Uppgift 1 ( Betyg 3 uppgift )

Storlek: px
Starta visningen från sidan:

Download "Uppgift 1 ( Betyg 3 uppgift )"

Transkript

1 kl Uppgift 1 ( Betyg 3 uppgift ) Du skall hitta det största tal N i intervallet [1, 999] där N 3 = produkten av alla heltalsdelare till N. Här följer två beskrivande exempel (inte körexempel) på tal och om de är kandidater till att vara talet vi söker (d.v.s. N). Exempel 1: Talet 207: Heltalsdelarna till 207 (de tal som 207 går att dela med) är 1, 3, 9, 23, 69 och = 207*207*207 = *3*9*23*69*207 = Resultaten är lika så talet 207 är en kandidat. Exempel 2: Talet 996: Heltalsdelarna till 996 är 1, 2, 3, 4, 6, 12, 83, 166, 249, 332, 498 och = 996*996*996 = *2*3*4*6*12*83*166*249*332*498*996 = 9.762e+17 Resultaten är inte lika så talet 996 är inte en kandidat. Ditt program (din funktion) skall returnera det tal N som vi söker, d.v.s. den största kandidaten i intervallet som är angivet ovan. Det behöver inte finnas några indata.

2 kl Uppgift 2 På företaget Försäljning AB har de en policy som säger att alla som köper något och betalar med deras kort får lite rabatt. När man stoppar in pengar på kortet måste detta göras med 500 kronor. När man handlar på kortet dras det så mycket som varan kostar (förstås). Antag att man har laddat kortet med 500 kronor och därefter varje dag köper en vara för 53 kronor. Hur många dagar tar det då innan man kommer till det exakta saldot noll kronor på kundkortet. Givetvis måste man ladda in nya pengar om det inte går att dra minst 53 kronor vid ett köp. Det är inte givet att det skall vara 53 kronor vid varje inköp utan det kan istället vara t.ex. 49 kronor. Dock är det givet att man alltid köper varor för samma belopp varje dag. Användaren skall förutom ovanstående mata in vad som finns på kortet från början. Krav: Funktionen som räknar ut antalet dagar måste vara rekursiv. Huvudfunktionen skall dock heta how_many_days. >> how_many_days() Hur mycket finns på kortet från början: 1 Mata in vilket belopp som det handlas för per dag: 53 Det tar 227 dagar innan det blir exakt noll kronor i saldo >> how_many_days() Hur mycket finns på kortet från början: 500 Mata in vilket belopp som det handlas för per dag: 135 Det tar 100 dagar innan det blir exakt noll kronor i saldo Körexempel 3: >> how_many_days() Hur mycket finns på kortet från början: 500 Mata in vilket belopp som det handlas för per dag: 18 Det tar 250 dagar innan det blir exakt noll kronor i saldo Körexempel 4: >> how_many_days() Hur mycket finns på kortet från början: 498 Mata in vilket belopp som det handlas för per dag: 1 Det tar 498 dagar innan det blir exakt noll kronor i saldo

3 kl Uppgift 3 Sudoku är ett logikspel som går ut på att man ska placera ut siffror i ett rutmönster. Det klassiska, ursprungliga rutmönstret består av 3x3 rutor ( lådor ) som i sin tur består av 3x3 rutor. Det gäller att placera in siffrorna 1 till 9 på ett sådant sätt att varje vågrät rad, lodrät rad och låda på 3x3 rutor innehåller varje siffra exakt en gång. Du skall skriva ett program där man får mata in en matris (9x9 i storlek) som motsvarar en given Sudoku från en tidning. Ditt program skall därefter lösa denna och returnera lösningen. Antag att man i tidningen ser följande information: Givet ovanstående tidningsurklipp så skall den matris man skickar in till din funktion se ut på följande sätt: M = [[ ] ; [ ] ; [ ] ; [ ] ; [ ] ; [ ] ; [ ] ; [ ] ; [ ]] Körexempel: >> solve_sudoku(m) Tips: Tanken är att man från början har talen 1-9 givet som möjliga i varje position. Varje gång man stoppar in ettt tal tas de övriga bort från denna position och dessutom skall talet tas bort från de rader/kolumner och från alla positioner i den aktuella lådan. Om man hittar en postiion där det endast finns ett värde kvar anses detta värde som det som skall stoppas in på den positionen. Detta upprepas tills det att hela Sudokun är löst.

4 kl Uppgift 4 Du skall skriva ett program som ritar en figur som ser så lik den nedan ut som möjligt. Det är tillåtet att använda de inbyggda funktionerna axis, plot och fill. Vågorna består av en massa stjärnor. Tips: Det är ok att mäta i figuren och det behöver inte bli en exakt kopia..

5 kl Bygga hus med LECA-stenar När man bygger hus med LECA-stenar finns det en del att tänka på. Till att börja med finns det LECA-stenar i olika dimensioner (t.ex. 59x19x19 och 59x19x39). Dessa dimensioner ges i mått som avser längd (SL), bredd (SB) och en höjd (SH). LECA-stenarna sammanfogas med murbruk och detta gör att man kan räkna med att det är lite mellanrum mellan stenarna och det gör att man brukar räkna med att de bygger 1 cm mer än de har som mått (d.v.s. de två exempelmåtten ovan kan ses som 60x20x20 och 60x20x40). Vi kan anta i följande uppgifter att vi skall bygga ett hus som ser ut enligt följande figur i en vy uppifrån. Det finns inga fönster utan bara en dörr som går från golv till tak och det är givet att denna sitter på mitten så gått det går med kravet att det skall vara en multipel av 10 cm på den vänstra sidan (dörren justeras alltså, så att detta krav tillgodoses, åt vänster om det inte går att få dörren exakt på mitten). Alla mått skall vara i hela cm. DB DB = Dörrbredd HB = Husbredd HL = Huslängd HL HB Man ser i figuren ovan att det i det övre vänstra hörnet skall vara en hel sten nedåt. Vi börjar dock vid dörrens vänstra sida och lägger en hel sten (om det får plats) och så fyller man på med hela stenar tills vi når fram till det vänstra övre hörnet. Den sista stenen blir i de flesta fall kortare (måste alltså kapas) för att få plats. På samma sätt gör man runt hela huset tills det att man når dörrens högra sida. Det kan alltså bli ett antal stenar som kapas för att det skall bli bra i hörnen. Även den sista stenen vid dörrens högra sida kanske skall kapas. Det är också viktigt att man inte lägger stenarna så att två lager på varandra får fogar (skarvar) på samma ställe. Om två fogar hamnar på samma ställe försvagas konstruktionen. När man bygger det andra lagret skall detta inte ge några skarvar på samma ställe som i lager 1. Detta kan vi anta att det uppfylls om man i andra lagret börjar på högra sidan om dörren istället för vänstra och går runt åt andra hållet (de fall som skapar problem bortser vi ifrån). Antal lager med LECA-stenar anges som HH och är alltså ett heltal. Höjden på huset blir då resultatet av HH * SH. Vi har påbörjat en del program som har med ovanstående att göra. Dessa finns givna i given_files -mappen. Din uppgift är att utifrån dessa eller på egen hand lösa det som står i uppgifterna i tentan.

