationally with the Norwegian Institute of Public Health and the US Air Force Research Laboratories in Dayton, Ohio, and collaborates nationally with Umeå University, Karolinska Institute, and Uppsala University. FOI researchers are currently involved internationally in standardisation work (CEN), and nationally in the Swedish standards Institute (SIS) nanotechnology committee. FOI is also represented in the NMP steering group of SwedishNanoTech, and in the advisory board of the Formas Nanosphere program. Box 1. Recent reports and publications in the nanotoxicological area Andersson PO, Lejon C, Ekstrand-Hammarström B, Akfur C, Bucht A, Österlund L (2011) Polymorph- and size-dependent uptake and toxicity of TiO 2 nanoparticles in living lung epithelial cells. Small 7: Gustafsson Å, Lindstedt E, Svensson-Elfsmark L, Bucht A (2011) Lung exposure of titanium dioxide nanoparticles induces innate immune activation and long-lasting lymphocyte response in the DA rat. Journal of Immunotoxicology, 8: Ekstrand-Hammarström B, Akfur CM, Andersson PO, Lejon C, Österlund L, Bucht A (2011) Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B. Nanotoxicology Jul 25 (ahead of print) Ramstedt M, Ekstrand-Hammarström B, Shchukarev A, Bucht A, Österlund L Welch M, Huck WTS (2009) Bacterial and mammalian cell response to poly (3-sulfopropyl methacrylate) brushes loaded with silver halide salts. Biomaterial 30: Wingfors H, Hägglund L, Magnusson R (2011) Characterization of the size-distribution of aerosols and particle-bound content of oxygenated PAHs, PAHs, and n-alkanes in urban environments in Afghanistan. AtmosphericEnvironment 45: Rzhepishevska1 O, Ekstrand-Hammarström B, Popp M, Björn B, Sjöstedt A, Antti H, RamstedtM (2011) The Antibacterial Activity of Ga 3+ is influenced by ligand complexation as well as the bacterial carbon source. Antimicrobial Agents Chemotherapy 55: FOI-report: Ahlinder L, Österlund L, Wiklund Lindström S (2011) Raman mapping and hyperspectral data analysis: a study of in vitro cellular response to titanium dioxide and goethite nanoparticles. FOI-R SE FOI-report: Ahlinder L, Österlund L (2011) Hyperspektral analys av celler och vävnad exponerade för luftburna partiklar. FOI- R SE EDA-report: Österlund L, Wikström P, Wästerby P, Savage S, Ekstrand-Hammarström B, Leffler P (2008) Study on Nanotechnology into CBRN Defence. EDA report 07-R&T-002, pp

27 Collaboration between authorities During the last decade, FOI has performed research and literature reviews, and written reports in the area of nanotechnology that have been financed for instance via external funding such as by the Swedish Armed Forces, Nordic Innovation Centre, Swedish Defence Material Administration, European Defence Agency, Formas and FAS as well as via projects commissioned by other Swedish governmental agencies. Some important issues in safety assessment of nanotechnology and nanomaterials Safety assessment of nanoparticles cannot yet be generalised based merely on chemical composition, size or shape. As an example, we have studied anatase and rutile the two most common polymorphs of titanium dioxide (i.e. TiO 2 materials with same chemical composition but different crystal structure). Anatase and rutile can be manufactured with various sizes (or are naturally occurring) and our studies (Andersson 2011; Ekstrand-Hammarström 2011) show that uptake and biological response of these particles in cultured lung cells is highly dependent on exposure conditions (cell media), and that this in turn depends on the physicochemical properties of the agglomerate. This is governed by polymorph type (anatase or rutile), and strength of interaction between the individual nanoparticles. A consequence is that the primary particle size is not directly correlated with cellular uptake. Taken together, different TiO 2 polymorphs, even with similar primary particle size, show very different uptake, kinetics and inflammatory response due to differences in agglomeration properties (i.e. interaction between primary particles). Developing new materials and ensuring safety is a multidisciplinary task that requires development of suitable screening systems which eventually must be performed on a case by case basis. Structuring of toxicological data into models (ecosystem, animal and human models) would be necessary, as well as more precise data on environmental fate and particle bioavailability and biodistribution after relevant routes of exposure. For this, there is a need for validated test systems including validated detection methods in relevant matrices such as air, water and biological samples, biomarkers for exposure assessment and tests that address safety for sensitive groups. In all these above mentioned areas, well-characterised nanoparticles, and physicochemical characterisation is of great importance to be able to compare, interpret and generalise data. Promote innovation of nanomaterials in parallel with health and environmental aspects There are many promises associated with nanomaterials and nanotechnologies. Today much research is done in the areas of microelectronics, medical diagnostics, drug delivery, green nanotechnologies for solar hydrogen and solar electricity, air and water cleaning. Although many of the new material may be safe to use we need methods to address these issues in a life-cycle perspective. The costs of developing new materials and products are normally large. Considering the promising technological opportunities, it is urgently needed to find ways to promote studies of safety issues to avoid unnecessary set-backs. Collaborative programs, including expertise in nanoscience, toxicology and health-risk assessment combined with capability to study biological uptake, biodistribution and possible toxic effects should be encouraged. Outlook of FOI FOI strategies in nanotoxicology: Follow national and international nanotechnological development with main focus on possible impacts of new materials and technologies on societal security and human health. 25

28 Develop methods to elucidate bioavailability and biodistribution of nanoparticles, including development of multidimensional in vitro and in vivo spectroscopic imaging techniques. Describe possible health effects with focus on exposure via inhalation. 2.9 The Swedish Defense Materiel Administration (FMV) The Swedish Defense Material Administration is the Swedish Authority that is responsible for supplying the Swedish Armed Forces with materiel, systems and methods. The procurement task includes putting together the documentation for the enquiry, advertising the procurement and/or sending out tender enquiries directly, receiving tenders, assessing possible suppliers, evaluating tenders, notifying successful tenderers, concluding contracts and subsequent follow-up action. Research Projects During FMV together with FOI received an appropriation of 100 million SEK from the Swedish armed forces. The idea was to start projects in the nano area at universities and research institutes and also to involve companies. The goal was to make demonstrations together with companies, which could start production of nanotechnology and/or nanomaterial applications, which would be of great advantage for the Swedish armed forces. The four successful projects were: Multispectral Camouflage Coating with different layers for different wavelengths for VIS&NIR, IR and RADAR. Sensor protection from laser light or spots for optical devices and goggles. Bio Nano Lab a mobile system for analysis of biological agents, lab on chips. THz system. Nano-components for the THz region. Scanning of people at 25 m distance. Purchasing routines A main challenge for FMV is to identify the products that contain nanomaterials. Before purchasing FMV asks a few questions about the contents of the objects. Are any chemical substances in nanoform, that is, a material with a structure where at least one dimension is maximum 0.1 µm, intentionally added to the product? What substances in nanoform have been added? Specify the chemical name and CAS no or EC no. In which form (for example fullerenes, nanoparticles, and nanotubes) is the substance added? Are the substances in nanoform free or embedded in a matrix? In what parts of the product are the substances in nanoform added? What functions do the substances in nanoform have in the product? Information on health or environmental effects of the nanomaterials in question, if available. 26

29 Outlook of FMV Developments in safety assessment as well as technical applications will be followed. Further efforts will be taken towards identifying uses of nanomaterials in products within the interest area of FMV, and the work of developing purchasing routines for identification of nanomaterials will be continued The Swedish Environmental Protection Agency (NV) The main focus right now is to follow developments within the nano area until more information is available concerning environmental effects and risks. Representatives from NV have participated in different national meetings within the nano area arranged by other agencies. Currently no nanorelated projects are going on r nor is NV participating in any international forum in this field. The Environmental Code The general rules of the Environmental Code should be applicable to the nano area. The purpose of the Environmental Code is to promote sustainable development which will assure a healthy and sound environment for present and future generations. To achieve this, the code shall be applied so that: human health and the environment are protected against damage and detriment, whether caused by pollutants or other impacts valuable natural and cultural environments are protected and preserved biological diversity is preserved the use of land, water and the physical environment in general is such as to secure long term good management in ecological, social, cultural and economic terms reuse and recycling, as well as other management of materials, raw materials and energy are encouraged so that natural cycles are established and maintained. The area of application of the Environmental Code is directly linked to the promotion of sustainable development. The Code is applicable to all activities or measures that are of significance for this purpose to be achieved. It therefore concerns all types of measures and operations that can be of importance to those interests the Code is intended to protect, regardless of whether they are part of a private individual's daily life or are some form of business activity. The area of application of the Code is not just important for the situations in which the Code can be used. Primarily, it decides what types of environmental issues that can be examined in a court of law, for example, a pre-condition that may be set for the start of an environmentally hazardous activity might be anything that promotes sustainable development. All in all, this means in many cases that the regulations that were part of previous environmental legislation now have a new and broader application. Outlook of NV A challenge within the area is to be able to estimate possible environmental effects of engineered nanomaterial. We are able to measure e.g. silver released to the environment in general but not the nanoparticles per se. We have naturally formed air particles of all sizes including nanosize particles. The presence of nanoparticles is therefore not a new issue. The challenge is to be able to measure what is engineered material and what is not. So far the 27

30 analyses have been concentrated to analysis of material attached to the particles with silver as one example. An area where research is needed is environmental effects of engineered nanoonmaterial. This has to be a basis for decisions on possible actions. Possible routes for engineered nanomaterial to reach the environment may be via sewage treatment plants, waste deposits, landfills and other waste treatment operations. We however have to await further development of test methods. Each type of nanoproduct will most likely have to be treated as a unique chemical agent The Swedish National Board of Housing, Building and Planning (Boverket) Boverket has responsibilities regarding the built environment, use of land and nature resources, town and country planning, building construction, management of the built environment, and for issues regarding housing. Boverket does not participate in any working group related to nano technology or nano materials. Boverket does not have any completed, ongoing or planned project or government assignment on nanomaterials. Relevant legislation and its applicability Boverket has mandate to provide legislation for the protection of hygiene, health and environment for construction works. According to the Planning and Building Regulations (2011:338) the following shall apply for construction works: Buildings are to be designed and built in such a way that they pose no unacceptable risk to users or neighbours thygiene or health, particularly not as a result of 1. Release of toxic gas, 2. Presence of dangerous particles or gases in the air, 3. Hazardous radiation, 4. Pollution or poisoning of water or land 5. Inadequate treatment of waste water, smoke, or solid or liquid waste, or 6. Presence of moisture in parts of the works or on surfaces within the works. 7 Boverket has the mandate to clarify this further in the Building Regulations, BBR, which has been done for a number of areas but not specificcally to nanomaterials. 7 Original text in Swedish: Egenskapskrav avseende skydd med hänsyn till hygien, hälsa och miljö 9 För att uppfylla det krav på skydd med hänsyn till hygien, hälsa och miljö som anges i 8 kap. 4 första stycket 3 plan- och bygglagen (2010:900) ska ett byggnadsverk vara projekterat och utfört på ett sådant sätt att det inte medför en oacceptabel risk för användarnas eller grannarnas hygien eller hälsa, särskilt inte som följd av 1. utsläpp av giftig gas, 2. förekomst av farliga partiklar eller gaser i luften, 3. farlig strålning, 4. förorening eller förgiftning av vatten eller mark, 5. bristfällig hantering av avloppsvatten, rök eller fast eller flytande avfall, eller 6. förekomst av fukt i delar av byggnadsverket eller på ytor inom byggnadsverket. 28

31 However, in the BBR (BFS 2011:6) Section 6:11 Materials, it is specified that materials and construction products used in a building should not negatively affect the indoor environment or the building s immediate surroundings when the requirements on function in these regulations are met. 8 Boverket also has a mandate to regulate chemicals in building products for the protection of the indoor environment. The mandate is found in section 29 of the Chemical Products and Biotechnical Organisms Ordinance (2008:245). 9 Before issuing such regulations, Boverket should consult KemI or, if the regulation has consequences for transports, relevant transport authorities. Outlook of Boverket The construction sector constantly develops new materials, while information on composition as well as environmental and health effects are not always satisfactory. The life span of a building is between years. It is a challenge to make the manufacturers of building products provide information on composition and environmental and health impacts, and that the information then is used in decision making. Boverket currently lacks sufficient knowledge about environmental and health risks from nanomaterials. If evidence of hazardous properties are found, Boverket will investigate the possibilities of regulation through the building legislation. 8 Original text in Swedish: Material och byggprodukter som används i en byggnad ska inte i sig eller genom sin behandling påverka inomhusmiljön eller byggnadens närmiljö negativt då funktionskraven i dessa regler uppfylls. 9 Original text in Swedish: 29 Boverket får i fråga om byggprodukter meddela sådana föreskrifter som 1. avses i 25 första stycket 1, 10 och 13, och 2. behövs till skydd för inomhusmiljön. Innan Boverket meddelar en sådan föreskrift, ska verket samråda med Kemikalieinspektionen. Om föreskriften har betydelse för transporter, ska verket också samråda med den eller de berörda transportmyndigheter som avses i 2 förordningen (2006:311) om transport av farligt gods. Förordning (2010:1166). The reference in 29 refers to the following text: 25 Kemikalieinspektionen får meddela föreskrifter om 1. sådana kunskapskrav, försiktighetsmått och produktval som avses i 2 kap. 2 4 miljöbalken i fråga om hantering, införsel och utförsel av kemiska produkter, biotekniska organismer och varor, / / 10. sådan produktinformation och uppgiftsskyldighet som avses i 14 kap. 19 miljöbalken, / / 13. krav på tillstånd eller särskilda villkor för hantering, införsel och utförsel av kemiska produkter, biotekniska organismer och varor som utöver det som följer av 1 12 behövs från hälso- eller miljöskyddssynpunkt. 29

32 2.12 The Swedish National Council on Medical Ethics (Smer) The Swedish National Council on Medical Ethics (referred to as the Council in the following) is an advisory board to the Swedish government and parliament on ethical issues raised by scientific and technological advances in biomedicine. The Council actively follows nanomedical developments through horizon scanning, internal hearings and international dialogue with other national bioethical councils in the European Union. In October 2010, the Council, submitted an opinion entitled Ethical aspects of nanotechnology to the Government. The purpose was to draw attention to the ethical issues raised by new nanosciences and nanotechnologies (N&N) research, and to emphasise the importance of considering ethical aspects when designing future government initiatives for research and development. (Please find the opinion on In the opinion the Council highlights the following areas: EU regulations and commitments with regard to nanotechnology and ethics Ethics in national nano strategies (Finland, Norway, Germany, the Netherlands, the UK and the United States) Statements by national bioethics councils (France, Austria, Canada) Ethical aspects of nanotechnology Most recently professor Göran Hermerén represented the Council in a Polish Presidency conference Nanoethics held in Warsaw, Poland, October The conference had a particular focus on the EC Code of Conduct for responsible nanosciences and nanotechnologies research outlined in the Commission Recommendation of 07/02/2008, and its implementation among the member states in the European Union. Ethical aspects of nanotechnology With regard to the ethical aspects of nanotechnology and nanomedicine, the following problem areas are particularly important: Safety and risks Research ethics and informed consent Transparency and public debate Equity issues Safety and risks The Council considers that research into the health and environmental risks is an area that must be prioritised, and therefore welcomes the Swedish Chemicals Agency s proposal that Sweden should work to ensure that the EU and Swedish research funders set aside more funds for this purpose. Like the European Group on Ethics in Science and New Technologies (EGE), the Council also considers that substantial resources should be used to investigate the ethical, legal and social implications (ELSI). The Council also wants to stress that the need for additional research is urgent, as nanotech products are already on the market. Assessing and actively considering the risks that new technologies and research can involve by taking various measures is a prerequisite for new technologies and research to be able to develop in a responsible way. Regardless of whether the precautionary principle is used to guide research and development of nanomedicine and nanotechnology, the risks associated with a specific nanomaterial/ 30

