Föreläsning 10 i programmeringsparadigm. Boxmodellen för append. Jag försöker förklara denna bild för en körning av append([1,2], [3, 4], Rs) närmare på föreläsningen. Principen är att vid anrop (Call) unifieras anropets argument med parametrarna i huvudet på den klausul som används, dvs en massa substitutioner sker. Substitutionerna är skrivna med kursiv stil i bilden nedan. Sker därefter ytterligaren ett anrop så sker ytterligare substitutioner osv. Vid en lyckad körning, dvs när vi lämmnar Exit-porten i den yttersta lådan som representerar frågan, så har det bildas en "kanal" kopplad till allt mer detaljerade värden på olika logiska variabler, och de logiska variablerna i frågan kan ges som ett detaljerat förslag. I bilden nedan har till slut Rs alias _276 blivit [1, 2, 3, 4]när vi kommer ut till höger. append([1, 2], [3, 4], Rs). append([], Ys, Ys). append/1 nivå 1 append([], Ys, Ys). append/2 nivå 2 append([x Xs],Ys,[X Zs]) X=1 Xs = [2] Ys = [3, 4] [X Zs] = Rs = _276 _276 = [1 _775] append([x Xs],Ys,[X Zs]) X=2 _775 = [2 _1169] Xs = [] Ys = [3, 4] append/3 nivå 3 append([], Ys, Ys). Ys = [3, 4] _1169 =[3,4] append([x Xs.. append([], Ys, Ys). append([x Xs], Ys, [X Zs]) :- append(xs, Ys, Zs).?- append([1, 2], [3, 4], Rs). 1 1 Call: append([1,2],[3,4],_276)? 2 2 Call: append([2],[3,4],_775)? 3 3 Call: append([],[3,4],_1169)? 3 3 Exit: append([],[3,4],[3,4])? 2 2 Exit: append([2],[3,4],[2,3,4])? 1 1 Exit: append([1,2],[3,4],[1,2,3,4])? Rs = [1,2,3,4]? Vid en mer invecklad körning, av annan program databas, där "backtracking" förkommit (Fail och Redo-portar har passerats "åt vänster"), så används inte de substitutioner som görs i de misslyckade sökförsöken, dvs i de grenar av sökträdet som inte "nått fram" till Exit- porten i frågans predikat. Sökträdet
Prologpredikat kan användas på många sätt. Se Brna avsnitt 6.1, The Reversibility of Prolog Programs. Ett lysande exempel på detta är append(?,?,?), som kan användas på massor av sätt.? betyder att argumentet kan vara både "inargument" och "utargument". % append(xs, Ys, XsYs) XsYs är resultatet när man konkatenerar listorna Xs och Ys % Haskell: append([], Ys, Ys). % (++) [] ys = ys append([x Xs],Ys,[X Zs]):-append(Xs,Ys,Zs).% (++) (x:xs) ys = x:(xs ++ ys) % Haskell med namn på rekursionantagandet % (++) (x:xs) ys = x:zs where zs=(xs++ys) Körningar på en mängd olika sätt: append(+, +, 1) suffix?- append([1, 2, 14], [22, 33], Res).% Vanlig använding, "som vi tänkte " Res = [1,2,14,22,33]? ; % append(+, +, -) + "in" - "out" % Funktion : Se föregående sida?- append([1], R, [1, 2, 3]). %append(+, -, +) suffix R = [2, 3]? ; % med trace: 1 1 Call: append([1],_228,[1,2,3])? 2 2 Call: append([],_228,[2,3])? 2 2 Exit: append([],[2,3],[2,3])? 1 1 Exit: append([1],[2,3],[1,2,3])? R = [2,3]? ;?- append(res, [22,33], [1,2,14,22,33] ). %append(+, -, +) prefix Res = [1,2,14]? ;?- append(r1, R2, [1,2,14]). %append(-, -, +) split R1 = [], R2 = [1,2,14]? ; R1 = [1], R2 = [2,14]? ; R1 = [1,2], R2 = [14]? ; R1 = [1,2,14], R2 = []? ; % med trace:?- append(r1, R2, [1,2,14]). 1 1 Call: append(_208,_230,[1,2,14])? 1 1 Exit: append([],[1,2,14],[1,2,14])? R1 = [], R2 = [1,2,14]? ; 1 1 Redo: append([],[1,2,14],[1,2,14])? 2 2 Call: append(_775,_230,[2,14])? 2 2 Exit: append([],[2,14],[2,14])? 1 1 Exit: append([1],[2,14],[1,2,14])? R1 = [1], R2 = [2,14]? ;