6 kl Uppgift 1 ( Betyg 3 uppgift ) När man bygger ett hus enligt förutsättningarna på första sidan blir det oftast så att man måste kapa ett antal stenar. Om man antar att man inte återanvänder det man kapat bort till andra ställen får man direkt en frågeställning framför sig. Hur många stenar behöver kapas givet indata på HB, HL, DB, SB och SL. Vi antar att det bara är ett lager vi skall räkna på så det är irrelevant vad som finns i lager 2, 3,... Mata in husets bredd (HB): 300 Mata in husets längd (HL): 500 Mata in dörrens bredd (DB): 100 Mata in stenarnas bredd (SB): 20 Mata in stenarnas längd (SL): 60 Det behöver kapas 3 stenar. Mata in husets bredd (HB): 238 Mata in husets längd (HL): 346 Mata in dörrens bredd (DB): 82 Mata in stenarnas bredd (SB): 20 Mata in stenarnas längd (SL): 60 Det behöver kapas 5 stenar. Körexempel 3 (OBS! resultatet i singularis): Mata in husets bredd (HB): 320 Mata in husets längd (HL): 500 Mata in dörrens bredd (DB): 80 Mata in stenarnas bredd (SB): 20 Mata in stenarnas längd (SL): 60 Det behöver kapas 1 sten. Körexempel 3: Mata in husets bredd (HB): 200 Mata in husets längd (HL): 100 Mata in dörrens bredd (DB): 80 Mata in stenarnas bredd (SB): 20 Mata in stenarnas längd (SL): 20 Det behöver kapas 0 stenar.

7 kl Uppgift 2 När man bygger ett hus enligt förutsättningarna på första sidan blir det oftast så att man måste kapa ett antal stenar. Om man antar att man återanvänder det man kapat bort till andra ställen får man direkt en frågeställning framför sig. Hur många stenar behövs givet indata på HB, HL, HH, DB, SB och SL. Vi antar att det är ett jämnt antal lager vi skall räkna på så det är irrelevant vad som finns i sista lagret om användaren anger ett udda antal lager. När man bygger sitt hus får man gamla avkapade delar allt eftersom man bygger och när man behöver en ny kapad sten skall man leta reda på den minsta möjliga (som räcker till) av de delar som kapats av tidigare och använda denna istället för att kapa av en helt ny sten. Här inser man att det då kan vara så att man har en sten som är helt rätt längd bland de kapade eller så är den stendel man skall använda lite för lång. I det senare fallet kapas denna stendel så att man får den bit man önskar samt att man får en ny kortare avkapad bit att använda till senare. Din uppgift är alltså att skriva ett program som tar reda på hur många stenar man behöver totalt för att bygga huset. Körexempel 1 (när det som i detta exmepel inte blir delar över ser det lite underligt ut, men...): Mata in husets bredd (HB): 80 Mata in husets längd (HL): 80 Mata in dörrens bredd (DB): 40 Mata in stenarnas bredd (SB): 20 Mata in stenarnas längd (SL): 60 Mata in husets höjd (HH = antal stenar i höjdled): 6 Det behövs 20 stenar för att bygga huset. Eventuella delar som blev över är: Mata in husets bredd (HB): 300 Mata in husets längd (HL): 500 Mata in dörrens bredd (DB): 90 Mata in stenarnas bredd (SB): 20 Mata in stenarnas längd (SL): 60 Mata in husets höjd (HH = antal stenar i höjdled): 10 Det behövs 243 stenar för att bygga huset. Eventuella delar som blev över är: 5 st med längd st med längd 20 1 st med längd 30

8 kl Uppgift 3 Det kan vara bra att se hur man skall bygga sitt hus. Din uppgift är därför att rita ut de stenar som finns i ett givet lager. Lagret genereras i den givna programkoden. Du får titta i det givna programmet och se till att skapa själva utskriftsdelen som saknas. Utskrifterna skall följa nedanstående exempel. Mata in husets bredd (HB): 300 Mata in husets längd (HL): 200 Mata in dörrens bredd (DB): 90 Mata in stenarnas bredd (SB): 40 Mata in stenarnas längd (SL): Mata in husets bredd (HB): 450 Mata in husets längd (HL): 50 Mata in dörrens bredd (DB): 100 Mata in stenarnas bredd (SB): 20 Mata in stenarnas längd (SL):

9 kl Uppgift 4 När man bygger sitt hus och kommer till den punkt där man skall bygga taket får man lite problem. Man behöver någon form av ställning. Antag att man bygger den av LECA-stenar på så sätt att man kan se det som en trapp oavsett från vilket håll man kommer (lite grann som en kapad pyramid). Se i figuren för att se hur trappen skulle se ut för hushöjderna 2, 3 och 4 (självklart behövs ingen trappa om man bara bygger ett lager stenar i huset). Din uppgift är att skriva det program som räknar ut hur många stenar det behövs för att bygga trappan givet en viss höjd på huset. Krav: Du skall ha en rekursiv funktion som beräknar antalet stenar i ditt program. Mata in husets höjd (HH = antal stenar i höjdled): 1 Det behövs 0 stenar för att bygga trappan. Körexempel 2 (singularis!!!): Mata in husets höjd (HH = antal stenar i höjdled): 2 Det behövs 1 sten för att bygga trappan. Körexempel 4: Mata in husets höjd (HH = antal stenar i höjdled): 4 Det behövs 22 stenar för att bygga trappan. Körexempel 10: Mata in husets höjd (HH = antal stenar i höjdled): 10 Det behövs 525 stenar för att bygga trappan. Körexempel 100: Mata in husets höjd (HH = antal stenar i höjdled): 100 Det behövs stenar för att bygga trappan.

