Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7 Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 20 27 mars användas, däremot får uppgifterna inte användas tidigare. Se till att alla berörda lärare får del av denna lärarinformation. Kopiera nästa sida, uppgifterna och svarsblankett till alla elever. Om någon elev behöver större text går det bra att förstora vid kopieringen, figurerna är inte beroende av storlek. Läs igenom problemen själv i förväg så att eventuella oklarheter kan redas ut. Besök Känguru sidan på ncm.gu.se/kanguru där vi publicerar eventuella rättelser och ytterligare information. Eleverna behöver ha tillgång till papper att göra anteckningar och figurer på. Linjal behövs inte, inga uppgifter kan lösas genom mätning då figurerna inte är exakta. Miniräknare eller sax får inte användas. Tävlingen är individuell och eleverna får arbeta i 60 minuter. Avsikten är dock att klassen efteråt ska få arbeta vidare med problemen gemensamt. De tre avdelningarna ska genomföras vid ett och samma tillfälle. Detta är inte ett prov eller test på vad eleverna kan i relation till kursplanen. Eleverna ska alltså inte känna att detta är något de borde kunna, utan det ska istället väcka deras intresse och nyfikenhet. Problemen är valda som exempel på vad som kan vara bra och stimulerande att arbeta med. Eleverna kan lämna sina svar på svarsblanketten eller markera sina svar i direkt anslutning till problemen, om det passar bättre, och du kan också konstruera en egen svarsblankett. Det finns fem svarsalternativ på varje uppgift, men de ska välja ett. Det är ibland en bra strategi att pröva de olika förslagen för att finna det rätta. Uppmuntra eleverna att tänka efter och att utesluta de svar som de säkert bedömer som felaktiga. Uppmana eleverna att läsa uppgifterna noga. Det finns inga luringar. Förbered eleverna på att de kanske inte kommer att hinna alla uppgifter. För några elever kan målet vara att arbeta igenom en eller två delar. Tala också om hur de ska göra om de inte orkar fullfölja. Om någon kör fast och inte vill fortsätta ska du naturligtvis uppmuntra honom eller henne och kanske föreslå en uppgift längre fram som du tror att han eller hon kan klara eller roas av. Läs tillsammans med eleverna igenom informationen på nästa sida innan de sätter igång. Du får gärna läsa igenom problemen högt för klassen innan och om du har elever som behöver ytterligare hjälp med läsningen eller med språket får du hjälpa dem under tiden också. Om eleverna frågar om ords betydelse bör du hjälpa dem. Vi har försökt att skriva så att det ska bli tydligt, och ibland lagt in förklaringar i texten, men det går inte att göra detta heltäckande. Avsikten med Kängurun är att stimulera intresset för matematik, låt det vara vägledande. Efter tävlingen Meddela hur många elever som deltagit, gärna flera klasser samtidigt, på ncm.gu.se/kanguru. Så snart du gjort det får du rättningsmall och lösningar. Lycka till med årets Känguru! e-post: kanguru@ncm.gu.se, tel: 031-786 2196, 031-786 2243, 031-786 6989, fax: 031-786 2200 Kungl Vetenskapsakademien & NCM/Nämnaren 1
Till alla elever Välkommen till Kängurun Matematikens hopp 2009 Här är årets Känguruproblem. Det är fler än 5 miljoner elever i omkring 40 länder som arbetar med Kängurun, så du är inte ensam om att fundera på samma problem. Varje deltagande land skickar in förslag på problem och vid ett möte där representanter för alla deltagande länder deltar väljer man sen ut de bästa. Det land som står efter problemet är det land som har bidragit med det. Det behöver du inte bry dig om nu, men senare kan ni tillsammans titta på en karta var dessa länder ligger. Vi hoppas att du