1 1 Redo: append([1],[2,14],[1,2,14])? 2 2 Redo: append([],[2,14],[2,14])? 3 3 Call: append(_1168,_230,[14])? 3 3 Exit: append([],[14],[14])? 2 2 Exit: append([2],[14],[2,14])? 1 1 Exit: append([1,2],[14],[1,2,14])? R1 = [1,2], R2 = [14]? ; 1 1 Redo: append([1,2],[14],[1,2,14])? 2 2 Redo: append([2],[14],[2,14])? 3 3 Redo: append([],[14],[14])? 4 4 Call: append(_1560,_230,[])? 4 4 Exit: append([],[],[])? 3 3 Exit: append([14],[],[14])? 2 2 Exit: append([2,14],[],[2,14])? 1 1 Exit: append([1,2,14],[],[1,2,14])? R1 = [1,2,14], R2 = []? ; 1 1 Redo: append([1,2,14],[],[1,2,14])? 2 2 Redo: append([2,14],[],[2,14])? 3 3 Redo: append([14],[],[14])? 4 4 Redo: append([],[],[])? 4 4 Fail: append(_1560,_230,[])? 3 3 Fail: append(_1168,_230,[14])? 2 2 Fail: append(_775,_230,[2,14])? 1 1 Fail: append(_208,_230,[1,2,14])? I Haskell kan vi inte använda (++) för att splittra listor, vi måste skriva en invers funktion: splits :: [a] -> [ ([a],[a]) ] splits [] = [ ([],[]) ] splits (x:xs) = ([], x:xs) : map f (splits xs) where f (a, b) = (x:a, b) I Prolog kan vi nu använda append/3 för att enkelt definiera t ex : prefix(xs, Ys) :- append(xs, _, Ys). suffix(xs, Ys) :- append( _, Xs, Ys). member(x, Ys) :- append(_, [X Xs], Ys). member/2 kan alternativt definieras som i Brna 6.3.1 sid 57 : member(x,[x Xs]). member(x,[y Ys]) :- member(x,ys). % Y kan ersättas med _. Körningar av member/2:?- member(5, [3, 5, 6, 7]).?- member(x, [3, 5, 6]). X = 3? ; X = 5? ; X = 6? ;?- member(3, Rs). Rs = [3 _A]? ; Rs = [_A,3 _B]? ; Rs = [_A,_B,3 _C]?
?- member(r, Rs). Rs = [R _A]? ; Rs = [_A,R _B]? Ytterligare ett exempel: adjacent(x, Y, Zs) :- append(_, [X,Y Ys], Zs). last(x, Xs) :- append(_, [X], Xs). Körningar:?- adjacent(14, 28, [23, 14, 28, 45]).?- adjacent(14, R, [23, 14, 28, 45]). R = 28? ; Program med "ackumulering i parameter". 1. Rekursiv definiton av reverse/2: % reverse(list, Tsil) :- Tsil är listan List med elmenten i omvänd ordning reverse1([], []). reverse1([x Xs], Zs):- reverse1(xs, Ys), append(ys, [X], Zs). Körning:?- reverse1([1, 2], Res). Res = [2,1]? ;?- reverse1(res, [1, 2]). Res = [2,1]? ; % Inget händer gör C-c Prolog interruption (h for help)? a {Execution aborted}?- trace.?- reverse1([1, 2], Res). 1 1 Call: reverse1([1,2],_224)? 2 2 Call: reverse1([2],_702)? 3 3 Call: reverse1([],_1100)? 3 3 Exit: reverse1([],[])? 4 3 Call: append([],[2],_702)? 4 3 Exit: append([],[2],[2])? 2 2 Exit: reverse1([2],[2])? 5 2 Call: append([2],[1],_224)? 6 3 Call: append([],[1],_3351)? 6 3 Exit: append([],[1],[1])? 5 2 Exit: append([2],[1],[2,1])? 1 1 Exit: reverse1([1,2],[2,1])? Res = [2,1]? ; Brna kallar detta sätt att resonera för "Building Structure in the Clause Head", se sid 60 långt ner på sidan. (Ovanför står ett helt felaktigt sätt att resonera). I sitt exempel använder Brna is. Till höger om is kan man skriva uttryck som räknas ut och unifieras med det som står till vänster om is, dvs man har tillgång till en funktionellt delspråk i Prolog. Se Brna avsnitt 6.1.1Vi kommer inte att använda detta mycket, kanske inte alls.