10 kl Uppgift 1 ( Betyg 3 uppgift ) Skriv funktionen create_diagonal som tar emot de två parametrarna R och N. R markerar hur många rader den resulterande matrisen skall få och N markerar hur många ettor i följd det skall vara på respektive rad i matrisen enligt exemplen nedan. Funktionen skall returnera mden skapade matrisen (d.v.s. den skall inte skrivas ut inuti funktionen). >> create_diagonal(1, 1) 1 >> create_diagonal(3, 1) Körexempel 3: >> create_diagonal(4, 3) Körexempel 4: >> create_diagonal(5, 2) Körexempel 5: >> create_diagonal(2, 4)

11 kl Uppgift 2 Ett antal personer, som leds av den snabbgående guiden Bridget, kom en natt fram till en bro som endast klarade av att bära två personer åt gången. Dessutom fanns det ett antal hål i bron vilket gjorde det farligt att gå över utan lyse. Nu hör det till saken att det inte fanns några lampor vid eller på bron och det var becksvart ute då inte ens månen syntes genom molntäcket. Som tur var hade sällskapet en ficklampa med sig. Dock bara en. Lösningen är självklar. Två personer får givetvis gå över med ficklampan och sen får en av dessa gå tillbaka (självklart med ficklampan) för att man sen skall få över fler personer. Nu finns en liten hake i allt detta. Personerna är inte lika snabba att gå och det råkar vara så att alla personer har olika hastighet som dessutom råkar göra att det tar 1 minut för den snabbaste att gå över, 2 minuter för näste och så vidare upp till N minuter för den N:te och siste personen. När två personer går tillsamman över bron gäller dock att de måste hålla samma tempo som den långsammaste av dem. Din uppgift är att skriva en funktion som räknar ut hur lång tid det tar för sällskapet att komma över bron givet att den snabbaste alltid är den som går tillbaka över bron (och därför alltså får gå MÅNGA gånger över bron om sällskapet är stort). Funktionen skall heta bridge_1 och ta emot hur stort sällskapet är (d.v.s. N). Krav: Din funktion skall vara rekursiv. >> bridge_1(1) Person 1 går över. 1 >> bridge_1(2) Person 1 och 2 går över. 2 Körexempel 3: >> bridge_1(6) Person 1 och 6 går över. Person 1 går tillbaka. Person 1 och 5 går över. Person 1 går tillbaka. Person 1 och 4 går över. Person 1 går tillbaka. Person 1 och 3 går över. Person 1 går tillbaka. Person 1 och 2 går över. 24

12 kl Uppgift 3 Nu tändas tusen juleljus... börjar en av våra kära julsånger. Detta leder oss raskt in på denna uppgift. Du skall skriva ett program som ritar ut en adventsljusstake med så många ljus som användaren bestämmer (antalet = N). Det är givet att det är ett udda antal ljus. Om användaren matar in ett jämnt antal är det fel och programmet får krascha i värsta fall. Ett ljus skall se ut på följande sätt (där det röda är uppbyggt av tre trianglar): N = 1 När man sen bygger en ljusstake kommer det att finnas flera ljus som ligger förskjutna lite i sidled/höjdled. Detta blir då att se ut enligt följande (för tre ljus): Ljusstaken ser då inte riktigt snygg ut (vilket gör att vi inte är nöjda med detta som lösning från er) så vi får lägga till ytterligare ett par trianglar som fyller ut lite. Då får vi en snygg ljusstake som ser ut enligt följande: N = 3 Ditt program skall alltså rita ut figurer som matchar ovanstående för N=1 resp. N=3. För N=7 skulle ljusstaken se ut enligt följande: N = 7 Till din hjälp får du en funktion som ritar ut en låga. Denna heter draw_flame och ligger i mappen given_files. Denna funktion är anpassad för att rita ut lågan på olika positioner. För att slippa svarta ramar runt trianglarna kan man använda det extra argumentet EdgeColor samt den färg man använder. Exempel: fill([cosd(0:360)], [sind(0:360)], r, EdgeColor, r );

13 kl Uppgift 4 För er Sudoku-vänner kommer här en specialare. Det gäller att kontrollera om innehållet i en matris motsvarar en korrekt lösning till en Sudoku. Det kan komma in tvådimensionella matriser av vilken storlek som helst. Kravet för att det är en korrekt Sudoku-lösning är: 1. Matrisen är kvadratisk. 2. Antalet rutor i x-led är en jämn kvadrat. 3. Talen som finns i matrisen måste vara i intervallet [1, matrisens sidlängd ]. 4. Det finns inte flera tal av samma sort i någon rad. 5. Det finns inte flera tal av samma sort i någon kolumn. 6. Det finns inte flera tal av samma sort i någon av de delrutor som finns i Sudokun. I en matris med 16x16 rutor finns det 16 delrutor med storleken 4x4. Din funktion som skall kontrollera ovanstående skall heta check_sudoku_solution och ta en matris som parameter. Funktionen skall SKRIVA UT om det är en korrekt eller felaktig matris.