33 nanotech application must be assessed and actively dealt with if we want to act responsible and avoid backlash. There are uncertainties and knowledge gaps concerning the effects of nanomaterials on health and the environment, and the methods used to assess and manage risks must be improved. Research ethics and informed consent The knowledge gaps in research of the risks associated with nanoparticles mean that it is difficult to carry out clinical research and obtain informed consent from participating patients. It is important that decisions are taken in the best interests of the individual. The question is whether the existing regulations in this area for research on human beings provide enough protection for the individual. It is fundamental that the research community itself has knowledge of, and continuously discusses, the ethical implications that research findings and applications may have on individuals and also on society as a whole. To achieve responsible development of nanotechnology, the ethical discussion must be an integral part of the entire innovation process. Basic questions for the responsible and ethical researcher to reflect on are: Why and for what purpose is the research being undertaken? Who will benefit from it? What further implications and applications might the research findings lead to? Finally, it is important that nanotechnology is also critically evaluated, and that ELSI is an important part of the background data before a new nanotech application or method is introduced. Transparency and public debate National bioethics councils in the EU hold continuous discussions on the various possibilities of involving society and citizens in the debate on bioethical issues, with the aim of creating broadly supported, legitimate decisions. The importance of public debate on nanotechnology has been emphasised by several bodies in the EU. To facilitate responsible development in nanotechnology and N&N research, the Council considers that openness and transparency with regard to the ethical issues are required at all stages of development. If a broad discussion of the risk issues fails to materialise at an early stage, there is a danger that research will be stigmatised, which was the case in the development of genetically modified organisms (GMOs) and led to consumer resistance in many countries. The ethical issues should have a prominent role in dialogue and communication with the public. It is important that identification and evaluation of the risks and uncertainties and discussion of which research areas should be prioritised take place openly between different actors and in dialogue with the public. Equity and social justice issues There are ethical implications in deciding what type of research projects are to be given priority. One question that is often asked is whether rich countries have a moral duty to develop and share advanced technology that could benefit poor countries. The Council believes that the objectives of nanomedical research should be considered taking into account the need for a more equitable distribution of health care resources and the aim of achieving better global health. 31

34 Other ethical issues There are also other ethical issues in the area of nanomedicine. How do we protect the privacy of the individual when more and more data, both medical and non-medical, is collected? What happens if the information obtained via refined nanomedical diagnostic tests is used by a third party, e.g. insurance companies and employers? How do we ensure that patents on nanomedical technologies do not limit the availability of treatment on financial grounds? A further medical-ethical implication is whether nanotech diagnostic techniques should be made available and offered in cases where there is no appropriate treatment available for the condition in question. Ethical issues also arise around the opportunities offered by nanomedicine to enhance human capacities over and above what is typical or statistically normal. These are issues to do with our understanding of what it is to be human, society s view of performance and disability, the right to care and our view of responsibility and autonomy. The Council considers an open discussion of these issues to be of fundamental importance to the responsible development of nanotechnology. Outlook Smer Despite the fact that many nanotech methods, products and materials have already been introduced onto the market, there are major knowledge gaps with regard to the risks to humans and the environment associated with nanoparticles. This is a result of a partial lack of reliable test methods to investigate the health and environmental hazards of various nanomaterials. The possibility of verifying the safety of a nanotech product and ensuring that it is not hazardous before it is released onto the market must be a basic principle. Otherwise, we risk harming humans and the environment for many generations to come. In light of this, the Swedish National Council on Medical Ethics would like to particularly highlight the following points: Research to determine the health and environmental risks associated with nanomaterials is urgently needed. Risk analysis and ethical evaluation of research and new technologies are ongoing processes that must accompany and be integrated into all stages of innovation processes. Ongoing research and the pace at which knowledge changes mean that analyses must be constantly reappraised. The knowledge gaps in the nanotech area have direct significance for ethical discussions of how to proceed with research and various applications. To ensure responsible development of nanotechnology, an ethical analysis must be integrated into a future Swedish strategy on nanotechnology. It is crucial that the ethical aspects are continuously taken into account at research and political level and in dialogue with the public. Ethical aspects must be taken into account in future considerations concerning nanotechnology and highlighted in research funding The Swedish Patent and Registration Office (PRV) The PRV s main activity is to search and examine patent applications, some of which are dealing with nanotechnology or nanomaterials. The PRV examines if the technology or the material, in the application, is patentable or not. The PRV also classifies patent applications according to the classification codes provided by the European Patent Office (EPO), and 32

35 nanotechnology patents constitutes one class (labelled B82Y). This class is also divided into nine sub-categories: nanobiotechnology or nano-medicine, nanotechnology of information processing, storage and transmission, nanotechnology for interacting, sensing or actuating, nano-optics, nano-magnetism, nanotechnology for materials and surface science, methods or apparatus for measurement or analysis of nanostructures, manufacture or treatment of nanostructures, and subject matter not provided for in other groups Patents and patent applications are available in the Swedish Patent Database, which can be accessed via the Internet ( In this database it is also possible to do a search based on classification codes The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) The Swedish Research Council Formas is a national research council that comes under the Ministry of the Environment. This means that Formas receives most of its financial allocation from this ministry. The rest of the allocation comes from the Ministry for Rural Affairs. The mission of Formas is to promote and support basic research and need-driven research in the areas Environment, Agricultural Sciences and Spatial Planning. The research supported should be of highest scientific quality and of relevance to the areas of responsibility of the Council. Formas may also fund development projects to a limited extent. The Appropriation Directions set out the tasks which the Government entrusts to Formas. Reports on the progress of work on these tasks are continually submitted to the Government in the form of evaluations, state of the art, research strategies and research programmes. The work of Formas extends over three areas, support for research, strategy and analysis and research information. The result of the work is presented in Formas' annual report. Formas' three primary areas are: Environment and Nature Agricultural Sciences, Animals and Food Spatial Planning The activities around nano at Formas are mostly financing of research projects within the areas of environmental technology (nanotechnology) and environmental pollution (risk with nano). Between 2004 and 2010 the research projects related to risks or applications of nanotechnology and nanomaterials were granted the total amount of SEK 100 million. Outlook of Formas At the moment Formas is not planning for a strategic call within the nano area. However proposals concerning positive solutions for the environment involving nanotechnology and proposals concerning risk with nano have become more and more common and also successful in Formas annual open call during recent years. 33

36 2.15 The Swedish Transport Administration (Trafikverket) Nanotechnology has developed extremely rapidly in recent years and chemical products and materials containing nano particles are found today in a wide range of applications in the building and construction sector. There are also many potential areas for use which may be relevant in the future. Interest and questions surrounding nano technology have increased in recent years and for Trafikverket and for the contractors they hire, it has become a very topical issue. Trafikverket's ongoing nano project Trafikverket is responsible for the new construction, operation and maintenance of the country's state-owned roads and railways, and the potential applications for nano technology within operations are many. Today we have limited knowledge of the extent of the use of nano materials in Trafikverket's operations. To increase our understanding, Trafikverket initiated a project in the spring of 2011 which was aimed at surveying the use of products containing nanomaterials. The project also considered the need for guidance and routines for the use of nanoproducts. The project was completed in December The inventory reveals that nanomaterials are used primarily for the sealing and impregnation of different types of surfaces. More specifically, it involves the treatment of surfaces at stopping places, reflective foils on road signs, the sealing of safety posts, the treatment of noise protection, safety barriers, screens on roadside cameras and grouting in tunnels. All products identified to have something in common, they all contain nano-size silica particles in dispersion with either water or alcohol as a solvent. Further potential uses of nanomaterials have been identified in the project. Examples of such areas include the protection of the bottoms of boats on road ferries, their use in toilets in ferries' toilet and bathroom facilities and windows and also to protect against graffiti as well as in the coating on overhead lines. The results of the project will be detailed in a final report. The report is expected to contribute to increased knowledge about the use of nanomaterials in the construction sector and the possible risks to health and the environment. Other operators within the construction sector will also be able to make use of the project's results to make in-depth analyses of their own operations. Challenges within the nanoarea Challenges and opportunities within the nano area are numerous. Nano technology can open up entirely new possibilities in technical applications at the same time as the potential risks to health and the environment must be addressed. Challenges specific for Trafikverket are: Identify nanomaterials in operations One difficulty is to identify the products containing nanomaterials and to become aware of any new products that will be available in the future. The possibilities of identifying products today are small because legislation does not require that producers specify whether the product contains nanomaterials, neither in the product name nor in the safety data sheet. Managing potential risks The lack of knowledge as to how nanomaterials impact on health and the environment leads to difficulties in the evaluation of products. Knowledge of a macro-molecule's toxicological 34

37 properties to the substance cannot be extrapolated in nano-scale. It is also unclear whether it is possible to extrapolate effects between species. Trafikverket sees a major challenge as to how work should be realised in order to assess the risks and evaluate products used in its operations. Trafikverket's chemical audit function is working systematically with the examination of chemical products used in Trafikverket's operations. The criteria for auditing are harmonised with BASTA (The aim of the BASTA system is to speed up the phasing out of hazardous substances in constructions). These criteria do not currently take up nanocharacteristics at the same time as it is not clear as to whether legislation within the chemicals sector is applicable to nanomaterials. The application of the Environmental Code's rules of consideration Nanotechnology makes it possible for the development of new properties in materials and chemical products. In some cases the use of nano products reduces costs, e.g. cleaning cycles are extended. At the same time, knowledge of the risks to health and the environment when using nanomaterials is extremely inadequate. Perhaps the greatest challenge in the nano area is how Trafikverket should apply the Environmental Code's rules of consideration such as the precautionary principle and the product choice principle at the same time as the development and introduction of new technologies become possible. One of the key issues that Trafikverket is working with today is how strict the precautionary principle should be applied and whether the use of nanomaterials should be banned or regulated until more information and knowledge is available about the potential risks. Outlook of Trafikverket Trafikverket is working actively to keep up-to-date with and follow developments in the field both internationally and nationally. At present, Trafikverket does not participate in any work groups within the OECD or EU that are dealing with the nano issue. Trafikverket plans, however, to maintain continued and active outlook of the field of nanotechnology and to further develop our knowledge of the possibilities and risks with nanoproducts within the construction sector The Swedish Work Environment Authority (SWEA) The Swedish Work Environment Authority (SWEA) is the administrative authority for issues relating to the working environment. The Swedish Work Environment Act defines the outer framework of work environment regulation. This act does cover nanoparticles, as it states that any substance that can cause harm to health or accidents only is allowed to be used under circumstances that provide adequate safety. More detailed regulations are found in the provisions on Chemical Hazards in the Working Environment, AFS 2000:4, which build on the EU Council Directive 98/24/EC and on the protection of the health and safety of workers from the risks related to chemical agents at work and Council Directive 2004/37/EG on the protection of workers from the risks related to exposure to carcinogens or mutagens at work. According to these provisions the employer should: Perform a risk assessement. Assess hazardous properties. Collect information on properties and proper actions from the supplier, for instance through the material safety data sheet. Indicate proper handling and protective equipment. Assess the exposures. 35

38 There is also a specified order of action steps to be taken,: Substitution to substances of lower risk. Working methods, processes and technical devices should be selected so that the risks are reduced. Protective measures taken at the source. Work should be restricted to certain times or locations. Use of personal protective equipment (last resort measure). Of specific relevance for nanoparticles in the work environment are the requirements on respiratory protective equipment. If the personal protective equipment is for respiratory protection, it should be a particle filter of class P3 (filters at least 99.95% of airborne particles) which also should be controlled in a fit test in which particles down to 20 nm in size are measured inside and outside of the mask. SWEA participation in working groups Standardisation SWEA participates in two working groups within the Swedish Standards Institute (SIS) that are of relevance for the nano area: SIS TK 423 Luftkvalité, mätmetoder och exponeringbedömning [Air quality, measurement methods and exposure assessment] (under ISO/TC 146/SC 2 Air Quality). SIS TK 516 Nanoteknik/AG 3 Miljö, hälsa och säkerhet [Nanotechnologies/Environment, health and safety] (under CEN/TC 229 Nanotechnologies). EU level groups The Senior Labour Inspectors Committee (SLIC) WG CHEMEX, which works with the connection between REACH and national occupational health and safety regulations. The Scientific Committee for Occupational Exposure Limits, SCOEL, which produces the scientific substantiation for the EU s occupational exposure limits 10. Chemicals at the workplace, a working group of the Advisory Committee on Safety and Health at Work 11. National/Nordic groups The Swedish Criteria Group, which is the Swedish expert group providing scientific documentation for occupational exposure limits. The Nordic Expert Group, which is a Nordic collaboration for production of criteria documents on chemicals for occupational exposure limits. Completed projects SWEA participated in the development of the ISO technical report Workplace atmospheres Ultrafine, nanoparticle and nano-structured aerosols Inhalation exposure characterization and assessment (SIS-ISO/TR 27628:2007). This standard provides guidelines on how to characterise occupational nanoaerosol exposures. 10 See also 95/320/EC: Commission Decision of 12 July 1995 setting up a Scientific Committee for Occupational Exposure Limits to Chemical Agents 11 See also Council Decision 2003/C 218/01 of 22 July 2003 setting up an Advisory Committee on Safety and Health at Work and repealing Decisions 74/325/EEC and 74/326/EEC. 36

39 In 2010 SWEA commissioned a systematic review of known hazards and exposures to carbon nanotubes in the work environment. The report was written by researchers from Lund University that are active within the Nano-Safety and Metalund networks and was published in early This report contains an overview of the available toxicological knowledge, identifies knowledge gaps and outlines recommendations for possible protective measures in the light of the current uncertainties. Outlook of SWEA The future work of SWEA within the nano area holds many challenges, of which some examples are: Acquiring a basis for risk assessment of nanomaterials in the workplace. Gaining sufficient knowledge of where and how nanoparticles are formed, and where they are used and handled. Deriving occupational exposure limits and finding a suitable measure (e.g. mass, area or number of particles) Investigating and improving the applicability of REACH for nanomaterials Striving for collaboration between DG Environment and DG Employment, Social Affairs and Inclusion Joint outlook Recurring themes among the different agency outlooks have been the need to gain further knowledge and to follow the developments in international regulations and other work groups. Gaining knowledge concerns both the information of use of nanomaterials in society and (eco)toxicological information. The regulatory agencies will continue to follow and/or take part in international groups and EU level regulations. From a supervisory perspective the main concern is to identify use of nanomaterials, as there is currently no readily available system for this. In addition, the National Food Agency also considers small scale laboratory studies, aiming at toxicity testing of substances occurring in foods. More knowledge of properties of nanomaterials and potential effects on health and environment are urgently needed in order to derive the proper regulatory tools, e.g. a suitable measuring unit for occupational exposure limits. All agencies have an interest in gaining further knowledge of the potential effects on health and the environment of nanomaterials. Among the participants one agency is a research institute, FOI, the Swedish Defense Research Agency. Areas of research within nanotoxicology that are to be pursued concern bioavailability and biodistribution, and focus is also on inhalation exposure. As a research funding agency, Mistra is currently investigating the possibilities for investing in programmes on nanotechnologies. Within the area of Formas no specific nanotechnologies call is planned. As is pointed out by the Swedish National Council on Medical Ethics, Smer, nanotechnologies might also contribute to other risks than those to human health and the environment. Questions of integrity and fairness are examples, and Smer highlights that ethical analysis should be integrated in strategies and policies as well as 12 Gustavsson, P., Hedemer, M., Rissler, J. (2011) Kolnanorör exponering, toxikologi och skyddsåtgärder i arbetsmiljön. [Carbon nanotubes exposure, toxicology and protective measures in the work environment]swedish Work Environment Authority, report 2011:1. 37