2. Definition av reverse/2 med hjälp av "ackumulering i parameter" i hjälpfunktion reverse/2 : reverse(xs, Ys) :- reverse(xs, [], Ys). reverse([x Xs], Acc, Ys) :- reverse(xs, [X Acc], Ys). reverse([], Ys, Ys). Körning:?- reverse([1, 2], Res). Res = [2,1]? ;?- reverse(res, [1, 2]). Prolog interruption (h for help)? a {Execution aborted}?- reverse([1,2], Res). 1 1 Call: reverse([1,2],_224)? 2 2 Call: reverse([1,2],[],_224)? 3 3 Call: reverse([2],[1],_224)? 4 4 Call: reverse([],[2,1],_224)? 4 4 Exit: reverse([],[2,1],[2,1])? 3 3 Exit: reverse([2],[1],[2,1])? 2 2 Exit: reverse([1,2],[],[2,1])? 1 1 Exit: reverse([1,2],[2,1])? Res = [2,1]? ; Märk att vi kan ha samma namn på två olika pedikat, ariteten (ställigheten, i vårt fall /2 respektive /3) räcker för att Prolog ska kunna skilja på predikaten. I Haskell måste varje namn ha en unik definition i sitt "scope". Brna kallar detta sätt att resonera för "Building Structure in the Clause Body", se sid 61. Avsnitt 6.1, 6.2 och 6.3 innehåller en hel del om programmeringsteknik i Prolog och om hur man programmerar listor.. Exempel på sorteringar. Insättningsortering i Prolog och Haskell (Haskellprogrammet modifierat från sid 44 i Fokker) sortlk([x Xs],Ys) :- sortlk(xs,zs), insert(x,zs,ys). sortlk([],[]). insert(x,[],x). insert(x,[y Ys],[Y Zs]) :- X > Y, insert(x,ys,zs). insert(x,[y Ys],[X,Y Ys]) :- X =< Y. sort :: Ord a => [a] -> [a] sort (x:xs) = insert x (sort xs) sort [] = [] insert:: Ord a => a-> [a] -> [a] insert x [] = [x] insert x (y:ys) x > y = y: insert x ys otherwise = x:y:ys I Prolog är > en operator. Operatorer är också predikat men med vissa speciella egenskaper, bl a används många med infix-placering. För att förstå sorteringsprogrammet ovan räcker det att förstå att t ex 3 < 5 lyckas, 5>=17 misslyckas. Operatorn = betyder att en unifiering sker.