14 kl Uppgift 1 ( Betyg 3 uppgift ) Du skall skiva funktionen my_size som tar en vektor som indata. Vektorn skall ha två element som anger antal rader och kolumner för en matris. Funktionen skall returnera en matris av denna dimension som innehåller en multiplikationstabell enligt exemplen nedan. >> my_size([1 2]) 1 2 >> my_size([2 2]) Körexempel 3: >> my_size([3 7]) Körexempel 3: >> my_size([10 10])

15 kl Uppgift 2 Ett antal personer, som leds av den snabbgående guiden Brolle, kom en natt fram till en bro som endast klarade av att bära två personer åt gången. Dessutom fanns det ett antal hål i bron vilket gjorde det farligt att gå över utan lyse. Nu hör det till saken att det inte fanns några lampor vid eller på bron och det var becksvart ute då inte ens månen syntes genom molntäcket. Som tur var hade sällskapet en ficklampa med sig. Dock bara en. Lösningen är självklar. Två personer får givetvis gå över med ficklampan och sen får en av dessa gå tillbaka (självklart med ficklampan) för att man sen skall få över fler personer. Nu finns en liten hake i allt detta. Personerna är inte lika snabba att gå och det råkar vara så att alla personer har olika hastighet som dessutom råkar göra att det tar 1 kvart för den snabbaste att gå över, 2 kvartar för näste och så vidare upp till N kvartar för den N:te och siste personen. När två personer går tillsamman över bron gäller dock att de måste hålla samma tempo som den långsammaste av dem. Det finns ytterligare en hake med det hela. Bron är så pass lång att en person inte orkar gå mer än totalt tre gånger över bron (d.v.s. fram, tillbaka och sen fram igen). Detta får inte inträffa och därför skall ditt program se till att ingen går fler än tre gånger över bron. Har man vilat en gång är det ok att gå igen. Lösningen blir förstås att den snabbaste och den näst snabbaste kommer att turas om att gå en massa gånger. Din uppgift är att skriva en funktion som räknar ut hur lång tid det tar för sällskapet att komma över bron. Funktionen skall heta bro_lle och ta emot hur stort sällskapet är (d.v.s. N). För att man skall veta vilka som går i vilken riktning skall funktionen skriva ut vilken/vilka som går över bron vid varje tillfälle (denna utskrift sker inuti funktionen). Ingen utskrift av tiden skall göras i funktionen utan detta skall returneras. Krav: Din lösning skall vara rekursiv och följa nedanstående (ickeoptimala) algoritm för att få över personerna. Körexempel: >> bro_lle(7) Person 1 och 2 går fram. Person 2 går tillbaka. Person 2 och 3 går fram. Person 3 går tillbaka. Person 3 och 4 går fram. Person 4 går tillbaka. Person 4 och 5 går fram. Person 5 går tillbaka. Person 5 och 6 går fram. Person 6 går tillbaka. Person 6 och 7 går fram. 47

16 kl Uppgift 3 Nu är det snart jul och många åker ut och köper julgranar (man kan ju undra varför de inte bara köper en gran). För att du skall slippa detta får du istället skriva ett program som ritar en julgran. Användaren skall få välja hur hög granen skall vara. Du ser i exemplen nedan hur vi har tänkt. >> christmas_tree(1) >> christmas_tree(2) Körexempel 3: >> christmas_tree(3) Givetvis skall figurerna ritas ut med kommandot fill. Som extra argument till fill kan man skicka EdgeColor samt den färg man använder så slipper man den svarta ramen runt sina trianglar (vi antar att ni förstår att det är tringlar som ni skall rita ut...). Exempel: fill([cosd(0:360)], [sind(0:360)], r, EdgeColor, r ); Tips: Lös lite i taget och se vad som händer så att du inte får allt fel på en gång...

17 kl Uppgift 4 För er Sudoku-vänner kommer här en specialare. Det gäller att kontrollera om innehållet i en av de 9 delkvadrater (bestående av 3x3 rutor) som finns i en vanlig 9x9-Sudoku innehåller en magisk kvadrat. En magisk kvadrat är en kvadrat med ett antal olika tal (alla skall vara olika) där summan av varje rad, kolumn och diagonal (bara de två från hörn till hörn räknas) är densamma. Ett exempel på en 3x3-kvadrat som är magisk är följande: Din funktion som skall kontrollera ovanstående skall heta find_magic_square och ta en 9x9- matris som parameter. Funktionen skall SKRIVA UT om det finns en magisk kvadrat eller ej.

18 kl Uppgift 1 ( Betyg 3 uppgift ) Du skall skiva funktionen my_mult som tar en vektor som indata. Vektorn skall ha två element som anger antal rader och kolumner för en matris. Funktionen skall returnera en matris av denna dimension som innehåller en multiplikationstabell enligt exemplen nedan. >> my_mult([1 2]) >> my_mult([2 2]) Körexempel 3: >> my_mult([3 7]) Körexempel 3: >> my_mult([9 9])

19 kl Uppgift 2 Ett jämnt antal personer, som leds av den snabbgående guiden Bror, kom en natt fram till en bro som endast klarade av att bära två personer åt gången. Dessutom fanns det ett antal hål i bron vilket gjorde det farligt att gå över utan lyse. Nu hör det till saken att det inte fanns några lampor vid eller på bron och det var becksvart ute då inte ens månen syntes genom molntäcket. Som tur var hade sällskapet en ficklampa med sig. Dock bara en. Lösningen är självklar. Två personer får givetvis gå över med ficklampan och sen får en av dessa gå tillbaka (självklart med ficklampan) för att man sen skall få över fler personer. Nu finns en liten hake i allt detta. Personerna är inte lika snabba att gå och det råkar vara så att alla personer har olika hastighet som dessutom råkar göra att det tar 1 kvart för den snabbaste att gå över, 2 kvartar för näste och så vidare upp till N kvartar för den N:te och siste personen. När två personer går tillsamman över bron gäller dock att de måste hålla samma tempo som den långsammaste av dem. Det finns ytterligare en hake med det hela. Bron är så pass lång att en person inte orkar gå mer än två gånger i rad över bron (d.v.s. antingen fram och tillbaka eller tillbaka och fram). Att gå tre gånger över bron gör att personen blir okoncentrerad och antagligen faller i ett av hålen i bron. Detta får inte inträffa och därför skall ditt program se till att ingen går fler än två gånger över bron i rad. Har man vilat en gång är det ok att gå igen. Lösningen blir förstås att den snabbaste och den näst snabbaste kommer att turas om att gå en massa gånger. Din uppgift är att skriva en funktion som räknar ut hur lång tid det tar för sällskapet att komma över bron. Funktionen skall heta bro_r och ta emot hur stort sällskapet är (d.v.s. N). För att man skall veta vilka som går i vilken riktning skall funktionen skriva ut vilken/vilka som går över bron vid varje tillfälle (denna utskrift sker inuti funktionen). Ingen utskrift av tiden skall göras i funktionen utan detta skall returneras. Krav: Din lösning skall vara rekursiv. Körexempel: >> bro_r(8) Person 1 och 2 går fram. Person 1 går tillbaka. Person 7 och 8 går fram. Person 2 har nu vilat och går tillbaka. Person 1 och 2 går fram. Person 1 går tillbaka. Person 5 och 6 går fram. Person 2 har nu vilat och går tillbaka. Person 1 och 2 går fram. Person 1 går tillbaka. Person 3 och 4 går fram. Person 2 har nu vilat och går tillbaka. Person 1 och 2 går fram. 35