40 in research calls. Some agencies also advocate a reporting system on nanomaterial in products. There are also agencies that are or could become users of nanomaterials. Among the agencies currently using, or actively consider introducing products that are suspected to contain nanomaterials work is targeted at finding means to identify whether nanomaterials are present or not in the procured products. 3 The Nano workshop The workshop started with presentations from seven of the participating authorities, in order to get an overview of the different perspectives and actions already taken. The Swedish Chemicals Agency Maria Wallén The National Food Agency Lilianne Abramsson and Kettil Svensson The Swedish Defense Research Agency - Ulrika Bergström The Swedish Transport Administration - Malin Kotake The Swedish National Council on Medical Ethics Göran Hermerén The Swedish Work Environment Authority Claes Trägårdh The Swedish Governmental Agency for Innovation Systems Ulf Holmgren The detailed program and list of participants are included in Appendix B and the presentations are included as Appendix C, both appendices are in Swedish. Before the discussions the other participants were also given an opportunity to present themselves and their agency s relationship to nanomaterials briefly. Four questions were used as a starting point for the joint discussion session: What are the largest challenges within the nano field? How to reach sustainable nanomaterial innovations, that is to have product development to go hand in hand with research on potential risks to health and the environment? Which research is needed within the nano field from a government perspective? Should there be inter-agency cooperation in the nano field? The following sections are structured according to these four questions. 3.1 What are the largest challenges within the nano field? During the rounds of presentations several issues and challenges were brought up, the main challenges are summarised as follows. A common conclusion was that the amount of nanomaterials in products will likely increase. As a first challenge the agencies have to identify where nanomaterials can be found within each agency's responsibilities and/or area of interest. This concerns a wide scope of issues such as legislation, supervision, use by the agency and societal use. The second question pertains to the risk assessment methods. It is currently unclear whether risk assessment methods will be applicable for nanomaterials. Risk assessment methodology is developed for substances in the bulk, and there might be additional challenges when risk assessing nanomaterials. In connection with the risk assessment challenge there are additional issues of methodological constraints. First, measurement and detection methods suitable for nanomaterials are lacking in many cases. Second, there are uncertainties regarding the appropriateness of currently available tests for toxicological evaluation. The general concern at the workshop was that the current state of 38

41 knowledge, and the associated uncertainties, will not suffice as a basis for decisions on risk management measures. Knowledge is a prerequisite for agencies to act, and in addition to the ones just described the following challenges were also brought up in the discussion. Applicability of regulations Several participants lifted the question of how laws and regulations are, or should be, designed to capture the potential risks of nanomaterials, and do that in an efficient manner. It is also desirable that regulation and policies at the same time encourage the development of beneficial (and safe) applications. That issue leads forward to the question of what can be considered as reasonable and effective testing requirements and risk assessment methodology. Also, performing tests and risk assessments should, as in REACH, lie on the producers and importers. A large challenge for several agencies is also how to apply considerations outlined in the environmental code, such as the precautionary principle, the substitution principle and the knowledge requirements, in parallel with enabling development and introduction of new technologies. For instance, how strict should the precautionary principle be interpreted? Should use of nanomaterials be restricted or even banned until further knowledge on potential risks has been gained? Identifying use and occurrence of nanomaterials Obviously, it is very important for many agencies to find out which products that contain nanomaterials. How should authorities, and other stakeholders, identify the nanomaterials used in products available on the market? Nanomaterial content is generally not used as a selling point, so producers will not include information about nanomaterial content that way. For most products there are no regulatory requirements to label nanomaterial content either, so identifying nanomaterials in products will not be straight forward. However, from 2013 nanomaterial ingredients in cosmetics will have to be identified as such in the list of ingredients. For food, the appropriate agency according to current regulations already is authorised to have transparency in manufacturing, at least within the EU. However, it becomes much more difficult to gain insight to the production that takes place in countries outside the EU. In order to know whether nanomaterials are present in food, analytical methods are needed. At this point, the discussion turned to the point of who should be responsible for such analyses: the agencies or the manufacturers and importers? A concern that was raised was that, if the responsible agency wishes to be certain about a particular product s nanomaterial content, it may fall upon that agency to take the cost of analysing products upon arrival in the EU. Product registry KemI has in a previous report 13 proposed an EU-wide mandatory reporting of nanomaterials in consumer products 14. This suggestion was also brought up in the discussion, and several government officials thought it was an interesting proposal at first sight. The question of how 13 KemI Säker användning av nanomaterial. Behov av reglering och andra åtgärder. Rapport från ett regeringsuppdrag. Rapport nr 1/ The subject is also under discussion within the EU, the DG Environment has commissioned a report from the RIVM on the development of an inventory of nanomaterials in consumenr products. The report can be found at: 39

42 such a system would look like is a point that needs to be discussed in more detail. One initial question concerning the design of a reporting system was brought up: Should it be designed to identify products with nanomaterials in them or for nanomaterials that may be present in products? This refers to the issue of whether it is more useful for agencies to know which nanomaterials that are used in society or in what kind of products nanomaterials can be found, or possibly a combination of these two levels of information. Examples were brought up of other countries that already have decided to introduce a national reporting system. The agency representatives expressed an intention to learn from these national experiences, while also balancing this with the intention not to wait too long to take action. It was also reported that voluntary reporting systems have been shown to be rather ineffective, which would be an argument for Swedish agencies to aim for a mandatory system. While discussing a nanomaterials registry, one person raised the issue of lack of knowledge in a different angle, if nanomaterials show to be without any risks, an undesirable outcome is to make a registry of nanomaterials in products, and then it turns out in a few years that there are really no hazards associated with the use of nanomaterials. Then we have a record of safe nanomaterial, but it might be an unwarranted cost to administer such a registry. First exposures The first ones to be exposed to nanomaterials will most probably be persons working in the development and production of nanomaterial applications. Thus, a need for early actions is to be expected for SWEA, as it is the agency responsible for occupational health issues. On the other hand, it is REACH and the CLP regulations that govern the information of hazards to workers and consumers, e.g. through the rules on what should be included in material safety data sheets (MSDS). For instance occupational exposure limits are to be given in the MSDS, but as mentioned earlier, there currently is no basis for setting such limit values yet, or test methods to obtain it. 3.2 How to reach sustainable nanomaterial innovations, i.e. to have product development to go hand in hand with research on potential risks to health and the environment? An official national policy or strategy for nanomaterials and nanotechnology could, depending on contents, be an important contribution to the aim of sustainable research and development. However, Sweden does not yet have a national nanotechnology programme. In the joint discussion it was mentioned that nanomaterials are not harmful to the environment and health by definition. However, some asked whether the current state of uncertainty poses a reason to put a moratorium on the development of nanomaterials applications right now as there is a dilemma between sufficiently managing the nanomaterial related risks and embrace the opportunities of the technology. Who should fund risk research? A first issue is to get some indication on how much funding should be targeted towards development of applications and how much towards risk research. It was agreed that the current proportions are unsatisfactory, as only about 5 per cent of the research funding to nanotechnology is aimed at funding of research on risks of nanomaterials or ethical, legal and 40

43 social aspects of nanotechnologies. Also, within the current system of research funding, the funding is often divided between innovation and risk research; it would be sensible to have calls where risk and innovation are interwoven. A desirable future scenario is that when new materials are developed a proper risk characterisation is also performed, and that developers work with several alternatives, so that they can choose the right material from a risk perspective. The aim would be to include a life cycle analysis already in the development phase. Specific calls for funding could be used as an incentive towards this aim. A database as an incentive for phasing out hazardous materials Many participants agreed that nanotechnology poses a fantastic opportunity for innovation and growth. One participant pointed out that a database on nanomaterials, their presence and available knowledge could prove useful also when it comes to the innovation aspect. For it would give developers information on certain materials found or suspected to be unsafe, so that if the risks seem to outweigh the benefits the material can be avoided in research and development. If companies are using such information to opt out hazardous or questionable substances, maybe some of the concerns with the potential risks of the final products may decrease. A database containing the available knowledge on nanomaterials might also have the advantage that some substances may prove to be (probably) harmless, and then encourage innovation that uses these substances. In this respect there is also the issue of deciding how much evidence is required in either direction. 3.3 Which research is needed within the nano field from a government perspective? This question is closely linked to the issue of challenges; many of the challenges are expected to be met by further research efforts. Two of the most acute challenges are the lack of currently available analytical methods and lack of methods for safety testing. These challenges are shared by most authorities, and are probably even greater for environmental risk assessment than the human health field. 3.4 Should there be inter-agency cooperation in the nano field? Vinnova 1 previously proposed how a nano delegation could be designed, but no nano delegation has so far been formed. The proposal was that the delegation should include representation from relevant governmental agencies as well as other stakeholders. Starting to discuss collaboration and networking now is very timely for some authorities. However, all agencies participating in the workshop are in different stages of their work with the nano issue. Also important to keep in mind is that all agencies are not regulatory agencies. It was agreed that some type of cooperation or network is desirable. Pressure from a group of agencies will have a larger influence, for instance on issues such as calls for research funding, compared with the individual agencies. In the area of knowledge acquisition it is especially important with collaboration. It needs to be knowledge transfer between government agencies because not all have the same opportunities to participate in research. It should also not be forgotten that industry can be a fruitful partner in knowledge acquisition contexts. Trafikverket, as a potential nanomaterial user, especially emphasised that dialogue with suppliers, product developers and other nonagency users is important too. Starting an agency network is only a first step, the next 41

44 question is how can and should government agencies interact with the non-agency stakeholders? The discussion of an inter-agency collaboration was concluded with the decision to form some kind of nanonetwork, within which the authorities will have regular meetings (1-2 times a year). It will be helpful to have a forum to discuss nanotechnology issues. KemI does not have a designated responsibility for the nano issue, and is not necessarily the agency that should coordinate this cooperation. KemI will, however, arrange the next meeting. KemI will also prepare a suggestion for a model of rotating meetings. 4 Concluding remarks The agencies participating in the work with this report represent regulators, supervisors, research institutions, research funders and also users of nanomaterials. The major outcome of the workshop in November 2011 was the agreement on the formation of an interagency network and collaboration. This collaboration will facilitate knowledge transfer and broaden the perspective of all actors. As nanomaterials only are a small part of each agency s area of responsibility, a collaborative effort will hopefully have synergistic effects on the efficiency of Swedish nanomaterials management. A recurring theme was the question of how to reach a sustainable product development, because nanomaterials and nanotechnologies offer many applications beneficial to society. The aim of this report has not been to provide answers to questions, but to compile the questions of different agency actors and to find common grounds and investigate the need for and potential of an interagency network regarding the nano issues. Nanomaterials do constitute a number of challenges for agencies. Nanomaterials are to be identified, measured and characterised and the hazardous properties need to be evaluated. These are difficult issues since the scientific methods for meeting these challenges are often lacking. A first step is thus to derive suitable testing and analytical methods for nanomaterials. Research funding will obviously play a crucial role. 42

45 Appendix A The European Commission s recommendation for a definition of nanomaterials 43

46 L 275/38 SV Europeiska unionens officiella tidning REKOMMENDATIONER KOMMISSIONENS REKOMMENDATION av den 18 oktober 2011 om definitionen av nanomaterial (Text av betydelse för EES) (2011/696/EU) unionen. Definitionen av termen nanomaterial i unions lagstiftningen bör baseras uteslutande på storleken på de partiklar som ingår i ett material, utan hänsyn till fara eller risk. Denna definition, baserad endast på storlek hos ett material, täcker naturliga, oavsiktligt framställda och avsiktligt tillverkade material. EUROPEISKA KOMMISSIONEN UTFÄRDAR DENNA REKOMMENDATION med beaktande av fördraget om Europeiska unionens funktions sätt, särskilt artikel 292, och (5) Definitionen av termen nanomaterial bör baseras på till gänglig vetenskaplig kunskap. (6) Det är i många fall svårt att mäta storlek och storleks fördelning i nanomaterial och olika mätmetoder kan ge resultat som inte går att jämföra. Harmoniserade mätme toder måste utvecklas för att säkerställa att definitionens tillämpning leder till jämförbara resultat för olika material och över tid. Innan harmoniserade mätmetoder har tagits fram bör bästa tillgängliga alternativa metoder tillämpas. (7) I rapporten från Europeiska kommissionens gemen samma forskningscentrum Considerations on a Definition of Nanomaterials for Regulatory Purposes (4) föreslås att en definition av nanomaterial bör avse partikulära nano material, vara allmänt tillämplig i unionslagstiftning och vara förenlig med definitioner som används i andra delar av världen. Storleken bör vara den enda definierande egenskapen, vilket innebär att det krävs en klar definition av nanoskalans gränser. (8) Kommissionen uppdrog åt vetenskapliga kommittén för nya och nyligen identifierade hälsorisker (SCENIHR) att ge vetenskapliga synpunkter på vilka faktorer som bör beaktas vid utformningen av en definition av termen nanomaterial för lagstiftningsändamål. Yttrandet Scientific Basis for the Definition of the Term Nanomaterial var fö remål för ett offentligt samråd I sitt yttrande av den 8 december 2010 (5) drog SCENIHR slutsatsen att storlek är universellt tillämplig på nanomaterial och den mest lämpliga mätstorheten. Ett definierat storleks intervall skulle underlätta en enhetlig tolkning. Som av följande skäl: (1) I kommissionens meddelande av den 7 juni 2005 Nano vetenskap och nanoteknik. En handlingsplan för Europa (1) redogörs för en serie enskilda och sam manlänkade åtgärder för att omgående inleda en säker, samordnad och ansvarsfull strategi för nanoteknik och nanovetenskap. (2) Kommissionen har i överensstämmelse med åtagandena i handlingsplanen gjort en noggrann genomgång av rele vant unionslagstiftning för att fastställa de befintliga reg lernas tillämplighet på potentiella risker med nanomate rial. Resultatet av genomgången presenterades i kommis sionens meddelande av den 17 juni 2008 Lagstiftning om nanomaterial (2). I meddelandet drogs slutsatsen att termen nanomaterial inte nämns uttryckligen i unionslagstift ningen, men att den befintliga lagstiftningen i princip täcker nanomaterialens potentiella hälso-, säkerhets- och miljörisker. (3) Europaparlamentet efterlyste i sin resolution av den 24 april 2009 om lagstiftning om nanomaterial (3) en heltäckande, vetenskapligt baserad definition av nano material i gemenskapslagstiftningen. (4) Definitionen i denna rekommendation bör användas som en referens för att fastställa om ett material bör betraktas som ett nanomaterial för lagstiftnings- och policysyften i (1) KOM(2005) 243 slutlig. (2) KOM(2008) 366 slutlig. (3) P6_TA(2009)0328. (4) EUR EN, juni (5) scenihr_o_032.pdf.