ska tycka om årets problem även de du inte lyckas lösa vid första försöket. Kängurun består av 3 avdelningar med 7 problem i varje. Den första avdelningen tror vi ska vara den lättaste och i den sista avdelningen kommer de svåraste problemen. Du kanske bara hinner en avdelning. Det är svårt att hinna med alla problem och det är mycket svårt att få alla rätt. Bli inte orolig om du inte kan. Kom ihåg att detta inte är ett prov. Tillsammans i klassen kan ni sen arbeta vidare med problemen. Då kommer du säkert att kunna lösa flera av dem. Till varje problem finns det fem svar att välja mellan. Bara ett av de svaren är riktigt. Du kan ibland lösa problemet genom att pröva de olika svarsalternativen. Du behöver papper att rita och anteckna på. Linjal behöver du inte. Sax och miniräknare får du inte använda. Fråga din lärare om det är något du undrar. Din lärare säger till när du ska börja. Lycka till med årets problem! Kungl Vetenskapsakademien & NCM/Nämnaren 2
Avdelning 1, trepoängsproblem 1. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Var är kängurun? A: I cirkeln och i triangeln, men inte i kvadraten. B: I cirkeln och i kvadraten, men inte i triangeln. C: I triangeln och i kvadraten, men inte i cirkeln. D: I cirkeln, men varken i kvadraten eller i triangeln. E: I kvadraten, men varken i cirkeln eller i triangeln. Österrike 3. Det finns tre askar. En är vit, en är röd och en är grön. I en ask ligger det en chokladbit. I en annan ligger en kola. Den tredje asken är tom. Chokladbiten ligger antingen i den vita eller i den röda asken. Kolan ligger varken i den vita eller i den gröna asken. I vilken ask finns chokladbiten? A: I den vita asken. B: I den röda asken. C: I den gröna asken. D: I den röda eller den gröna asken. E: Det kan man inte veta. Ukraina Kungl Vetenskapsakademien & NCM/Nämnaren 3
4: Du ska plocka bort siffror från talet 1 2 3 2 3 3 1 4 för att få ett tal som är lika om du läser det från vänster som om du läser från höger. Hur många siffror måste du minst plocka bort? A: 1 B: 2 C: 3 D: 4 E: 5 5. I en dansgrupp finns det 39 pojkar och 23 flickor. Varje vecka börjar ytterligare 6 pojkar och 8 flickor i gruppen. Efter hur många veckor kommer det att var lika många pojkar som flickor i gruppen? A: 4 B: 5 C: 6 D: 8 E:16 Kroatien 6. En bro går vinkelrätt över en flod. Floden är 120 meter bred. En fjärdedel av bron ligger på den vänstra flodstranden och en fjärdedel av bron på ligger den högra flodstranden. Hur lång är bron? A: 150 m B: 180 m C: 210 m D: 240 m E: 270 m Kroatien 7: Maria har gjort en gångstig i sin trädgård, som på bilden. Hon har använt 10 plattor. Varje platta är 4 dm bred och 6 dm lång. Maria har målat en svart linje som går mellan plattornas mittpunkter. Hur lång är den svarta linjen? A: 24 dm B: 40 dm C: 46 dm D: 50 dm E: 56 dm Nederländerna Kungl Vetenskapsakademien & NCM/Nämnaren 4
Avdelning 2, fyrapoängsproblem 8. Två rektanglar, 8 cm x 10 cm och 9 cm x 12 cm stora, täcker delvis varandra. Den mönstrade ytan har arean 37 cm 2. Hur stor area har den ljusgrå ytan? 12 8 9 A: 60 cm 2 B: 62 cm 2 C: 62,5 cm 2 D: 64 cm 2 E: 65 cm 2 10 Nederländerna 9. Tornet på bilden är uppbyggd av en kvadrat, en rektangel och en liksidig triangel. Alla tre figurerna har samma omkrets. Kvadratens sida är 9 cm. Hur lång är den markerade sidan på rektangeln? A: 3 cm B: 4 cm C: 5 cm D: 6 cm E: 7 cm 9 Slovakien 10. I ett rum finns det katter och hundar. Antalet katt-tassar är dubbelt så stort som antalet hundnosar. Vad vet vi då? A: Katterna är dubbelt så många som hundarna. B: Katterna är hälften så många som hundarna. C: Katterna är lika många som hundarna. D: Antalet katter är en fjärdedel av antalet hundar. E: Katterna är fyra gånger så många som hundarna. Ryssland Kungl Vetenskapsakademien & NCM/Nämnaren 5