20 kl Uppgift 3 Nu är det snart jul och många åker ut och köper julgranar (man kan ju undra varför de inte bara köper en gran). För att du skall slippa detta får du istället skriva ett program som ritar en julgran. Användaren skall få välja hur hög granen skall vara. Du ser i exemplen nedan hur vi har tänkt (det finns ingen gran med storlek 1). >> nice_christmas_tree(2) >> nice_christmas_tree(3) Körexempel 3: >> nice_christmas_tree(4) Givetvis skall figurerna ritas ut med kommandot fill. Som extra argument till fill kan man skicka EdgeColor samt den färg man använder så slipper man den svarta ramen runt sina trianglar (vi antar att ni förstår att det är tringlar som ni skall rita ut...). Exempel: fill([cosd(0:360)], [sind(0:360)], r, EdgeColor, r ); Tips: Lös lite i taget och se vad som händer så att du inte får allt fel på en gång...

21 kl Uppgift 4 För er Sudoku-vänner kommer här en specialare. Det gäller att skriva en funktion som kontrollerar hur svår en Sudoku är. Det finns (nu) en teori om att man kan använda sig av determinantberäkningar för att få fram ett tal som anger svårighetsgraden. Det går till på följande sätt: 1. Bekräkna produkten (elementvis m.h.a. operatorn.* ) för alla delkvadrater i en Sudokulösning (i en 9x9-Sudoku finns det 9 stycken 3x3-delkvadrater). 2. Den produktmatris man då får fram tar man sen och beräknar determinanten för. 3. Detta resultat skall sen divideras med Avrunda detta värde till heltal. 5. Absolutbeloppet av det avrundade värdet motsvarar svårigheten. Din funktion som utför ovanstående skall heta sudoku_det och den skall returnera svårighetsgraden (inte skriva ut denna). M = [ ; ; ; ; ; ; ; ; ]; >> sudoku_det(m) 0 M = [ ; ; ; ; ; ; ; ; ]; >> sudoku_det(m) 248

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2009-12-16.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Skriv funktionen create_diagonal som tar emot de två parametrarna R och N. R markerar hur många rader den resulterande matrisen skall få och N markerar

Läs mer

Bygga hus med LECA-stenar

Bygga hus med LECA-stenar Bygga hus med LECA-stenar När man bygger hus med LECA-stenar finns det en del att tänka på. Till att börja med finns det LECA-stenar i olika dimensioner (t.ex. 59x19x19 och 59x19x39). Dessa dimensioner

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2008-03-25.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Du skall skriva ett program (en funktion), my_plot_figure, som läser in ett antal sekvenser av koordinater från tangentbordet och ritar ut dessa till en

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2006-12-08.kl.08-13 Uppgift 1 ( Betyg 3 uppgift ) Implementera följande funktion: fun(1) = 1 fun(n) = fun(n / 2), för jämna n fun(n) = n / (fun(n - 1) + fun(n + 1)), för udda n Exempel på korrekta resultat:

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2010-04-06.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Skriv den funktion, draw_figure, som ritar ut en liksidig figur enligt exemplen nedan med så många hörn som anges som parameter till funktionen (den ritar

Läs mer

Tentaupplägg denna gång

Tentaupplägg denna gång Några tips på vägen kanske kan vara bra. 2014-10-30.kl.08-13 Tentaupplägg denna gång TIPS1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva

Läs mer

Uppgift 1 (vadå sortering?)

Uppgift 1 (vadå sortering?) 2011-06-08.kl.14-19 Uppgift 1 (vadå sortering?) Du skall skriva ett program som sorterar in en sekvens av tal i en vektor (en array ) enligt en speciell metod. Inledningsvis skall vektorn innehålla endast

Läs mer

Uppgift 1a (Aktiekurser utan poster)

Uppgift 1a (Aktiekurser utan poster) Uppgift 1a (Aktiekurser utan poster) Vi har lite olika upplägg i de kurser vi håller och i vissa kurser finns det med något som vi kallar "poster" (eng. "record"). I andra har vi inte med detta. Vi har

Läs mer

Tentaupplägg denna gång

Tentaupplägg denna gång Några tips på vägen kanske kan vara bra. Tentaupplägg denna gång TIPS 1: Läs igenom ALLA uppgifterna och välj den du känner att det är den lättaste först. Det kan gärna ta 10-20 minuter. Försök skriva

Läs mer

TENTA: TDDD11 & TDDC68. Tillåtna hjälpmedel. Starta Emacs, terminal och tentakommunikationsfönster. Skicka in frågor och uppgifter

TENTA: TDDD11 & TDDC68. Tillåtna hjälpmedel. Starta Emacs, terminal och tentakommunikationsfönster. Skicka in frågor och uppgifter TENTA: TDDD11 & TDDC68 Tillåtna hjälpmedel Det är tillåtet att ha böcker (t.ex. Ada-bok, formelsamlingar, lexikon,...) med sig samt utdelade lathundar (finns på kurshemsidan) för Ada, Unix och Emacs. Utdraget

Läs mer

Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson Plot och rekursion

Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson Plot och rekursion Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson 2010-11-19 Plot och rekursion I denna laboration skall du lära dig lite om hur plot i MatLab fungerar samt använda

Läs mer

Tentaupplägg denna gång

Tentaupplägg denna gång Några tips på vägen kanske kan vara bra. Tentaupplägg denna gång TIPS1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara

Läs mer

UPPGIFT 1 TVÅPOTENSER. UPPGIFT 2 HISSEN I LUSTIGA HUSET.