47 SV Europeiska unionens officiella tidning L 275/39 undre gräns föreslogs 1 nm. Som en allmänt överenskommen övre gräns används ofta 100 nm, men det finns inga vetenskapliga argument för att använda just detta värde. Användningen av ett enda övre gränsvärde kan vara alltför begränsande för klassificering av nanomaterial och det är möjligt att en flexiblare ansats kan vara att föredra. För lagstiftningsändamål bör även antalsstorleksfördelningen beaktas och definitionen preciseras med hjälp av medelstorlek och storlekens standardavvikelse. Storleksfördelningen för ett material bör anges som storleksfördelning baserad på antalskoncentration (dvs. antalet objekt inom ett givet storleksintervall dividerat med det totala antalet objekt) och inte som massfraktionen nanopartiklar i nanomaterialet, eftersom en liten massfraktion kan innehålla det största antalet partiklar. SCENIHR identifierade specifika fall där definitionens tilllämpning kan underlättas genom användning av den specifika ytan per volym som substitut för att avgöra om ett material faller inom det definierade nanostorleksintervallet. (9) Internationella standardiseringsorganisationen definierar termen nanomaterial som material som har en eller flera yttre dimensioner i nanoskala eller en inre struktur eller ytstruktur i nanoskala. Termen nanoskala definieras som storleksintervallet från cirka 1 nm till 100 nm ( 1 ). det finnas specifika fall i lagstiftningen där det av hänsyn till miljö, hälsa, säkerhet eller konkurrenskraft är motiverat att använda ett tröskelvärde under 50 %. (12) Agglomererade eller aggregerade partiklar kan uppvisa samma egenskaper som fria partiklar. Det kan också finnas fall där partiklar frigörs från agglomerat eller aggregat under ett nanomaterials livscykel. Definitionen i denna rekommendation bör därför inkludera partiklar i agglomerat eller aggregat när de ingående partiklarna är i storleksintervallet nm. (13) Det är för närvarande möjligt att mäta den specifika ytan för torra fasta material eller pulver med kväveadsorptionsmetoden (BET-metoden). I dessa fall kan den specifika ytan användas som substitut för att identifiera potentiella nanomaterial. Ny vetenskaplig kunskap kan göra det möjligt att använda denna och andra metoder på andra typer av material i framtiden. Det kan finnas brister i överensstämmelsen mellan mätningar av specifik yta och antalsstorleksfördelning för olika material. Därför bör det anges att resultat avseende antalsstorleksfördelning bör användas i första hand och att specifik yta inte kan användas för att visa att ett material inte är ett nanomaterial. (10) Antalsstorleksfördelningen bör täcka att nanomaterial typiskt sett består av många partiklar i olika storlek med en viss fördelning. Om antalsstorleksfördelningen inte specificeras är det svårt att avgöra om ett visst material uppfyller definitionen när endast en del av partiklarna är mindre än 100 nm. Denna utgångspunkt är förenlig med SCENIHR:s yttrande att ett materials partikelfördelning bör presenteras som storleksfördelning baserad på antalskoncentration (dvs. partikelantal). (14) Den tekniska och vetenskapliga utvecklingen går i snabb takt. Definitionen inklusive deskriptorer bör därför ses över senast i december 2014 för att säkerställa att den motsvarar behoven. Vid översynen bör särskilt bedömas om antalsstorleksfördelningens tröskelvärde på 50 % bör höjas eller sänkas och om det är lämpligt att inkludera material med inre struktur eller ytstruktur i nanoskala såsom komplexa nanomaterial för nanokomponenter, däribland nanoporösa material och nanokompositmaterial som används i vissa sektorer. (11) Det finns ingen entydig vetenskaplig grund för att föreslå ett visst värde för storleksfördelningen under vilket material som innehåller partiklar i storleksintervallet nm inte väntas uppvisa egenskaper som är specifika för nanomaterial. Den vetenskapliga rekommendationen var att använda en statistisk metod baserad på standardavvikelse med ett tröskelvärde på 0,15 %. Mot bakgrund av den stora förekomsten av material som skulle omfattas av ett sådant tröskelvärde, och behovet att skräddarsy definitionens tillämpningsområde för användning i lagstiftning, bör emellertid tröskelvärdet sättas högre. Ett nanomaterial såsom det definieras i denna rekommendation bör till minst 50 % bestå av partiklar med en storlek mellan 1 nm och 100 nm. Enligt SCE NIHR:s rekommendation kan även ett litet antal partiklar i intervallet nm i vissa fall motivera en särskild bedömning. Det skulle dock vara missvisande att kategorisera sådana material som nanomaterial. Trots det kan ( 1 ) (15) Om det är möjligt och tillförlitligt bör riktlinjer och standardiserade mätmetoder samt kunskap om typiska koncentrationer av nanopartiklar i representativa uppsättningar material tas fram för att underlätta definitionens tillämpning i specifika lagstiftningssammanhang. (16) Den definition som anges i denna rekommendation bör inte påverka eller avspegla tillämpningsområdet för någon enskild unionsrättsakt eller för andra bestämmelser som kan fastställa ytterligare krav för dessa material, inklusive riskhanteringskrav. Det kan i vissa fall vara nödvändigt att utesluta vissa material från tillämpningsområdet för viss lagstiftning eller vissa lagbestämmelser även om de faller inom definitionen. Det kan likaså vara nödvändigt att inkludera ytterligare material, exempelvis vissa material med en storlek under 1 nm eller över 100 nm i tillämpningsområdet för viss lagstiftning eller vissa lagbestämmelser som är avsedda för nanomaterial.

48 SV L 275/40 Europeiska unionens officiella tidning (17) Mot bakgrund av de särskilda omständigheter som råder inom läkemedelssektorn och de specialiserade nanostrukturerade system som redan används, bör definitionen i denna rekommendation inte påverka användningen av uttrycket nano vid definitionen av vissa läkemedel och medicintekniska produkter. HÄRIGENOM REKOMMENDERAS FÖLJANDE. b) agglomerat: en samling svagt sammanhållna partiklar eller aggregat där den yttre ytarean är ungefär lika med summan av de enskilda komponenternas ytarea. c) aggregat: en partikel bestående av starkt sammanhållna eller förenade partiklar. 1. Medlemsstater, unionsorgan och ekonomiska aktörer uppmanas att använda följande definition av termen nanomaterial vid antagande och genomförande av lagstiftning samt strategi- och forskningsprogram som rör nanotekniska produkter. 2. Nanomaterial är ett naturligt, oavsiktligt framställt eller avsiktligt tillverkat material som innehåller partiklar i fritt tillstånd eller i form av aggregat eller agglomerat och där minst 50 % av partiklarna i antalsstorleksfördelningen har en eller flera yttre dimensioner i storleksintervallet nm. I särskilda fall, och om det är motiverat av hänsyn till miljö, hälsa, säkerhet eller konkurrenskraft, får antalsstorleksfördelningens tröskelvärde på 50 % ersättas med ett tröskelvärde mellan 1 och 50 %. 3. Med avvikelse från punkt 2 bör fullerener, grafenflagor och kolnanorör med enkel vägg med en eller flera yttre dimensioner under 1 nm betraktas som nanomaterial. 4. Vid tillämpning av punkt 2 gäller följande definitioner för partikel, agglomerat och aggregat: 5. Om det är tekniskt möjligt och krävs i särskild lagstiftning får överensstämmelse med definitionen i punkt 2 fastställas på grundval av specifik yta. Ett material bör anses falla inom definitionen i punkt 2 om materialets specifika yta är större än 60 m 2 /cm 3. Ett material som på grundval av sin antalsstorleksfördelning är ett nanomaterial bör dock anses motsvara definitionen i punkt två även om materialets specifika yta är mindre än 60 m 2 /cm Senast i december 2014 ska definitionen i punkterna 1 5 ses över mot bakgrund av erfarenheten och den vetenskapliga och tekniska utvecklingen. Översynen bör särskilt inriktas på om antalsstorleksfördelningens tröskelvärde på 50 % bör höjas eller sänkas. 7. Denna rekommendation riktar sig till medlemsstaterna, unionsorgan och ekonomiska aktörer. Utfärdad i Bryssel den 18 oktober a) partikel: ett mycket litet stycke materia med definierade fysikaliska gränser. På kommissionens vägnar Janez POTOČNIK Ledamot av kommissionen

49 Appendix B Workshop invitation and program in Swedish Välkomna till en heldag om nano för berörda myndigheter Kemikalieinspektionen bjuder in myndigheter vars verksamheter är berörda av nanoteknik och nanomaterial till ett möte för kunskaps- och erfarenhetsutbyte. Mötet ska ta upp olika myndigheters aktiviteter inom nanoområdet. I en efterföljande diskussion ska bland annat följande tas upp: Vilka är de största utmaningarna inom nanoområdet för er myndighet? Hur får vi en ansvarsfull innovationsutveckling att gå hand i hand med ev. hälso och miljörisker med nanomaterial? Vilken forskning behövs på nanoområdet sett ur ett myndighetsperspektiv? Behövs det myndighetssamverkan inom nanoområdet? Ställföreträdande generaldirektör Jan Hammar kommer att vara moderator för diskussionen. Kunskaps- och erfarenhetsutbytet ska också utmynna i en sammanfattande rapport. Tid Fredagen den 25 november 2011, kl Plats Stockholmsområdet (återkommer om lokal). Anmälan och förberedelsematerial Skickas senast den 28 oktober till Linda Schenk på e-postadressen: schenk@kth.se. Anmälan bör innehålla namn, myndighet, e-postadress och telefonnummer. Anmälan är obligatorisk. Mat Lunch och fika. Kostnad Mötet inklusive mat och dryck är kostnadsfritt. Förberedelser Inför mötet ber Kemikalieinspektionen inbjudna myndigheter om en kort sammanfattning på engelska av varje myndighets nano-aktiviteter. Beskrivningen bör vara på maximalt tre sidor och skickas senast den 28 oktober 2011 till Linda Schenk, schenk@kth.se. Linda Schenk sammanställer rapporten på uppdrag av Kemikalieinspektionen. Sammanfattningen kan till exempel innehålla information om följande: myndighetens deltagande i arbetsgrupper både internt och externt, till exempel inom EU och OECD, 47

50 redogörelse av den egna lagstiftningens tillämpbarhet, nano i den egna verksamhets- eller handlingsplanen, beskrivning av avslutade, pågående och planerade projekt rörande nano samt ev. regeringsuppdrag, en beskrivning av vilka de största utmaningarna på nanoområdet är för er myndighet. Sammanställningen kommer att ligga till grund för utformningen av mötesprogrammet. Program för dagen skickas därför ut efter den 28 oktober. Om inbjuden myndighet inte har möjlighet att vara med den 25 november För att få rapporten så komplett som möjligt är det värdefullt om även de myndigheter som inte har möjlighet att delta på mötet ändå skickar en sammanställning senast den 28 oktober. Bakgrund till mötet I Kemikalieinspektionens handlingsplan för en Giftfri vardag framhålls behovet av insatser för att nå en hög skyddsnivå för eventuella hälso- och miljörisker orsakade av nanomaterial. Inbjudan skickas till följande Arbetsmiljöverket, Boverket, Energimyndigheten, Formas, Forskningsrådet för arbetsliv och socialvetenskaper (FAS), Försvarets materielverk, Försvarsmakten, Havs- och vattenmyndigheten, Inspektionen för strategiska produkter, Invest in Sweden Agency, Jordbruksverket, Kommerskollegium, Konsumentverket, Livsmedelsverket, Läkemedelsverket, Myndigheten för samhällsskydd och beredskap, Myndigheten för tillväxtanalys, Naturvårdsverket, Patent och registreringsverket, Rymdstyrelsen, Socialstyrelsen, Statens veterinärmedicinska anstalt, Stiftelsen för Miljöstrategisk forskning (Mistra), Stiftelsen för strategisk forskning (SSF), Trafikverket, Vetenskapsrådet, Vinnova, Arbetsmarknadsdepartementet, Finansdepartementet, Försvarsdepartementet, Justitiedepartementet, Kulturdepartementet, Landsbygdsdepartementet, Miljödepartementet, Näringsdepartementet, Socialdepartementet, Utbildningsdepartementet, Utrikesdepartementet. Väl mött! Agneta Falk-Filipsson enhetschef på enheten för riskbegränsning och stöd, avdelningen för industri och konsumentkemikalier 48

51 Heldag om Nano för berörda myndigheter Datum: Fredagen den 25 november 2011 Tid: Kl Plats: Kemikalieinspektionen, Esplanaden 3A, Sundbyberg Lokal: Havet Program KAFFE/TE med smörgås Välkomna - Jan Hammar, stf generaldirektör för KemI Presentationer om nano-aktiviteter vid Kemikalieinspektionen Maria Wallén Livsmedelsverket Lilianne Abramsson Totalförsvarets forskningsinstitut - Ulrika Bergström Trafikverket - Malin Kotake Fruktpaus Fortsatta presentationer om nano-aktiviteter vid Statens medicin-etiska råd Göran Hermerén Arbetsmiljöverket Claes Trägårdh Vinnova Ulf Holmgren Översyn av nano i Sverige Linda Schenk, KTH 49

52 LUNCH serveras i anslutning till möteslokalen Kort om nano-aktiviteter vid Miljödepartementet Naturvårdsverket Inspektionen för strategiska produkter Myndigheten för samhällsskydd och beredskap (MSB) Forskningsrådet Formas Stiftelsen för miljöstrategisk forskning (Mistra) Försvarsmakten Försvarets materielverk Socialstyrelsen Läkemedelsverket KAFFE/TE med kaka Diskussioner moderator Jan Hammar Vilka är de största utmaningarna inom nanoområdet för er myndighet? Hur får vi en ansvarsfull innovationsutveckling att gå hand i hand med eventuella hälso- och miljörisker med nanomaterial? Vilken forskning behövs på nanoområdet sett ur ett myndighetsperspektiv? Behövs det myndighetssamverkan inom nanoområdet? Sammanfattning och avslutning Jan Hammar Väl mött! Agneta Falk-Filipsson Enhetschef på enheten för riskbegränsning och stöd Avdelningen för industri-och konsumentkemikalier 50

53 List of participants Claes Trägårdh The Swedish Work Environment Authority Gabriela Balodis The Swedish Work Environment Authority Ulrika Bergström The Swedish Defense Research Agency Lena Strålsjö The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning Birgit Ramfjord The Swedish Defense Material Administration Annat Kanth The Swedish Armed Forces Linda Hinas The Swedish Agency for Non-Proliferation and Export Control Linda Schenk The Royal Institute of Technology Luisa Becedas The Medical Products Agency Tuija Pihlström The National Food Agency Lilianne Abramsson The National Food Agency Kettil Svensson The National Food Agency Evelyn Jansson Elfberg The National Food Agency Conny Hägg The Ministry of the Environment Christopher Folkesson Welch The Foundation for Strategic Environmental Research Claes Löfström The Swedish Civil Contingencies Agency Britta Hedlund The Swedish Environmental Protection Agency Gudrun Cassel The National Board of Health and Welfare Anders Berglund The National Board of Health and Welfare Göran Hermerén The Swedish National Council on Medical Ethics Lotta Eriksson The Swedish National Council on Medical Ethics Malin Kotake The Swedish Transport Administration Mona Lundcrantz The Swedish Transport Administration Hans Holmen The Swedish Transport Administration Jessica Simon The Swedish Transport Administration Ulf Holmgren The Swedish Governmental Agency for Innovation Systems From the Swedish Chemicals Agency Jan Hammar Agneta Falk-Filipsson Yvonne Andersson Sanna Arndt Susanne Classon Mats Forkman Stefan Gabring Lena Hellmér Maria Lindfors Ulf Rick Maria Wallén Christoffer Österwall Margareta Östman 51