Även quicksort blir ganska lika: /* sort(xs,ys) :- The list Ys is an ordered permutation of the list Xs. */ quicksort([x Xs],Ys) :- partition(xs,x,littles,bigs), quicksort(littles,ls), quicksort(bigs,bs), append(ls,[x Bs],Ys). quicksort([],[]). partition([x Xs],Y,[X Ls],Bs) :- X =< Y, partition(xs,y,ls,bs). partition([x Xs],Y,Ls,[X Bs]) :- X > Y, partition(xs,y,ls,bs). partition([],y,[],[]). -- Haskell : quicksort :: Ord a => [a] - [a] quicksort (x:xs) = ls ++ [x] ++ bs where (littles,bigs) = partion(xs, x) ls = quicksort littles, bs = quicksort bigs quicksort [] =[] partition Ord a => [a] -> a ->([a],[a]) partition (x:xs) y x <= y = (x :ls, bs) otherwise = (ls, x:bs) where (ls, bs) = partition xs y partition [] = ([],[]). Predikatet permutation från labben kan användas i en (ineffektiv) sortering : sort(xs,ys) :- permutation(xs,ys), ordered(ys). ordered([]). ordered([x]). ordered([x,y Ys]) :- X =< Y, ordered([y Ys]). Generate och test. Inför labben "Tidernas knepigaste problem". Det står lite grann om detta i Brna avsnitt 7.3, sid 70 till 72 ungefär. Ett exempel som liknar labben "Tidernas knepigaste problem" finns i labhäftet. Programmering i ren Prolog. Om man programmerar i ren Prolog (pure Prolog) har allt i programmet en logisk läsning. Man rekommnderar att man börjar programmera på detta sätt och tänker på programmet med den logiska läsningen. I den logiska läsningen spelar klausul-ordningen ingen roll, och delmålen i en regelkropp spelar ingen roll. I regel måste man även i rena prologprogram läsa programmet med en procedurell syn, för att programmet skall fungera (t ex inte gå in i en evig loop), bli snabbt mm. Det gäller bl a att klausul-ordningen bestämmer i vilken ordning man får lösningarna ordningen mellan delmålen i en regelkropp bestämmer hur sökningen går till. I apan-och-bananen-problemet på nästa sida får vi "oändliga lösningar först", dvs datorn svarar inte, om klausul-ordningen är olämplig
Apan och bananen (inte BanArne). Efter Bratko 2.5. Apan vid dörren är hungrig, men kan inte nå bananen som hänger för högt upp i mitten på rummet. Vid fönstret står en låda. Om lådan skulle stå mitt under bananen skulle apan nå bananen om den steg upp på lådan. Kan apan stilla sin hunger? Hur? atdoor middle atwindow Lösning: % state(horizontal position of monkey (atdoor/atwindow/middle), % vertical position of monkey( onbox/onfloor), % position of box (atdoor/atwindow/middle), % possesion of banana (has/hast)). % move(prestate, Action, PostState) Action changes state from PreState to % PostState. move(state(middle, onbox, middle, hast), grasp, state(middle, onbox, middle, has)). move(state(p, onfloor, P, H), climb, state(p, onbox, P, H)). move(state(p1, onfloor, P1, H), push(p1, P2), state(p2, onfloor, P2, H)). move(state(p1, onfloor, B, H), walk(p1, P2), state(p2, onfloor, B, H)). % canget(state, Actions) -- monkey can get the banana from state State by % performing the actions Actions. canget(state(_, _, _, has), []). canget(state1, [Action As]) :- move(state1, Action, State2), canget(state2, As). /* Körning :?- canget(state(atdoor, onfloor, atwindow, hast), Rs). Rs = [walk(atdoor,atwindow),push(atwindow,middle),climb,grasp]? ; Rs = [walk(atdoor,atwindow),push(atwindow,_a),push(_a,middle),climb,grasp]? ; Rs = [walk(atdoor,atwindow),push(atwindow,_a),push(_a,_b),push(_b,middle),climb,grasp]? */