UPPGIFT 1 TVÅPOTENSER. UPPGIFT 2 HISSEN I LUSTIGA HUSET. UPPGIFT 1 TVÅPOTENSER. 2 ½ ¾ = 5575186299632655785383929568162090376495104 n = 142 är det minsta värde på n för vilket 2 Ò inleds med siffrorna 55. Uppgiften består i att skriva ett program som tar emot

Läs mer

UPPGIFT 1 FORTSÄTT TALFÖLJDEN

UPPGIFT 1 FORTSÄTT TALFÖLJDEN UPPGIFT 1 FORTSÄTT TALFÖLJDEN Att fortsätta en påbörjad talföljd är en vanlig sorts uppgift i såväl matteböcker som IQ-tester. Men det smartaste måste väl ändå vara att skriva ett datorprogram som löser

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

Uppgift 1 (Sorterade heltal som är OK)

Uppgift 1 (Sorterade heltal som är OK) 2013-03-12.kl.14-19 Uppgift 1 (Sorterade heltal som är OK) Ibland råkar man ut för att man måste se till att man inte får dubletter i sina inmatningar. Denna uppgift baserar sig på detta, men dessutom

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

Robotarm och algebra

Robotarm och algebra Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson 2010-12-07 Robotarm och algebra I denna laboration skall du lära dig lite mer om möjlighetera att rita ut mer avancerade

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2008-03-12.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Du skall skriva ett program som läser igenom en textfil som heter FIL.TXT och skriver ut alla rader där det står ett decimaltal först på raden. Decimaltal

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) Uppgift 1 ( Betyg 3 uppgift ) Skriv ett program, Draw_Hexagones, som ritar ut en bikupa enligt körexemplen nedan. Exempel 1: Mata in storlek på bikupan: 1 + / \ + + + + \ / + Exempel 3: Mata in storlek

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2005-06-09.kl.08-13 Uppgift 1 ( Betyg 3 uppgift ) Ett plustecken kan se ut på många sätt. En variant är den som ses nedan. Skriv ett program som låter användaren mata in storleken på plusset enligt exemplen

Läs mer

Uppgift 1 (grundläggande konstruktioner)

Uppgift 1 (grundläggande konstruktioner) Uppgift 1 (grundläggande konstruktioner) a) Skriv ett program som låter användaren mata in 7 heltal och som gör utskrifter enligt nedanstående körexempel. Mata in 7 heltal: 1 0 0 3 1 1 1 Tal nr 2 var en

Läs mer

Regler. Betygssättning

Regler. Betygssättning Regler Student får lämna salen tidigast en timme efter tentans start. Vid toalettbesök eller rökpaus ska pauslista utanför salen fyllas i. All form av kontakt mellan studenter under tentans gång är strängt

Läs mer

TDIU Regler

TDIU Regler Regler Student får lämna salen tidigast en timme efter tentans start. Vid toalettbesök eller rökpaus ska pauslista utanför salen fyllas i. All form av kontakt mellan studenter under tentans gång är strängt

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) Uppgift 1 ( Betyg 3 uppgift ) Skriv ett program, Draw_Hexagones, som ritar ut en bikupa enligt körexemplen nedan. Exempel 1: Mata in storlek på bikupan: 1 Exempel 3: Mata in storlek på bikupan: 3 \ / \

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

TDIU Regler

TDIU Regler Regler Student får lämna salen tidigast en timme efter tentans start. Vid toalettbesök eller rökpaus ska pauslista utanför salen fyllas i. All form av kontakt mellan studenter under tentans gång är strängt

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

UPPGIFT 1 TVETYDIGA DATUM

UPPGIFT 1 TVETYDIGA DATUM UPPGIFT 1 TVETYDIGA DATUM Datum skrivs på olika sätt i olika länder. Till exempel skulle datumet 03/05/01 i Sverige betyda 1 maj 2003, medan det i USA skulle vara 5 mars 2001 och i en del andra länder

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

Tentaupplägg denna gång

Tentaupplägg denna gång Några tips på vägen kanske kan vara bra. Tentaupplägg denna gång TIPS 1: Läs igenom ALLA uppgifterna och välj den du känner att det är den lättaste först. Det kan gärna ta 10-20 minuter. Försök skriva

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

Känguru 2017 Student gymnasiet

Känguru 2017 Student gymnasiet sid 1 / 9 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Rätt svar ger dig 3, 4 eller 5 poäng. Varje uppgift har endast ett rätt svar. Felaktigt

Läs mer

Tentaupplägg denna gång

Tentaupplägg denna gång Tentaupplägg denna gång Denna tenta är uppdelad i två olika varianter. Det är helt ok att använda vilken variant ni vill. Det är ok att byta mitt under tentan om man så vill också. Variant 1: Uppgift 1,

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

Tentaupplägg denna gång

Tentaupplägg denna gång Några tips på vägen kanske kan vara bra. Tentaupplägg denna gång TIPS 1: Läs igenom ALLA uppgifterna och välj den du känner att det är den lättaste först. Det kan gärna ta 10-20 minuter. Försök skriva

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

M onstertrubbel. till monstertrubbel

M onstertrubbel. till monstertrubbel M onstertrubbel Facit visar förslag på lösningar, men till vissa uppgifter hittar ni säkert även andra sätt att lösa problemen. F acit till monstertrubbel Det första monstret sitter inlåst i en trädkoja,

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem Avdelning 1, trepoängsproblem 1. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Var är kängurun? A: I cirkeln och i triangeln, men inte i kvadraten. B: I cirkeln

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula Facit åk 6 Prima Formula Kapitel 1 Omkrets och area Sidan 7 1 A och C 2 D och E 3 a G, H och J b I och J c J Sidan 8 4 a 1 b 1 c 1 d 4 5 A = 0 B = 2 C = 4 D = 2 6 a 8 0 8 b 1 0 1 c 3 8 3 d 1 3 8 F7 A B

Läs mer

UPPGIFT 1 V75 FIGUR 1.