11. Anders, Boris, Carlo och David har tagit de fyra första placeringarna i en fäktningsturnering. Om du adderar Anders, Boris och Davids placeringar, så får du talet 6. Du får samma tal om du adderar Boris and Carlos placeringar. Boris placerade sig bättre än Anders. Vem vann turneringen? A: Anders B: Boris C: Carlo D: David E: Det går inte att avgöra Kroatien 12. Summan i varje rad och varje kolumn är beräknad i nedanstående tabell: 11 8 8 10 8 9 Hur mycket är + A: 4 B: 5 C: 6 D: 7 E: 8 UK 13. ABCD är en kvadrat med sidorna 10 cm. Avståndet från punkt N till punkt M är 6 cm. De vita likbenta trianglarna är lika stora och de vita kvadraterna är lika stora. Hur stor area har den skuggade delen av kvadraten ABCD? D N M C A: 42 cm 2 B: 46 cm 2 C: 48 cm 2 D: 52 cm 2 E: 58 cm 2 A B Estland Kungl Vetenskapsakademien & NCM/Nämnaren 6
14. Vi har en låda som är 30 cm lång, 30 cm bred och 50 cm hög. Vi vill fylla den med kuber som alla är lika stora. Hur många kuber måste vi minst använda? A: 15 B: 30 C: 45 D: 75 E: 150 Italien Avdelning 3, fempoängsproblem 15. En fyrhörning ABCD har sidor med följande längder: AB = 11 cm, BC = 7 cm, CD = 9 cm och DA = 3 cm. Vinklarna A och C är räta. Hur stor area har fyrhörningen? C A: 30 cm 2 B: 44 cm 2 C: 48 cm 2 D: 52 cm 2 E: 60 cm 2 D A B Belgien 16. I askarna A och B ligger sammanlagt 8 kort som är numrerade från 1 till 8. De är fördelade i askarna så att summan av kortens nummer i ena asken är lika stor som summan i den andra asken. I ask A ligger det tre kort. Vad vet vi då säkert? A: Tre kort i ask B har udda nummer B: Fyra kort i ask B har jämna nummer C: Kort nummer 1 ligger inte i ask B D: Kort nummer 2 ligger i ask B E: Kort nummer 5 ligger i ask B Kungl Vetenskapsakademien & NCM/Nämnaren 7
17. Vi ska märka rutorna med A, B, C och D. Grannar får inte ha samma markering. Även rutor med gemensamt hörn räknas som grannar. Några rutor är redan ifyllda. Vad ska det stå i den skuggade rutan? A B C D A: A B: B C: C D: D E: Det finns två olika svar som är möjliga Mexiko 18. I landet Lustigfot har alla större vänsterfot än högerfot. Vänsterfoten är en eller två storlekar större än högerfoten. Ändå säljs skor i par med samma storlek. För att spara pengar bestämmer sig några vänner för att köpa skor ihop. Var och en tar två skor som passar. Då blir det en sko med storlek 36 och en med storlek 45 över. Vilket är minsta antalet vänner som krävs för att det ska fungera? A: 5 B: 6 C: 7 D: 8 E: 9 Italien 19. Bilden visar en geometrisk kropp med 6 triangulära sidoytor. I varje hörn finns ett tal. För varje sidoyta beräknar vi summan av talen i de tre hörnen. Alla sidoytor har samma summa och två av talen är 1 och 5 som på bilden. Vad blir summan av alla fem talen? 1 A: 9 B: 12 C: 17 5 D: 18 E: 24 Mexiko Kungl Vetenskapsakademien & NCM/Nämnaren 8
20. I en tabell som består av 4 x 2 rutor är två tal skrivna i första raden. Varje ny rad innehåller summan och skillnaden mellan talen i föregående rad, se exemplet. I en tabell med 7 x 2 rutor som är ifylld på samma sätt, är talen i sista raden 96 och 64. Vad är summan av talen i den första raden? 10 3 13 7 20 6 26 14 A: 8 B: 10 C: 12 D: 20 E: 24 21. Olivia har 2009 lika stora kvadratiska bitar som hon ska lägga som en rektangel. Hur många olika rektanglar kan hon lägga? A: 1 B: 2 C: 3 D: 5 E: 10 Sverige Kungl Vetenskapsakademien & NCM/Nämnaren 9
Svarsblankett Markera ditt svar i rätt ruta Uppgift a b c d e Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 SUMMA Namn:... Klass::... Kungl Vetenskapsakademien & NCM/Nämnaren 10