Lite Haskell: Ytterligare ett exempel på interaktiv programmering med bilder och klickningar: module Hai where -- på /afs/nada.kth.se/misc/info/progp02/haskell/hai.hs import GraphicInteract -- towers 5 körning med textutmatning import SOEGraphics -- main 5 körning med grafisk utmatning. Klicka för drag. data Peg = A B C deriving (Show, Enum) -- Icke grafiskt towers of Hai. Resultat : En lista med par -- ("Från-peg", "till-peg") towers :: Int -> Peg -> Peg -> Peg -> [(Peg, Peg)] towers 0 from to using = [] towers n from to using = towers (n-1) from using to ++ [(from, to)] ++ towers (n-1) using to from -- Grafisk version med hjälp av makegraphicinteractive. Varje klickning ett drag. -- main 3 startar med 3 brickor, main 5 startar med 5 brickor osv. main :: Int -> IO() main n = makegraphicinteractive startstatus "Hai" (topixels (wsize + 30, wsize)) (firstgraphs startstatus) f where startstatus = fixstartstatus n type StatusType = ([(Peg,Peg)],Int,(Int,[Int]),(Int,[Int]),(Int,[Int])) -- (listan generad av towers, -- antal brickor, -- tre par med (antalet brickor, brickorna) för peg A, B respektive C.) -- Brickorna betecknas med 1.. n, 1 minsta brickan fixstartstatus :: Int -> StatusType -- n ::Int antalet brickor fixstartstatus n = (towers n A B C, n, (n, [1..n]), (0, []), (0, [])) f :: StatusType -> (Int, Int) -> (StatusType, [Graphic]) f ( ((A,B):pfpts), n, (na, (a:alist)),(nb, blist),(nc, clist)) _ = (newstate, [drawdisc Black A (na-1) a n, drawdisc Yellow B nb a n]) where newstate = (pfpts, n, (na-1, alist), (nb+1, a:blist), (nc, clist)) f ( ((A,C):pfpts), n, (na, (a:alist)),(nb, blist),(nc, clist)) _ = (newstate, [drawdisc Black A (na-1) a n, drawdisc Yellow C nc a n]) where newstate = (pfpts, n, (na-1, alist), (nb, blist), (nc+1, a:clist)) f ( ((B,C):pfpts), n, (na, (alist)),(nb, b:blist),(nc, clist)) _ = (newstate, [drawdisc Black B (nb-1) b n, drawdisc Yellow C nc b n]) where newstate = (pfpts, n, (na, alist), (nb-1, blist), (nc+1, b:clist)) f ( ((B,A):pfpts), n, (na, (alist)),(nb, b:blist),(nc, clist)) _ = (newstate, [drawdisc Black B (nb-1) b n, drawdisc Yellow A na b n]) where newstate = (pfpts, n, (na+1, b:alist), (nb-1, blist), (nc, clist)) f ( ((C,B):pfpts), n, (na, (alist)),(nb, blist),(nc, c:clist)) _ = (newstate, [drawdisc Black C (nc-1) c n, drawdisc Yellow B nb c n]) where newstate = (pfpts, n, (na, alist), (nb+1, c:blist), (nc-1, clist)) f ( ((C,A):pfpts), n, (na, (alist)),(nb, blist),(nc, c:clist)) _ = (newstate, [drawdisc Black C (nc-1) c n, drawdisc Yellow A na c n]) where newstate = (pfpts, n, (na+1, c:alist), (nb, blist), (nc-1, clist)) f s _ = (s, [])
-- Grafik med autoskalning drawdisc :: Color -> Peg -> Int -> Int -> Int -> Graphic drawdisc col peg posx s n = withcolor col (polygon (map (topixels. scaledwith. (movedto peg posx n ) ) (disc s n) )) wsize :: Float wsize = 200.0 -- mm windowsize, window is square firstgraphs :: StatusType -> [Graphic] firstgraphs (_, n, (na, alist),(nb, blist),(nc, clist))= map (\i -> drawdisc Yellow A (n-i) i n ) alist ++ map (\i -> drawdisc Yellow B (n-i) i n ) blist ++ map (\i -> drawdisc Yellow C (n-i) i n ) clist pixelpermm :: Float pixelpermm = 100.0/25.4 -- pixel / mm -- pixel / mm topixels :: (Float, Float) -> (Int, Int) topixels (x, y) = (round (pixelpermm * x), round(pixelpermm * y)) disc :: Int -> Int -> [(Float, Float)] disc s n = [( - dx, 0.0), (dx, 0.0), (dx, dy), ( - dx, dy)] where dx = inttofloat s / inttofloat (2*n) dy = 4.0 / inttofloat n movedto :: Peg -> Int -> Int -> (Float, Float) -> (Float, Float) movedto peg posx n (xx, yy) = (px + xx, py + yy) where px = 1.0 + 2.0 * inttofloat (fromenum peg) py = 0.3 + (4.0 / inttofloat n)* inttofloat (n - posx - 1) scaledwith :: (Float, Float) -> (Float, Float) scaledwith (ix, iy) = (sc*ix, sc*iy) where sc = wsize/5.0 inttofloat :: Int -> Float inttofloat n = frominteger(tointeger n ) {- Main> towers 4 A B C [(A,C),(A,B),(C,B),(A,C),(B,A),(B,C),(A,C),(A,B), (C,B),(C,A),(B,A),(C,B),(A,C),(A,B),(C,B)] Main> towers 3 A B C [(A,B),(A,C),(B,C),(A,B),(C,A),(C,B),(A,B)] -}