UPPGIFT 1 V75 FIGUR 1. UPPGIFT 1 V75 FIGUR 1. Varje lördag året om spelar tusentals svenskar på travspelet V75. Spelet går ut på att finna sju vinnande hästar i lika många lopp. Lopp 1: 5 7 Lopp 2: 1 3 5 7 8 11 Lopp 3: 2 9 Lopp

Läs mer

4-4 Parallellogrammer Namn:..

4-4 Parallellogrammer Namn:.. 4-4 Parallellogrammer Namn:.. Inledning Hittills har du arbetat bl.a. med linjer och vinklar. En linje är ju någonting som bara har en dimension, längd. Men när två linjer skär varandra och det bildas

Läs mer

Programmering. Den första datorn hette ENIAC.

Programmering. Den första datorn hette ENIAC. Programmering Datorn är bara en burk. Den kan inget själv. Hur får man den att göra saker? Man programmerar den. Människor som funderar ut program som fungerar. Datorn förstår bara ettor och nollor och

Läs mer

Anmälningskod: Lägg uppgifterna i ordning. Skriv uppgiftsnummer (gäller B-delen) och din kod överst i högra hörnet på alla papper

Anmälningskod: Lägg uppgifterna i ordning. Skriv uppgiftsnummer (gäller B-delen) och din kod överst i högra hörnet på alla papper Tentamen Programmeringsteknik II 2018-10-19 Skrivtid: 8:00 13:00 Tänk på följande Skriv läsligt. Använd inte rödpenna. Skriv bara på framsidan av varje papper. Lägg uppgifterna i ordning. Skriv uppgiftsnummer

Läs mer

Detta är också en aktivitet som är enkel att variera genom att utgå från olika starttrianglar.

Detta är också en aktivitet som är enkel att variera genom att utgå från olika starttrianglar. Kaffe med matte De Kaffe med matte-uppgifter som finns i boken kan användas i vilken ordning som helst och förändras så de passar i olika sammanhang. Ett fåtal av uppgifterna har ett givet svar och till

Läs mer

Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7

Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7 Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7 Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 20 27 mars användas,

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

kl Tentaupplägg

kl Tentaupplägg entaupplägg IP 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

kl Examination - Ada

kl Examination - Ada Examination - Ada TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut

Läs mer

Känguru 2013 Cadet (åk 8 och 9) i samarbete med Jan-Anders Salenius vid Brändö gymnasium

Känguru 2013 Cadet (åk 8 och 9) i samarbete med Jan-Anders Salenius vid Brändö gymnasium sida 1 / 7 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt

Läs mer

Programmeringsolympiaden 2012 Kvalificering

Programmeringsolympiaden 2012 Kvalificering Programmeringsolympiaden 2012 Kvalificering TÄVLINGSREGLER Tävlingen äger rum på ett av skolan bestämt datum under sex timmar effektiv tid. Tävlingen består av sex uppgifter som samtliga ska lösas genom

Läs mer

UPPGIFT 1 VÄNSKAPLIGA REKTANGLAR

UPPGIFT 1 VÄNSKAPLIGA REKTANGLAR UPPGIFT 1 VÄNSKAPLIGA REKTANGLAR FIGUR 1. Dessa två rektanglar är vänskapliga. Den ena har samma mätetal för arean som den andra har för omkretsen och tvärtom. Rektangeln till vänster har omkretsen 2 4

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift

Läs mer

Resurscentrums matematikleksaker

Resurscentrums matematikleksaker Resurscentrums matematikleksaker Aktiviteter för barn och vuxna Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den snåle grosshandlarens våg 6 4 Tornen

Läs mer

Känguru 2012 Junior sivu 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

Känguru 2012 Junior sivu 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet Känguru 2012 Junior sivu 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

Det är principer och idéer som är viktiga. Skriv så att du övertygar rättaren om att du har förstått dessa även om detaljer kan vara felaktiga.

Det är principer och idéer som är viktiga. Skriv så att du övertygar rättaren om att du har förstått dessa även om detaljer kan vara felaktiga. Tentamen Programmeringsteknik II 2014-0-27 Skrivtid: 0800 100 Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja alltid ny uppgift på nytt papper. Lägg

Läs mer

Lutande torn och kluriga konster!

Lutande torn och kluriga konster! Lutande torn och kluriga konster! Aktiviteter för barn under Vetenskapsfestivalens skolprogram 2001 Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den

Läs mer

DUGGA Tentaupplägg

DUGGA Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

Pangea Matematiktävling FRÅGEKATALOG. Första omgång 2016 Årskurs 9

Pangea Matematiktävling FRÅGEKATALOG. Första omgång 2016 Årskurs 9 Pangea Matematiktävling FRÅGEKATALOG Första omgång 2016 Årskurs 9 Pangea Regler & Instruktioner Svarsblankett - Vänligen fyll i förnamn, efternamn och årskurs på svarsblanketten. -Vi rekommenderar deltagarna

Läs mer

Tentamen. 2D4135 vt 2004 Objektorienterad programmering, design och analys med Java Torsdagen den 3 juni 2004 kl 9.00 14.

Tentamen. 2D4135 vt 2004 Objektorienterad programmering, design och analys med Java Torsdagen den 3 juni 2004 kl 9.00 14. Tentamen 2D4135 vt 2004 Objektorienterad programmering, design och analys med Java Torsdagen den 3 juni 2004 kl 9.00 14.00, sal D31 Tentan har en teoridel och en problemdel. På teoridelen är inga hjälpmedel

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem Avdelning 1, trepoängsproblem 1. I ett akvarium finns det 00 fiskar varav 1 % är blå medan övriga är gula. Hur många gula fiskar måste avlägsnas från akvariet för att de blå fiskarna ska utgöra % av alla

Läs mer

Känguru 2019 Student gymnasiet

Känguru 2019 Student gymnasiet sida 0 / 7 NAMN GRUPP Poängsumma: Känguruskutt: Kod (läraren fyller): Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Ett rätt svar ger 3, 4 eller 5 poäng. I varje uppgift är exakt

Läs mer

Programmeringsuppgift Game of Life

Programmeringsuppgift Game of Life CTH/GU STUDIO TMV06a - 0/0 Matematiska vetenskaper Programmeringsuppgift Game of Life Analys och Linär Algebra, del A, K/Kf/Bt Inledning En cellulär automat är en dynamisk metod som beskriver hur komplicerade

Läs mer

A: måndag B: tisdag C: onsdag D: torsdag E: fredag. Vilken av följande bitar behöver vi för att det ska bli ett rätblock?