54 Appendix C Presentations given at the nanoworkshop The Swedish Chemicals Agency - Maria Wallén The National Food Agency - Lilianne Abramsson and Kettil Svensson The Swedish Work Environment Authority - Claes Trägårdh The Swedish Transport Administration - Malin Kotake Swedish National Council on Medical Ethics - Göran Hermerén The Swedish Defense Research Agency - Ulrika Bergström Summary of the report: Mapping Swedish research and development - Linda Schenk The presentations were given in Swedish. 52

55 Aktiviteter Säker användning av nanomaterial Nanomaterial på Kemikalieinspektionen OECD EU Nationellt Vad händer nu? Maria Wallén, toxikolog Avdelningen för industri- och konsumentkemikalier Kemikalieinspektionen Myndighetsmöte om nanomaterial - KemI Kemikalieinspektionen En tillsyns- o expertmyndighet under Miljödepartementet Ansvar i Sverige för Reach-förordningen - industrikemikalier Klassificerings- och märkningsförordningen CLP Prövning av hälso- och miljökrav för godkännande av växtskyddsmedel ätkdd dloch biociderid Olika produktregler ex kemikalier i leksaker och elektriska produkter Tillsyn över tillverkare och importörer av kemiska produkter och varor Nationellt produktregister officiella statistiken OECD; Environment Directorate WPMN Working Party on Manufactured Nanomaterials Sponsorship Programme Översyn av OECDs befintliga riktlinjer för testning av NM Alternativa testmetoder Exponering o exponeringsbegränsning Riskbedömning av NM Databas ffa forskningsaktiviteter Testning av representativa NM Sponsorship programme OECD Programme on the Safety of Manufactured Nanomaterials : Operational Plans of the Projects Series on the Safety of Manufactured Nanomaterials No. 22; 26-Apr-2010; ENV/JM/MONO(2010)11 Fullerenes SWCNTs MWCNTs Dendrimers Nanoclays Silver nanoparticles Iron nanoparticles Gold nanoparticles Titanium dioxide Aluminium oxide Cerium oxide Zinc oxide Silicon dioxide --- (Polystyrene) (Carbon black)

56 Phase I Problem formulation and scoping (exploratory) Nanomaterial Information and Identification; Material Safety Physical-Chemical Properties and Material Characterization Environmental Fate; Environmental Toxicology Mammalian Toxicology; Phase II Planning and conduct of risk assessment (additional) Additional testingti Phase III Risk management Guidance Manual for the Testing of Manufactured Nanomaterials: OECD s Sponsorship Programme; first revision 02-Jun-2010; ENV/JM/MONO(2009)20/REV Preliminary Guidance Notes on Sample Preparation and Dosimetry for the Safety Testing of Manufactured Nanomaterials 31-may-2010; ENV/JM/MONO(2010)25 Critical issues Physical-chemical parameters Sample preparation and dosimetry Toxicokinetics Information on enviromental fate Inhalation toxicity Aquatic toxicity European Commission Reach Competent Authorities subgroup on Nanomaterials CASG Nano Definition COM recommendation 18 oct 2011 Registrering ämnesidentifiering, informationskrav Testmetoder inklusive alternativa testmetoder OECD Kemikaliesäkerhetsbedömning - riskbedömning Klassificering/märkning Säkerhetsdatablad Tillstånd och begränsningar Kommissionens rekommendation av den 18 oktober 2011 om definitionen av nanomaterial 2. Nanomaterial är ett naturligt, oavsiktligt framställt eller avsiktligt tillverkat material som innehåller partiklar i fritt tillstånd eller i form av aggregat eller agglomerat och där minst 50 % av partiklarna i antalsstorleksfördelningen har en eller flera yttre dimensioner i storleksintervallet nm. KemI nationellt 3. Med avvikelse från punkt 2 bör fullerener, grafenflagor och kolnanorör med enkel vägg med en eller flera yttre dimensioner under 1 nm betraktas som nanomaterial. 5. Ett material bör anses falla inom definitionen i punkt 2 om materialets specifika yta är större än 60 m 2 /cm

57 Rapporter från KemI om nanoteknik och nanomaterial 1. Nanoteknik stora risker med små partiklar KemI Rapport Nr 6/07 2. Användningen av nanomaterial i Sverige 2008 analys och prognos KemI PM 1/09 3. Nanomaterial aktiviteter för att identifiera och uppskatta risker KemI PM 2/09 4. Säker användning av nanomaterial - behov av reglering och andra åtgärder KemI Rapport Nr 1/10 Förslag från KemI till Miljödepartementet på aktiviteter om nanomaterial Definition Obligatoriskt rapporteringssystem Se över befintlig lagstiftning för anpassning till NM Riktade forskningsinsatser Mer hälso- och miljöriskforskning Medverka i OECDs och EUs verksamheter om nanomaterial Initiera nationell myndighetssamverkan om nanomaterial Behov av revidering och/eller komplettering av lagstiftningen (bl.a Översyn av Reach-förordningen 2012) Definition av NM EU-gemensamt rapporteringssystem för NM Klassificering och märkningssystemet (CLPförordningen) anpassas till NM Registrering av NM i Reach Ämnesidentifiering Utökat informationskrav (inklusive tillämpbara testmetoder samt dosimetri och provpreparering) Tack för uppmärksamheten!

58 Nanopartiklar och arbetsmiljö Claes Trägårdh, Arbetsmiljöverket Finns lagar? Ja, arbetsmiljölagstiftningen täcker även nanopartiklar AML : ämne som kan föranleda ohälsa eller olycksfall får användas endast under förhållanden som ger betryggande säkerhet Föreskrifterna om Kemiska arbetsmiljörisker AFS 2000:4 som bygger på EU-direktivet 98/24/EG om kemiska agens i arbetet (CAD) samt carcinogendirektivet t 2004/37/EG Ag ska göra riskbedömning Farliga egenskaper Info om egenskaper och åtgärder genom leverantör i tex SDB Hanteringssätt, arbetsutrustning mm. Exponering Tips! Denna text ändras via menyfliken Infoga -> gruppen Text -> knappen Sidhuvud/sidfot Tips! Denna text ändras via menyfliken Infoga -> gruppen Text -> knappen Sidhuvud/sidfot Finns lagar? Forts. Planering av arbetet Åtgärdstrappan Byt ut mot ämnen som medför mindre risk Arbetsmetoder, processer och tekn. anordningar väljs så att risken vid hantering reduceras Skyddsåtgärder vid källan Arbete på särskild tid eller plats Personlig skyddsutrustning används (sistahandsåtgärd) Personlig skyddsutrustning Partikelfilter P3, avskiljning 99,95 % Testas enligt standarden SS-EN 143 a) NaCl polydispers aerosol MMD = 0,6 µm b) Paraffinolja polydispers aerosol lognormalfördelad median Stokes diameter (antalsfördelning) l = 0,4 µm Fit testing of respiratory protective equipment facepeaces HSE OC 282/28 Partikelräknarinstrument TSI Portacount Model 8020, ner till 20 nm Kvoten partiklar utanför och innanför masken bestäms Tips! Denna text ändras via menyfliken Infoga -> gruppen Text -> knappen Sidhuvud/sidfot Tips! Denna text ändras via menyfliken Infoga -> gruppen Text -> knappen Sidhuvud/sidfot Deltagande i arbetsgrupper Standardisering SIS TK 423 Luftkvalité, mätmetoder och exponeringbedömning; ISO/TC 146/SC 2 Air Quality SIS TK 516 nanoteknik/ag 3 Miljö, hälsa och säkerhet, (CEN/TC 229 Nanotechnologies) EU Senior Labour Inspectors Committee (SLIC) WG CHEMEX, kopplingen Reach/nationell arbetsmiljölagstiftning Chemicals at the workplace, arbetsgrupp till Rådgivande kommittéen för arbetsmiljöfrågor Deltagande i arbetsgrupper, forts EU forts. SCOEL, Scientific Committee for Occupational Exposure Limits AV Kriteriegruppen för hygieniska gränsvärden NEG, Nordiska expertgruppen för kriteriedokument om kemiska hälsorisker Tips! Denna text ändras via menyfliken Infoga -> gruppen Text -> knappen Sidhuvud/sidfot Tips! Denna text ändras via menyfliken Infoga -> gruppen Text -> knappen Sidhuvud/sidfot

59 Projekt Kunskapsöversikter Kolnanorör exponering, toxikologi och skyddsåtgärder i arbetsmiljön Rapport 2011:1 Per Gustavsson m.fl. Lunds universitet Standarder d Workplace atmospheres Ultrafine, nanoparticle and nano-structured aerosols Inhalation exposure characterization and assessment (SIS-ISO/TR 27628:2007) Utmaningar Underlag för riskbedömning på arbetsplatsen Att Reach fungerar för nano Hygieniska gränsvärden (massa, area eller antal) Att få kännedom om var nanopartiklar hanteras, använd och bildas Att DG Miljö och DG Sysselsättning, socialpolitik och inkludering samverkar Tips! Denna text ändras via menyfliken Infoga -> gruppen Text -> knappen Sidhuvud/sidfot Tips! Denna text ändras via menyfliken Infoga -> gruppen Text -> knappen Sidhuvud/sidfot

60 Nano och mat Livsmedelsrelaterade produkter Energidrycker/sportpreparat kosttillskott bakteriedödande medel på hushållsredskap hushållsprodukter (kylskåp, plastburkar, skärbrädor) plastomslag och film Syften med nanoteknologi Evelyn Jansson Elfberg, Lilianne A Zetterberg, Kettil Svensson Ökad biotillgänglighet Smak Lukt Konsistens Förpackningsmaterial -hållbarhet -bakterieskydd -barriäregenskaper Förhandlingar om nya förordningar pågår/ har pågått i Bryssel Livsmedelslagen, förordning 178/2002: Livsmedelsföretagaren är ansvarig för livsmedel som sätts på marknaden ska vara säkra Livsmedelsföretagaren ska dra tillbaka livsmedel från marknaden som inte är säkra Tillsatser (förordning 1333/2008) Om det sker en väsentlig förändring av produktionsmetod eller det ursprungsmaterial som används, eller vid en förändring av partikelstorleken, t ex med hjälp av nanoteknik, ska den tillsats som tillverkats med dessa nya metoder eller material anses som en annan tillsats och återutvärdering eller ändring i specifikationen krävas. Material och produkter i kontakt med livsmedel (förordning 1935/2004) inte utgöra fara för hälsa, orsaka oacceptabla förändringar av livsmedlets sammansättning och inte försämra dess organoleptiska egenskaper Förordning 450/2009 om aktiva och intelligenta material och produkter avsedda att komma i kontakt med livsmedel ska användningen av nanomaterial regleras från fall till fall Förslaget till förordningen om plast - nanomaterial regleras från fall till fall. 58

61 Nya livsmedel (ej använts i större utsträckning för konsumtion i EG före 15 maj 1997) Förordning 258/97 de livsmedel till vilka man använt en ny produktionsmetod då denna innebär betydande förändringar av livsmedlets sammansättning eller struktur och som påverkar dess näringsvärde, metabolism eller halten av icke önskvärda ämnen. Vidare gäller för Nya livsmedel Ett nytt livsmedel eller ny livsmedelsingrediens får inte vara farlig för konsumenten, vilseleda eller förändra livsmedelsingrediensen, det ska ej ersätta på ett sådant sätt att det blir negativt för konsumenten (detta var med tanke på GMO) NY FÖRORDNING nalkas! Förslag på ny förordning om Nya livsmedel Detta diskuteras: Hur definieras nya livsmedel: livsmedel som innehåller eller består av konstruerade nanomaterial ( storlek?) Är konstruerat nanomaterial alltid ett nytt livsmedel? I så fall utvärderas från fall till fall? Tänkbara vägar in till maten (enl EFSA): Förpackningsmaterial: få studier, migration? Kapslar/dragéer: ingen information om övergången inne i kroppen Foder till djur: ingen information Pesticider, veterinärprodukter, gödning: inget på den europeiska marknaden Riskvärderingsaspekter : Några aspekter på toxstudier av nanoämnen: Stora kunskapsluckor: liten erfarenhet av riskvärdering av nano i livsmedel oro för mycket reaktiva nanopartiklar? case by case riskvärdering exponering (olika exponeringskällor)? Behov av in vivo-data. Validerad in vitro-metod saknas. Mest orala studier utförda på metaller och metalloxider Bristfällig karakterisering Få studier där nanoämnet givits i fodret Få jämförande studier mellan nano och non-nanoformen (m.a.o. inga generella slutsatser kan dras) in vitro till in vivo -experiment - överensstämmelse? Betraktas som genotoxiskt? Genotoxiskt vid höga doser gm oxidativ stress Massa - antal partiklar ytarea 59

62 Seminarium om nanoteknologi och mat koncentration in vitro, effekt / in vivo effekt? koncentration? ingen riskbedömning! Efsa: Nanoämnen kan behöva karakteriseras i 5 steg vid riskvärdering: vid tillverkning i som tillsats/mtrlämne/pesticid i livsmedlet/simulant i test systemet (in vitro, in vivo) i människans blod, urin etc Exponeringsscenarier nano (Efsa, 2011) Toxicitetstestning av nanoämne i livsmedel (Efsa, 2011) Typ av nanoämne: livsmedelstillsats, ämne i förpackning, pesticid etc Finns nanoämne i livsmedlet? Nej Ja Tillsatt nanoämne Via migration Kvantifiering av migrationen Beroende på t ex -Ingen migration; följ FCM vägledning eller, - Transformerad till non-nano i livsmedlet före intag; följ relevant Efsa vägledning för non-nanoform Nanoämne absorberas från mag-tarmkanalen? (stabilt eller ADME info) Nej Ja Identifiering och kvanti- fiering av nano/ non-nano nano (ev nedbrytning) i livsmedlet Identifiering och kvantifiering av nano/non- nano (ev nedbrytning) i simulant eller livsmedel Nanoämne överförs helt till non-nanoform nanoform i magtarmkanalen? Ja Nej JA Utför exponeringsuppskattning av nanoämnet med hänsyn till ev non-nanoform Nano kvar i livsm.? NEJ Utför exponeringsuppskattning av non-nanoform Utvärdera ev lokala effekter på magtarmkanalen och ev absorption före transformering; - testa enligt relevant Efsa vägledning för non-nano eller använd existerande information Nanoämne : In vitro tox test (Gentoxicitet): Genmutationer i däggdjurs-celler In vitro mikrokärntest In vivo test; ADME Subkronisk oral 90 dagars (upprepad dosering) In vivo gentoxicitet (om positiv in vitro)? 60

63 Trafikverkets Nanoaktiviteter Malin Kotake Trafikverkets uppdrag Trafikverket: ansvarar för långsiktig planering av transportsystemet för vägtrafik, järnvägstrafik, sjöfart och luftfart ansvarar för byggande, drift och underhåll av statliga vägar och järnvägar Vi är en del av transportsektorn samt bygg- och anläggningssektorn Trafikverket och nanoteknik/nanomaterial Nuläget: Kunskapsuppbyggnad pågår om kemiska produkter och material innehållande nanopartiklar som används i Trafikverkets verksamhet. Trafikverkets nanoprojekt genomförs under 2011 Känd användning är rengöringsmedel för rastplatser och vägskyltar. Ingen aktiv styrning av användning saknar kriterier för bedömning, riktlinjer samt rutiner Användningen av kemiska produkter och material innehållande nanopartiklar förväntas spridas och öka. Saknas kunskap om nanoprodukters risker för hälsa och miljö Trafikverkets nanoprojekt - värden Inventering/kartläggning av befintlig användning ger kännedom om nanomaterials spridning och användningsområden inom Trafikverket. Sammanställning av forskningsläget och kunskapsläget gällande miljö- och hälsorisker kopplat till nanomaterial ger underlag till analys, slutsatser för vidare arbete. Riskbedömning ger underlag för att bedöma behovet av kompletterande krav och kriterier för nanomaterial samt behov av styrning genom rutiner, riktlinjer mm Kartläggning inför inventering Inventering av nanoprodukter som används i Trafikverkets verksamhet Sammanställning av forskningsläget och kunskapsläget Användningsområden inom bygg- och anläggningsbranschen Risker och möjligheter med nanomaterial/nanoteknik inom anläggningsbranschen Användningsområden där nanoprodukter används eller har använts Användningsområden där man är intresserad av effekter som kan uppnås med hjälp av nanoteknik samt användningsområden där nanoteknik skulle kunna förekomma

64 Resultat har använt Rastplatser - hygienutrymmen, bord Vägmärken reflexfolier Kantstolpar Bullerskydd Sidobarriärer Barriärelement och evakueringstunnlar Injekteringsmedel silicasuspension i bl a tunnlar Hastighetskameror Resultat intresse av effekter, potentiella användningsområden Båtbottenfärger, färjornas hygienutrymmen Klotterskydd Självrengörande effekt på signalglas Förhindra frost/isbildning på kontaktledning Klotterskydd på broar Impregnering på broar mot kloridintrång Luftrenande asfalt, cement/betong, bullerskydd Fog, spackel för bra hållfasthet Specialsmörjmedel, universalfett, antikärvpasta Slutsatser - inventering Svårigheter att identifiera nanoprodukter - definition -märkning Lågkunskapsnivå om nanoprodukter Okänt om och hur nanoprodukter används Intresse för nanoprodukters effekter möjligheter och potential Riskbedömning samt behov av krav, kriterier, riktlinjer och rutiner Pågående arbete klart dec 2011 Workshop 8 november - medverkan Kemi Fortsättning 2012 enligt resultat/slutsatser från projekt Utmaningar inom nanoområdet för Trafikverket Identifiera nanomaterial Hantera och bedöma potentiella risker Tillämpa miljöbalkens hänsynsregler

65 Etik och värdekonflikter Nano: SMER på Kemikalieinspektionen Göran Hermerén De etiska problem som NT och NV aktualiserar gäller inte bara konsumenters säkerhet och risk-nytta. Vem gynnas, vem drabbas, vem fattar besluten, vem har insyn och vem kan påverka? IPR? Info använd av tredje part? Arbetsgivare, Framställningen börjar med det som ligger kronologiskt nära i tiden: SMERs debattartikel i DI och skrivelse till regeringen g Dessa har förberetts av flera av SMERs sakunniga Som också medverkat i internationella publikationer och konferenser nära tio år, senast i Warszawa Kronologin Vinnova och Kemikalieinspektionen ägnar mycket begränsad uppmärksamhet åt etiska problem. Riskfrågan Både kunskap och värderingar krävs för riskvärdering. Vissa kunskapsfrågor kartläggs men värdefrågorna är styvmoderligt behandlade Huvudpunkter 1 De etiska aspekterna har haft en framträdande plats i såväl EU kommissionens som EU parlamentets arbete. EGE fick av president Barroso i behandlas, men ensidigt. uppdrag att skriva en rapport om etiska aspekter på nanomedicin, publicerad 2007, och Kommissionen antog 2008 en rekommendation till medlemsstaterna (Code of responsible conduct in N&N research). 63

66 Länder som gett substantiellt utrymme åt etiska aspekter i sina nanostrategier inkluderar Finland, Norge, Tyskland, Nederländerna, Storbritannien och USA men inte Sverige. Huvudpunkter 2 Det finns redan tusentals produkter baserade på nanoteknik på marknaden. Frågor att diskutera inkluderar risken att vi skapar ett nanosopberg som framtida generationer måste hantera. En rad forskningsetiska frågor aktualiseras, i hög grad relaterade till kunskapsluckor på området vilket gör det svårt att erhålla ett informerat samtycke värt namnet. Huvudpunkter 3 Hur skall den s.k. försiktighetsprincipen tolkas och tillämpas i detta sammanhang? På vilka grunder skall forskningsprojekt prioriteras? De som kan leda till produkter som kan säljas i de rika industriländerna eller Transparens och samhällelig debatt är viktig för acceptans av nya tekniker. Detta har betonats av flera organ inom EU. Vilka risker och möjligheter finns att förbättra människan i olika avseenden med nya tekniker, och sådana som kan bidra till att hur påverkar de människo minska gapet mellan i länder och u länder? värde och den personliga integriteten, samt rättviseoch globaliseringsfrågor? Huvudpunkter 4 Riskanalys och etisk utvärdering av forskning och ny teknik är pågående processer som måste följa och integreras i alla stadier av innovationsprocessen. Etiken sätter inte bara gränser. Konstruktiv etisk analys kan mycket väl stimulera till ny nanoforskning. Den forskning som finns om riskhantering visar att om man inte på ett tidigt stadium uppmärksammar risker och för ett brett och öppet samtal om grundläggande värdefrågpr kan hela teknikområden råda ut för stigmatisering, som i debatten om genmodifierade livsmedel. Vad kan vi lära av övriga Europa? European Group on Ethics President Barroso har givit EGE i uppgift att skriva en rapport om etiska aspekter på nanomedicin. Den publicerades 2007 och skrevs med utgångspunkt från ett europeiskt etiskt ramverk Senare kom kommissionens A code of conduct for responsible NS and NT research (feb 2008) och EC har finansierat flera projekt som utreder etiska aspekterna av NV och NT Och internationellt. Det finns en tidskrift som särskilt ägnas åt etiska problem aktualiserade av nanoforskning: Nanoethics. En omfattande antologi publicerades av Springer häromåret: Fritz Allhoff, Patrick Lin (eds) Nanotechnology and society. Current and emerging ethical issues. Springer

67 Vad återstår att göra i SMER perspektiv En dialog och bred debatt, inte bara begränsad till nanoforskarna, ersätter envägskommunikation Utveckling och tillämpning av bättre metoder för riskanalys, beaktande nuvarande kunskapsgap och osäkerheter Värdefrågorna synliggörs liksom etiska aspekter på säkerhetsfrågor: beslut om säkerhetsstandardsoch gränsvärden är inte etiskt neutrala Riskbedömningens etik och försiktighetens pris måste ytterligare studeras/penetreras En vidare dialog när det gäller kriterier för prioritering av forskning, som föreslogs i Code of Conduct 2008 Säkerhet och risk vinstproblem är inte de enda etiska frågorna. Andra etikfrågor bör identifieras och analyseras. Framtida utmaningar Framtida utmaningar inkluderar att skapa förutsättningar för en djupgående och bred debatt om vilka värden som skall vara utgångspunkten för de val Sverige och Europa står inför på kort och lång sikt Slutsatser Framtagandet av nanotekniska tillämpningar inom exempelvis hälso- och sjukvårdsområdet går stegvis. Vid varje steg aktualiseras etiska, sociala och rättsliga aspekter. Om dessa aspekter behandlas innan man går vidare, kan man undvika negativa reaktioner hos allmänheten och att utvecklingen stoppas av onödig etikoro. Det är av stor vikt att nanotekniken granskas kritiskt av andra än forskare och näringslivet De etiska, sociala och rättsliga aspekterna utgör en viktig del av underlaget innan en ny metod introduceras. Därför väsentligt att personer med etisk kompetens ingår i den av Vinnova föreslagna nanoteknikdelegationen. 65

68 Umeå CBRN-skydd och säkerhet Umeå universitet Nanopartiklar Uppsala Uppsala universitet Materialkarakterisering, exponeringsmätning, upptagskinetik och toxicitet Ulrika Bergström, toxikolog CBRN-skydd och säkerhet, FOI Umeå Stockholm Karolinska Institutet Internationella samarbeten Folkhelseinstitutet, Oslo, Norge US Air Force Research Laboratories, Dayton, Ohio Tillverkade nanopartiklar som studerats av FOI - partikelkarakterisering och toxiska effekter Nanopartiklar versus konventionella substanser Titanoxider: TiO 2 Andersson P et al Small 2011, 7, Ekstrand-Hammarström B et al Nanotoxicology, 2011, Early Online, 1 12 Gustafsson Å et al J Immunotoxicol : Wolframoxider: WO 3 Järnoxider: Fe 2 O 3, FeOOH Nanomaterial och dess tillämpningar har ofta komplexa strukturer och sammansättning Storlek Form Ytarea Ytaktivitet Sammansättning Nanostruktur Agglomerering Olika partikelmorfologier av samma material (TiO 2 ) uppvisar olika upptagskinetik pga agglomereringsegenskaper Distribution och identifiering av partiklar i levande celler Raman mikrospektroskopi a) b) c) d) (001) (001) (001) (011) (101) (101) (011) (101) (100) (100) (111) (101) (100) (110) a) P25/R Ramanmätning av P25 anatas Ramanmätning av R9 Rutil b) 0 5 y / m P w vib=144 cm c) y / m R9 4 w 40 vib=448 cm anatas rutil P25 NP i cellkärna P25 NP i cellkärna Kemisk reaktivitet: c > a > b >> d Upptag i celler: a >> b~d Små, mjuka NP agglomerat (som anatas i P25 ) tar sig lättare igenom cellmembran än hårda agglomerat som rutil Titandioxidfigurer ur: * Österlund L (2010) Solid State Phenomena 162 (2010) * Österlund L (2009) Vibrational spectroscopy of pure and doped TiO2 photocatalysts. In: On Solar Hydrogen and Nanotechnology (Ed.) Vayssieres L (Wiley & Sons, Singapore, 2009). Andersson PO, Lejon C, Ekstrand-Hammarström B, Akfur C, Ahlinder L, Bucht A, Österlund L. Small 2011, 7 (4),

69 Olika partikelmorfologier av samma material (TiO 2 ) ger olika svar på oxidativ stress i lungepitelceller Sammanfattning Nanoteknologin kan erbjuda nya material och produkter av stort värde för samhälle och industri Nanopartiklar kan tas upp i celler och agglomerering korrelerar med cellupptag och inflammatorisk respons Arbetsrelaterad exponering Känsliga grupper: patienter med lungsjukdomar eller skadad hud, barn Evaluering av exponering och effekter behöver göras för varje typ av partikel. Kemisk/fysikalisk karakterisering viktig Data som bygger på alla delar behövs för att bygga modeller. Kan idag inte generalisera utifrån yta, form eller sammansättning Teststrategier, Biomarkörer Korrelation: upptag oxidativ stress Samverkan Andersson PO, Lejon C, Ekstrand-Hammarström B, Akfur C, Ahlinder L, Bucht A, Österlund L. Small 2011, 7 (4), Projektledare inom nanoforskning på FOI i Umeå Lars Österlund* Fysiker (nanoteknik, nanopartiklar, beröringsfria mätmetoder Raman) Anders Bucht Immunolog (partiklars påverkan på allergi och astma, inhalationsforskning) Ola Nerbrink Yrkesmedicinare (aerosolvetenskap/teknik) Håkan Wingfors Miljökemist (kemisk karaktärisering av partiklar/aerosoler) * Prof vid UU Adj. Prof. Vid UmU

FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP

FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP En studie av svensk utbildningsvetenskaplig forskning vid tre lärosäten VETENSKAPSRÅDETS RAPPORTSERIE 10:2010 Forskningskommunikation

Läs mer

SWESIAQ Swedish Chapter of International Society of Indoor Air Quality and Climate

SWESIAQ Swedish Chapter of International Society of Indoor Air Quality and Climate Swedish Chapter of International Society of Indoor Air Quality and Climate Aneta Wierzbicka Swedish Chapter of International Society of Indoor Air Quality and Climate Independent and non-profit Swedish

Läs mer

Hur arbetar vi praktiskt i SAG?

Hur arbetar vi praktiskt i SAG? Hur arbetar vi praktiskt i SAG? Safety Programme Safety Plan Årsplan Analys SRB Riskbaserad tillsyn Analysforum SPI Sverige (SPT) Riskregister Hazard log SAG Standardisering Tillsyn ASR rapporter ICAO

Läs mer

Alla Tiders Kalmar län, Create the good society in Kalmar county Contributions from the Heritage Sector and the Time Travel method

Alla Tiders Kalmar län, Create the good society in Kalmar county Contributions from the Heritage Sector and the Time Travel method Alla Tiders Kalmar län, Create the good society in Kalmar county Contributions from the Heritage Sector and the Time Travel method Goal Bring back the experiences from the international work of Kalmar

Läs mer

Swedish agencies and nanomaterials: Activities and developments

Swedish agencies and nanomaterials: Activities and developments PM 4/12 Swedish agencies and nanomaterials: Activities and developments Swedish Chemicals Agency www.kemi.se Swedish agencies and nanomaterials: Activities and developments Order No. 511 046 Sundbyberg,

Läs mer

Läkemedelsverkets Farmakovigilansdag

Läkemedelsverkets Farmakovigilansdag Swedish Medical Products Agency s Patient- and Consumer Advisory Board Brita Sjöström May 29, 2018 Patientrådet@mpa.se https://lakemedelsverket.se/patient-konsument-rad The vision of the Swedish Medical

Läs mer

Botnia-Atlantica Information Meeting

Botnia-Atlantica Information Meeting Botnia-Atlantica 2014-2020 Information Meeting Norway: Nordland Sweden: Västerbotten Västernorrland Nordanstigs kommun Finland: Mellersta Österbotten Österbotten Södra Österbotten Monitoring Committee

Läs mer

Senaste trenderna inom redovisning, rapportering och bolagsstyrning Lars-Olle Larsson, Swedfund International AB

Senaste trenderna inom redovisning, rapportering och bolagsstyrning Lars-Olle Larsson, Swedfund International AB 1 Senaste trenderna inom redovisning, rapportering och bolagsstyrning Lars-Olle Larsson, Swedfund International AB 2 PwC undersökning av börsföretag & statligt ägda företag Årlig undersökning av års- &

Läs mer

Introduktion ICAO-EASA.

Introduktion ICAO-EASA. Introduktion ICAO-EASA. SSP= State Safety Program ( krav på stater från ICAO) talar bl.a. om SPI. 1 Info om kommande SMS-krav för POA. Sverige har som medlemsland i ICAO åtagit sig att ta fram ett nationellt

Läs mer

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE SVENSK STANDARD SS-ISO/IEC 26300:2008 Fastställd/Approved: 2008-06-17 Publicerad/Published: 2008-08-04 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 35.240.30 Information technology Open Document

Läs mer

Signatursida följer/signature page follows

Signatursida följer/signature page follows Styrelsens i Flexenclosure AB (publ) redogörelse enligt 13 kap. 6 och 14 kap. 8 aktiebolagslagen över förslaget till beslut om ökning av aktiekapitalet genom emission av aktier och emission av teckningsoptioner

Läs mer

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg Swedish adaptation of ISO TC 211 Quality principles The subject How to use international standards Linguistic differences Cultural differences Historical differences Conditions ISO 19100 series will become

Läs mer

A metadata registry for Japanese construction field

A metadata registry for Japanese construction field A metadata registry for Japanese construction field LCDM Forum, Japan October 25 th -27 th - 2006 TAKEYA, Isobe LCDM Forum Secretariat Document No. GEC-2005-002 LCDM Forum, Japan LCDM Forum, Japan Non-profit

Läs mer

Pharmacovigilance lagstiftning - PSUR

Pharmacovigilance lagstiftning - PSUR Pharmacovigilance lagstiftning - PSUR Karl Mikael Kälkner Tf enhetschef ES1 EUROPAPARLAMENTETS OCH RÅDETS DIREKTIV 2010/84/EU av den 15 december om ändring, när det gäller säkerhetsövervakning av läkemedel,

Läs mer

SVENSK STANDARD SS-ISO 8779:2010/Amd 1:2014

SVENSK STANDARD SS-ISO 8779:2010/Amd 1:2014 SVENSK STANDARD SS-ISO 8779:2010/Amd 1:2014 Fastställd/Approved: 2014-07-04 Publicerad/Published: 2014-07-07 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 23.040.20; 65.060.35; 83.140.30 Plaströrssystem

Läs mer

Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH

Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH 2016 Anne Håkansson All rights reserved. Svårt Harmonisera -> Introduktion, delar: Fråga/

Läs mer

Oförstörande provning (NDT) i Del M Subpart F/Del 145-organisationer

Oförstörande provning (NDT) i Del M Subpart F/Del 145-organisationer Oförstörande provning (NDT) i Del M Subpart F/Del 145-organisationer Ref. Del M Subpart F & Del 145 2012-05-02 1 Seminarium för Teknisk Ledning HKP 3maj, 2012, Arlanda Inledning Allmänt Viktigare krav

Läs mer

Kundfokus Kunden och kundens behov är centrala i alla våra projekt

Kundfokus Kunden och kundens behov är centrala i alla våra projekt D-Miljö AB bidrar till en renare miljö genom projekt där vi hjälper våra kunder att undersöka och sanera förorenad mark och förorenat grundvatten. Vi bistår dig som kund från projektets start till dess

Läs mer

Cross sectional planning for pandemic influenza in Sweden

Cross sectional planning for pandemic influenza in Sweden Cross sectional planning for pandemic influenza in Sweden The task 1. Integrated planning across different sectors. A pandemic will impact on the whole of government and society. While Norway has a well-developed

Läs mer

Measuring child participation in immunization registries: two national surveys, 2001

Measuring child participation in immunization registries: two national surveys, 2001 Measuring child participation in immunization registries: two national surveys, 2001 Diana Bartlett Immunization Registry Support Branch National Immunization Program Objectives Describe the progress of

Läs mer

The Algerian Law of Association. Hotel Rivoli Casablanca October 22-23, 2009

The Algerian Law of Association. Hotel Rivoli Casablanca October 22-23, 2009 The Algerian Law of Association Hotel Rivoli Casablanca October 22-23, 2009 Introduction WHY the Associations? NGO s are indispensable to the very survival of societal progress Local, National or International

Läs mer

Tunga metaller / Heavy metals ICH Q3d & Farmakope. Rolf Arndt Cambrex Karlskoga

Tunga metaller / Heavy metals ICH Q3d & Farmakope. Rolf Arndt Cambrex Karlskoga Tunga metaller / Heavy metals ICH Q3d & Farmakope Rolf Arndt Cambrex Karlskoga Tunga metaller / Heavy metals Rolf Arndt -Quality Assurance Cambrex Karlskoga - Svenska Farmakopekommitten / Working Party

Läs mer

Goals for third cycle studies according to the Higher Education Ordinance of Sweden (Sw. "Högskoleförordningen")

Goals for third cycle studies according to the Higher Education Ordinance of Sweden (Sw. Högskoleförordningen) Goals for third cycle studies according to the Higher Education Ordinance of Sweden (Sw. "Högskoleförordningen") 1 1. Mål för doktorsexamen 1. Goals for doctoral exam Kunskap och förståelse visa brett

Läs mer

Innovation in the health sector through public procurement and regulation

Innovation in the health sector through public procurement and regulation Innovation in the health sector through public procurement and regulation MONA TRUELSEN & ARVID LØKEN 1 14/11/2013 Copyright Nordic Innovation 2011. All rights reserved. Nordic Innovation An institution

Läs mer

Klicka här för att ändra format

Klicka här för att ändra format på 1 på Marianne Andrén General Manager marianne.andren@sandviken.se Sandbacka Park Högbovägen 45 SE 811 32 Sandviken Telephone: +46 26 24 21 33 Mobile: +46 70 230 67 41 www.isea.se 2 From the Off e project

Läs mer

Hållbar utveckling i kurser lå 16-17

Hållbar utveckling i kurser lå 16-17 Hållbar utveckling i kurser lå 16-17 : Jag tillhör akademin / My position is in the School of Jag tillhör akademin / My position is in the School of Humaniora och medier / Humanities and Media Studies

Läs mer

Why WE care? Anders Lundberg Fire Protection Engineer The Unit for Fire Protection & Flammables Swedish Civil Contingencies Agency

Why WE care? Anders Lundberg Fire Protection Engineer The Unit for Fire Protection & Flammables Swedish Civil Contingencies Agency Why WE care? Anders Lundberg Fire Protection Engineer The Unit for Fire Protection & Flammables Swedish Civil Contingencies Agency Assignment Assignment from the Ministry of Defence MSB shall, in collaboration

Läs mer

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET National Swedish parental studies using the same methodology have been performed in 1980, 2000, 2006 and 2011 (current study). In 1980 and 2000 the studies

Läs mer

Swedish CEF Transport Secretariat. Connecting Europe Facility

Swedish CEF Transport Secretariat. Connecting Europe Facility Swedish CEF Transport Secretariat Connecting Europe Facility CEF-secretariat Background and structure Precondition The Member State must approve all applications and follow-up reports(asr) The Member State

Läs mer

SVENSK STANDARD SS-ISO :2010/Amd 1:2010

SVENSK STANDARD SS-ISO :2010/Amd 1:2010 SVENSK STANDARD SS-ISO 14839-1:2010/Amd 1:2010 Fastställd/Approved: 2010-11-08 Publicerad/Published: 2010-11-30 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 01.040.17; 17.160 Vibration och stöt

Läs mer

Nordic Casemix Centre (NCC) (Nordiskt center för patientgruppering r.f)

Nordic Casemix Centre (NCC) (Nordiskt center för patientgruppering r.f) Nordic Casemix Centre (NCC) (Nordiskt center för patientgruppering r.f) Mona Heurgren Chair of Board NCC Head of Unit Unit for development of Quality and Efficiency Studies The National Board of Health

Läs mer

3 rd October 2017

3 rd October 2017 3 rd October 2017 Failures of Scaffold False work Failures Form work Bursting Trench Support Failure Hoarding Failures Can be expensive and result in fatalities and serious injuries Cardiff

Läs mer

Luftfartsavdelningen Sektionen för flygutbildning MANUALER VÄLKOMNA EN KORT SAMMANFATTNING AV INNEHÅLLET I RESPEKTIVE MANUAL

Luftfartsavdelningen Sektionen för flygutbildning MANUALER VÄLKOMNA EN KORT SAMMANFATTNING AV INNEHÅLLET I RESPEKTIVE MANUAL MANUALER VÄLKOMNA EN KORT SAMMANFATTNING AV INNEHÅLLET I RESPEKTIVE MANUAL 1 TRAINING MANUAL TM OPERATIONS MANUAL OM QUALITY MANUAL QM 2 TRAINING MANUAL AMC1 ORA.ATO.230 (a) PART 0 AMINISTRATION PART A

Läs mer

Biblioteket.se. A library project, not a web project. Daniel Andersson. Biblioteket.se. New Communication Channels in Libraries Budapest Nov 19, 2007

Biblioteket.se. A library project, not a web project. Daniel Andersson. Biblioteket.se. New Communication Channels in Libraries Budapest Nov 19, 2007 A library project, not a web project New Communication Channels in Libraries Budapest Nov 19, 2007 Daniel Andersson, daniel@biblioteket.se 1 Daniel Andersson Project manager and CDO at, Stockholm Public

Läs mer

Swedish framework for qualification www.seqf.se

Swedish framework for qualification www.seqf.se Swedish framework for qualification www.seqf.se Swedish engineering companies Qualification project leader Proposal - a model to include the qualifications outside of the public education system to the

Läs mer

FOI MEMO. Jonas Hallberg FOI Memo 5253

FOI MEMO. Jonas Hallberg FOI Memo 5253 Projekt/Project Security culture and information technology Projektnummer/Project no Kund/Customer B34103 MSB Sidnr/Page no 1 (5) Handläggare/Our reference Datum/Date Jonas Hallberg 2015-01-21 FOI Memo

Läs mer

Genomförande av SSP och SMS i Sverige. Hur ökar vi flygsäkerheten bortom regelverket? Hur balanserar vi mellan produktion och säkerhet?

Genomförande av SSP och SMS i Sverige. Hur ökar vi flygsäkerheten bortom regelverket? Hur balanserar vi mellan produktion och säkerhet? Genomförande av SSP och SMS i Sverige Hur ökar vi flygsäkerheten bortom regelverket? Hur balanserar vi mellan produktion och säkerhet? Vi börjar med SSP State Safety Programme Varje ICAO-stat ska ha ett

Läs mer

PORTSECURITY IN SÖLVESBORG

PORTSECURITY IN SÖLVESBORG PORTSECURITY IN SÖLVESBORG Kontaktlista i skyddsfrågor / List of contacts in security matters Skyddschef/PFSO Tord Berg Phone: +46 456 422 44. Mobile: +46 705 82 32 11 Fax: +46 456 104 37. E-mail: tord.berg@sbgport.com

Läs mer

Isolda Purchase - EDI

Isolda Purchase - EDI Isolda Purchase - EDI Document v 1.0 1 Table of Contents Table of Contents... 2 1 Introduction... 3 1.1 What is EDI?... 4 1.2 Sending and receiving documents... 4 1.3 File format... 4 1.3.1 XML (language

Läs mer

Understanding Innovation as an Approach to Increasing Customer Value in the Context of the Public Sector

Understanding Innovation as an Approach to Increasing Customer Value in the Context of the Public Sector Thesis for the degree of Licentiate of Philosophy, Östersund 2014 Understanding Innovation as an Approach to Increasing Customer Value in the Context of the Public Sector Klas Palm Supervisors: Håkan Wiklund

Läs mer

SEC-03-DRS-2016: Validation of biological toxins measurements after an incident: Development of tools and procedures for quality control

SEC-03-DRS-2016: Validation of biological toxins measurements after an incident: Development of tools and procedures for quality control SEC-03-DRS-2016: Validation of biological toxins measurements after an incident: Development of tools and procedures for quality control EQuATox - Establishment of Quality Assurances for the Detection

Läs mer

Swedish International Biodiversity Programme Sida/SLU

Swedish International Biodiversity Programme Sida/SLU Swedish International Biodiversity Programme Sida/SLU SwedBios Målsättning: Bidra till fattigdomsbekämpning och förbättrade levnadsförhållanden genom en rättvis, hållbar och produktiv förvaltning av biologiska

Läs mer

SVENSK STANDARD SS-ISO 8734

SVENSK STANDARD SS-ISO 8734 SIS - Standardiseringskommissionen i Sverige Handläggande organ SMS, SVERIGES MEKANSTANDARDISERING SVENSK STANDARD SS-ISO 8734 Fastställd Utgåva Sida Registering 1992-11-16 1 1 (1+8) SMS reg 27.1128 SIS

Läs mer

Vision 2025: Läkemedel i miljön är inte längre ett problem

Vision 2025: Läkemedel i miljön är inte längre ett problem Vision 2025: Läkemedel i miljön är inte längre ett problem BLOCK 1: Tillverkning Perspektiv läkemedelsindustri Bengt Mattson Hållbarhet genom hela läkemedelskedjan t.ex. grön kemi, klimatprogram, (avlopps)vatten-

Läs mer

Thesis work at McNeil AB Evaluation/remediation of psychosocial risks and hazards.

Thesis work at McNeil AB Evaluation/remediation of psychosocial risks and hazards. Evaluation/remediation of psychosocial risks and hazards. Help us to create the path forward for managing psychosocial risks in the work environment by looking into different tools/support/thesis and benchmarking

Läs mer

Kursplan. FÖ3032 Redovisning och styrning av internationellt verksamma företag. 15 högskolepoäng, Avancerad nivå 1

Kursplan. FÖ3032 Redovisning och styrning av internationellt verksamma företag. 15 högskolepoäng, Avancerad nivå 1 Kursplan FÖ3032 Redovisning och styrning av internationellt verksamma företag 15 högskolepoäng, Avancerad nivå 1 Accounting and Control in Global Enterprises 15 Higher Education Credits *), Second Cycle

Läs mer

ISO STATUS. Prof. dr Vidosav D. MAJSTOROVIĆ 1/14. Mašinski fakultet u Beogradu - PM. Tuesday, December 09,

ISO STATUS. Prof. dr Vidosav D. MAJSTOROVIĆ 1/14. Mašinski fakultet u Beogradu - PM. Tuesday, December 09, ISO 9000 - STATUS Prof. dr Vidosav D. MAJSTOROVIĆ 1/14 1 ISO 9000:2000, Quality management systems - Fundamentals and vocabulary Establishes a starting point for understanding the standards and defines

Läs mer

Skill-mix innovation in the Netherlands. dr. Marieke Kroezen Erasmus University Medical Centre, the Netherlands

Skill-mix innovation in the Netherlands. dr. Marieke Kroezen Erasmus University Medical Centre, the Netherlands Skill-mix innovation in the Netherlands dr. Marieke Kroezen Erasmus University Medical Centre, the Netherlands m.kroezen@erasmusmc.nl The skill-mix innovation of interest BEFORE AFTER How did the Netherlands

Läs mer

Stad + Data = Makt. Kart/GIS-dag SamGIS Skåne 6 december 2017

Stad + Data = Makt. Kart/GIS-dag SamGIS Skåne 6 december 2017 Smart@Helsingborg Stadsledningsförvaltningen Digitaliseringsavdelningen the World s most engaged citizens Stad + Data = Makt Kart/GIS-dag SamGIS Skåne 6 december 2017 Photo: Andreas Fernbrant Urbanisering

Läs mer

An overview of egovernment in Sweden As simple as possible for as many as possible

An overview of egovernment in Sweden As simple as possible for as many as possible An overview of egovernment in Sweden As simple as possible for as many as possible Mårten Janerud Committee Secretary The Swedish egovernment Delegation Government Agencies National Board of Housing, Building

Läs mer

Beslut om bolaget skall gå i likvidation eller driva verksamheten vidare.

Beslut om bolaget skall gå i likvidation eller driva verksamheten vidare. ÅRSSTÄMMA REINHOLD POLSKA AB 7 MARS 2014 STYRELSENS FÖRSLAG TILL BESLUT I 17 Beslut om bolaget skall gå i likvidation eller driva verksamheten vidare. Styrelsen i bolaget har upprättat en kontrollbalansräkning

Läs mer

William J. Clinton Foundation Insamlingsstiftelse REDOGÖRELSE FÖR EFTERLEVNAD STATEMENT OF COMPLIANCE

William J. Clinton Foundation Insamlingsstiftelse REDOGÖRELSE FÖR EFTERLEVNAD STATEMENT OF COMPLIANCE N.B. The English text is an in-house translation. William J. Clinton Foundation Insamlingsstiftelse (organisationsnummer 802426-5756) (Registration Number 802426-5756) lämnar härmed följande hereby submits

Läs mer

2) att vi som deltar ska öka vårt EU pro-aktiva arbete i Bryssel för respektive påverkansplattform.

2) att vi som deltar ska öka vårt EU pro-aktiva arbete i Bryssel för respektive påverkansplattform. Syfte med dagen är att: 1) De som sitter i styrelserna för resp Strategisk Innovations Program (SIP) plattform ska ges en förståelse för att genom att ha strategier för sitt deltagande i ramprogrammet

Läs mer

The Swedish National Patient Overview (NPO)

The Swedish National Patient Overview (NPO) The Swedish National Patient Overview (NPO) Background and status 2009 Tieto Corporation Christer Bergh Manager of Healthcare Sweden Tieto, Healthcare & Welfare christer.bergh@tieto.com Agenda Background

Läs mer

Evaluation Ny Nordisk Mat II Appendix 1. Questionnaire evaluation Ny Nordisk Mat II

Evaluation Ny Nordisk Mat II Appendix 1. Questionnaire evaluation Ny Nordisk Mat II Evaluation Ny Nordisk Mat II Appendix 1. Questionnaire evaluation Ny Nordisk Mat II English version A. About the Program in General We will now ask some questions about your relationship to the program

Läs mer

Manhour analys EASA STI #17214

Manhour analys EASA STI #17214 Manhour analys EASA STI #17214 Presentatör Johan Brunnberg, Flygteknisk Inspektör & Del-M Koordinator Sjö- och luftfartsavdelningen Operatörsenheten Sektionen för teknisk operation 1 Innehåll Anmärkningen

Läs mer

The Municipality of Ystad

The Municipality of Ystad The Municipality of Ystad Coastal management in a local perspective TLC The Living Coast - Project seminar 26-28 nov Mona Ohlsson Project manager Climate and Environment The Municipality of Ystad Area:

Läs mer

Utvecklings- och tillväxtplan för ett hållbart Åland

Utvecklings- och tillväxtplan för ett hållbart Åland Utvecklings- och tillväxtplan för ett hållbart Åland 2015-2017 ------------------------------------------------ Development- and growth plan for a sustainable Åland 2015-2017 Ann Nedergård Hållbarhetsstrateg

Läs mer

Implementering av EASA:s regelverk OPS för CAT med flygplan /GAV 1

Implementering av EASA:s regelverk OPS för CAT med flygplan /GAV 1 regelverk OPS för CAT med flygplan 1 regelverk OPS Enligt EASA förordningen ska tillämpningsföreskrifterna till OPS tillämpas från och med den dag som anges respektive tillämpningsföreskrifter, dock senast

Läs mer

EASA Standardiseringsrapport 2014

EASA Standardiseringsrapport 2014 EASA Standardiseringsrapport 2014 Inför EASA Standardiseringsinspektion hösten 2016 Presentatör Johan Brunnberg, Flygteknisk Inspektör & Del-M Koordinator Sjö- och luftfartsavdelningen Enheten för operatörer,

Läs mer

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families Health café Resources Meeting places Live library Storytellers Self help groups Heart s house Volunteers Health coaches Learning café Recovery Health café project Focus on support to people with chronic

Läs mer

GDPR Event Research Issues: Sensitive personal data PETER HÖGLUND

GDPR Event Research Issues: Sensitive personal data PETER HÖGLUND GDPR Event Research Issues: Sensitive personal data PETER HÖGLUND Disclaimer observera Although the GDPR is already in force, much is still unclear Some of the statements of this presentation may be become

Läs mer

Agreement EXTRA. Real wage increases, expanded part-time pensions and a low-wage effort in the unions joint agreement demands.

Agreement EXTRA. Real wage increases, expanded part-time pensions and a low-wage effort in the unions joint agreement demands. Agreement EXTRA Real wage increases, expanded part-time pensions and a low-wage effort in the unions joint agreement demands. NOVEMBER 12016 United unions with combined strength in new wage negotiations

Läs mer

SVENSK STANDARD SS-EN 13612/AC:2016

SVENSK STANDARD SS-EN 13612/AC:2016 SVENSK STANDARD SS-EN 13612/AC:2016 Fastställd/Approved: 2016-04-01 Publicerad/Published: 2016-04-12 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 11.100; 11.100.10 In vitro-diagnostik Utvärdering

Läs mer

Agenda. Tid Aktivitet Föreläsare Åtgång tid 08:30 Registrering vid TS recep. Transport till våning 5.

Agenda. Tid Aktivitet Föreläsare Åtgång tid 08:30 Registrering vid TS recep. Transport till våning 5. Agenda Tid Aktivitet Föreläsare Åtgång tid 08:30 Registrering vid TS recep. Transport till våning 5. Dennis, Jerry och Gun. 30 min. 09:00 Intro. (Agendan, lokaler, m.m.) Dennis / Jerry/Gun 15 min 09:15

Läs mer

The annual evaluation of the Individual Study Plan for PhD students at the Department of Biochemistry and Biophysics

The annual evaluation of the Individual Study Plan for PhD students at the Department of Biochemistry and Biophysics The annual evaluation of the Individual Study Plan for PhD students at the Department of Biochemistry and Biophysics Every year no later than January 31, the PhD student and her/his supervisor shall submit

Läs mer

The reception Unit Adjunkten - for newly arrived pupils

The reception Unit Adjunkten - for newly arrived pupils The reception Unit Adjunkten - for newly arrived pupils Shortly on our work Number of received pupils: - 300 for school year 2014-2015 - 600 for school year 2015-2016 - 220 pupils aug-dec 2016 - ca. 45

Läs mer

Country report: Sweden

Country report: Sweden Country report: Sweden Anneli Petersson, PhD. Swedish Gas Centre Sweden Statistics for 2006 1.2 TWh produced per year 223 plants 138 municipal sewage treatment plants 60 landfills 3 Industrial wastewater

Läs mer

Grass to biogas turns arable land to carbon sink LOVISA BJÖRNSSON

Grass to biogas turns arable land to carbon sink LOVISA BJÖRNSSON Grass to biogas turns arable land to carbon sink LOVISA BJÖRNSSON Project funding and reporting, Thomas Prade & Mikael Lantz (2016) Grass for biogas - Arable land as carbon sink. Report 2016:280. Energiforsk,

Läs mer

Item 6 - Resolution for preferential rights issue.

Item 6 - Resolution for preferential rights issue. Item 6 - Resolution for preferential rights issue. The board of directors in Tobii AB (publ), reg. no. 556613-9654, (the Company ) has on November 5, 2016, resolved to issue shares in the Company, subject

Läs mer

Klassificering av brister från internaudit

Klassificering av brister från internaudit Klassificering av brister från internaudit Del-21G seminarium 2015 Jukka Salo Slou Klassificering av brister från internaudit Vid VK har det visat sig att Procedurer för klassificering av brister finns,

Läs mer

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm Guldplätering kan aldrig helt stoppa genomträngningen av vätgas, men den får processen att gå långsammare. En tjock guldplätering

Läs mer

3rd September 2014 Sonali Raut, CA, CISA DGM-Internal Audit, Voltas Ltd.

3rd September 2014 Sonali Raut, CA, CISA DGM-Internal Audit, Voltas Ltd. 3rd September 2014 Sonali Raut, CA, CISA DGM-Internal Audit, Voltas Ltd. Role and responsibility of Internal Audit Sharing of best practices Model of operation In conduct of audit assignment Other functions

Läs mer

Methods to increase work-related activities within the curricula. S Nyberg and Pr U Edlund KTH SoTL 2017

Methods to increase work-related activities within the curricula. S Nyberg and Pr U Edlund KTH SoTL 2017 Methods to increase work-related activities within the curricula S Nyberg and Pr U Edlund KTH SoTL 2017 Aim of the project Increase Work-related Learning Inspire theachers Motivate students Understanding

Läs mer

District Application for Partnership

District Application for Partnership ESC Region Texas Regional Collaboratives in Math and Science District Application for Partnership 2013-2014 Applying for (check all that apply) Math Science District Name: District Contacts Name E-mail

Läs mer

Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen

Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen Examensarbete Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen Malin Carlström, Sandra Mårtensson 2010-05-21 Ämne: Informationslogistik Nivå: Kandidat Kurskod: 2IL00E Projektmodell

Läs mer

D3.4 Documentation of Training no 1 including input for D3.5 Evaluation Report. Sweden

D3.4 Documentation of Training no 1 including input for D3.5 Evaluation Report. Sweden D3.4 Documentation of Training no 1 including input for D3.5 Evaluation Report Sweden Transparense project This document has been conducted within the framework of project Transparense Increasing Transparency

Läs mer

SRS Project. the use of Big Data in the Swedish sick leave process. EUMASS Scientific program

SRS Project. the use of Big Data in the Swedish sick leave process. EUMASS Scientific program SRS Project the use of Big Data in the Swedish sick leave process EUMASS Scientific program 2016-03-04 Stöd för rätt sjukskrivning Aim of presentation To present how Big data analysis can be used to support

Läs mer

Sara Skärhem Martin Jansson Dalarna Science Park

Sara Skärhem Martin Jansson Dalarna Science Park Sara Skärhem Martin Jansson Dalarna Science Park Sara Skärhem Martin Jansson Vad är innovation? På Wikipedia hittar man: En innovation är en ny idé, till exempel i form av en produkt, lösning, affärsidé,

Läs mer

ISO general purpose metric screw threads Selected sizes for screws, bolts and nuts

ISO general purpose metric screw threads Selected sizes for screws, bolts and nuts SVENSK STANDARD SS-ISO 262 Fastställd 2003-08-01 Utgåva 1 Metriska ISO-gängor för allmän användning Utvalda storlekar för skruvar och muttrar ISO general purpose metric screw threads Selected sizes for

Läs mer

EUFOU Nätverksmöte i Halmstad 3-4 oktober 2018

EUFOU Nätverksmöte i Halmstad 3-4 oktober 2018 EUFOU Nätverksmöte i Halmstad 3-4 oktober 2018 Ekonomi WS1 Revisionsfrågor/erfarenheter Revision inom H2020 CFS Vid projektets slut med egen revisor Om direkta + unit costs => 325000 Mall Annex 5 till

Läs mer

Support for Artist Residencies

Support for Artist Residencies 1. Basic information 1.1. Name of the Artist-in-Residence centre 0/100 1.2. Name of the Residency Programme (if any) 0/100 1.3. Give a short description in English of the activities that the support is

Läs mer

Questionnaire for visa applicants Appendix A

Questionnaire for visa applicants Appendix A Questionnaire for visa applicants Appendix A Business Conference visit 1 Personal particulars Surname Date of birth (yr, mth, day) Given names (in full) 2 Your stay in Sweden A. Who took the initiative

Läs mer

Design Service Goal. Hantering av demonterbara delar som ingår i Fatigue Critical Baseline Structure List. Presentatör

Design Service Goal. Hantering av demonterbara delar som ingår i Fatigue Critical Baseline Structure List. Presentatör Design Service Goal Hantering av demonterbara delar som ingår i Fatigue Critical Baseline Structure List Presentatör Thobias Log Flygteknisk Inspektör Sjö- och luftfartsavdelningen Enheten för operatörer,

Läs mer

School of Management and Economics Reg. No. EHV 2008/220/514 COURSE SYLLABUS. Fundamentals of Business Administration: Management Accounting

School of Management and Economics Reg. No. EHV 2008/220/514 COURSE SYLLABUS. Fundamentals of Business Administration: Management Accounting School of Management and Economics Reg. No. EHV 2008/220/514 COURSE SYLLABUS Fundamentals of Business Administration: Management Accounting Course Code FE3001 Date of decision 2008-06-16 Decision-making

Läs mer

Stålstandardiseringen i Europa

Stålstandardiseringen i Europa Stålstandardiseringen i Europa Erfarenheter, möjligheter, utmaningar Hans Groth Avesta Research Center Innehåll 1. En idé om ett nytt material - Tidslinje 2. Förutsättningar Regelverket som det var då

Läs mer

State Examinations Commission

State Examinations Commission State Examinations Commission Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training

Läs mer

COPENHAGEN Environmentally Committed Accountants

COPENHAGEN Environmentally Committed Accountants THERE ARE SO MANY REASONS FOR WORKING WITH THE ENVIRONMENT! It s obviously important that all industries do what they can to contribute to environmental efforts. The MER project provides us with a unique

Läs mer

SVENSK STANDARD SS-ISO 2338

SVENSK STANDARD SS-ISO 2338 SIS Standardiseringskommissionen i Sverige Handläggande organ SMS, SVERIGES MEKANSTANDARDISERING SVENSK STANDARD SS-ISO 2338 Fastställd Utgåva Sida Registrering 1992-11-16 1 1 (1+8) SMS reg 27.1113 SIS

Läs mer

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR Kontrollera vilka kurser du vill söka under utbytet. Fyll i Basis for nomination for exchange studies i samråd med din lärare. För att läraren ska kunna göra en korrekt

Läs mer

Risk Management Riskhantering i flygföretag

Risk Management Riskhantering i flygföretag Risk Management Riskhantering i flygföretag Nytt krav inom ledningssystemet ORO.GEN.200(a)(3) med vidhängande AMC1 ORO.GEN.200(a)(1);(2);(3);(5) Magnus Molitor Transportstyrelsen 1 Riskhantering i sitt

Läs mer

ISO general purpose screw threads Basic profile Part 1: Metric screw threads

ISO general purpose screw threads Basic profile Part 1: Metric screw threads SVENSK STANDARD SS-ISO 68-1 Fastställd 2003-08-01 Utgåva 1 ISO-gängor för allmän användning Basprofil Del 1: Metriska ISO-gängor ISO general purpose screw threads Basic profile Part 1: Metric screw threads

Läs mer

Research evaluation in Sweden FOKUS

Research evaluation in Sweden FOKUS Research evaluation in Sweden FOKUS Swedish Research Council Hearings May 2014 Content Background Working process Proposed draft model Future work Timetable Questions and discussion UoH research income

Läs mer

NYANLÄNDA OCH LÄRANDE

NYANLÄNDA OCH LÄRANDE NYANLÄNDA OCH LÄRANDE En forskningsöversikt om nyanlända elever i den svenska skolan VETENSKAPSRÅDETS RAPPORTSERIE 6:2010 NYANLÄNDA OCH LÄRANDE en forskningsöversikt om nyanlända elever i den svenska

Läs mer

Protected areas in Sweden - a Barents perspective

Protected areas in Sweden - a Barents perspective Protected areas in Sweden - a Barents perspective Olle Höjer Swedish Environmental Protection Agency Naturvårdsverket Swedish Environmental Protection Agency 2013-04-03 1 The fundamental framework for

Läs mer