A: måndag B: tisdag C: onsdag D: torsdag E: fredag. Vilken av följande bitar behöver vi för att det ska bli ett rätblock? Trepoängsproblem 1 Doris gör en skylt till djurparken. På skylten ska det stå ordet KÄNGURUR. Hon målar en bokstav varje dag. Hon målar den första på en onsdag. Vilken dag kommer hon att måla den sista

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg Allmänna Tips Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre

Läs mer

DUGGA Tentaupplägg

DUGGA Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

2. Förkorta bråket så långt som möjligt 1001/

2. Förkorta bråket så långt som möjligt 1001/ Nästan vanliga tal 1. Beräkna1 2+3 4+5 2000+2001 Lösning. 1 + ( 2 + 3) + ( 4 + 5) +... + ( 2000 + 2001) = 1+ 142 +... 43 + 1 = 1001 2. Förkorta bråket så långt som möjligt 1001/10000001 1000 gnr Lösning.

Läs mer

Flera våningar. ArchiCAD 16. Delmoment:! Skapa nya våningsplan, kopiera och klistra in i våningsplan,

Flera våningar. ArchiCAD 16. Delmoment:! Skapa nya våningsplan, kopiera och klistra in i våningsplan, ArchiCAD 16 Övningsuppgift 4 Flera våningar Delmoment:! Skapa nya våningsplan, kopiera och klistra in i våningsplan, sätta in trappor, göra hål i bjälklag, placera ut räcken. 2013 www.cadedu.se! Med kopieringsrätt

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

Mer om funktioner och grafik i Matlab

Mer om funktioner och grafik i Matlab CTH/GU 2/22 Matematiska vetenskaper Inledning Mer om funktioner och grafik i Matlab Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och cosinus

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Tenta (TEN3) i kursen 729G04 Programmering och diskret matematik 5 feb 2016, kl 14:00-18:00

Tenta (TEN3) i kursen 729G04 Programmering och diskret matematik 5 feb 2016, kl 14:00-18:00 1 ( 7) Tenta (TEN3) i kursen 729G04 Programmering och diskret matematik 5 feb 2016, kl 14:00-18:00 Tillåtna hjälpmedel: Dator, penna, papper, linjal, suddgummi, godkänd(a) bok/böcker/kompendier (ej anteckningar,

Läs mer

TDDI TDDI22 Tentaregler

TDDI TDDI22 Tentaregler Inloggning TDDI22 Tentaregler Logga in i tentasystemet genom att välja session exam system och logga in med ditt vanliga LiU- ID. Välj inte att ha denna session som standardsession. Verifiera att dina

Läs mer

Anmälningskod: Lägg uppgifterna i ordning. Skriv uppgiftsnummer (gäller B-delen) och din kod överst i högra hörnet på alla papper

Anmälningskod: Lägg uppgifterna i ordning. Skriv uppgiftsnummer (gäller B-delen) och din kod överst i högra hörnet på alla papper Tentamen Programmeringsteknik I 2017-10-23 Skrivtid: 0800 1300 Tänk på följande Skriv läsligt. Använd inte rödpenna. Skriv bara på framsidan av varje papper. Lägg uppgifterna i ordning. Skriv uppgiftsnummer

Läs mer

Värmedistribution i plåt

Värmedistribution i plåt Sid 1 (6) Värmedistribution i plåt Introduktion Om vi med konstant temperatur värmer kanterna på en jämntjock plåt så kommer värmen att sprida sig och temperaturen i plåten så småningom stabilisera sig.

Läs mer

TDP Regler

TDP Regler Regler Student får lämna salen tidigast en timme efter tentans start. Vid toalettbesök eller rökpaus ska pauslista utanför salen fyllas i. All form av kontakt mellan studenter under tentans gång är strängt

Läs mer

Trepoängsproblem. Kängurutävlingen 2011 Cadet. 1 Vilket av följande uttryck har störst värde? 1 A: B: C: D: E: 2011

Trepoängsproblem. Kängurutävlingen 2011 Cadet. 1 Vilket av följande uttryck har störst värde? 1 A: B: C: D: E: 2011 Trepoängsproblem 1 Vilket av följande uttryck har störst värde? 1 A: 2011 1 B: 1 2011 C: 1 2011 D: 1 + 2011 E: 2011 2 Övergångsställen är markerade med vita och svarta streck som är 50 cm breda. Markeringen

Läs mer

Känguru 2017 Benjamin (åk 6 och 7)

Känguru 2017 Benjamin (åk 6 och 7) sivu 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Ett korrekt svar ger 3, 4 eller 5 poäng. Varje uppgift har endast ett korrekt svar.

Läs mer

När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt.

När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt. "!$#"%'&)(*,&.-0/ 177 Syftet med denna övning är att ge en introduktion till hur man arbetar med programsystemet MATLAB så att du kan använda det i andra kurser. Det blir således inga matematiska djupdykningar,

Läs mer

Kvalificeringstävling den 28 september 2010

Kvalificeringstävling den 28 september 2010 SKOLORNS MTEMTIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 28 september 2010 Förslag till lösningar Problem 1 En rektangel består av nio smårektanglar med areor (i m 2 ) enligt figur

Läs mer

Känguru 2017 Cadet (åk 8 och 9) i samarbete med Jan-Anders Salenius (Brändö gymnasium)

Känguru 2017 Cadet (åk 8 och 9) i samarbete med Jan-Anders Salenius (Brändö gymnasium) sivu 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Ett korrekt svar ger 3, 4 eller 5 poäng. Varje uppgift har endast ett korrekt svar.

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) Uppgift 1 ( Betyg 3 uppgift ) I filerna queue_handling.ads och queue_handling.adb finns en datastruktur som motsvarar en kö. Det finns fyra operationer som kan utföras på en kö. 1) Enqueue som stoppar

Läs mer

TDDI22 (exempel) TDDI22 Tentaregler

TDDI22 (exempel) TDDI22 Tentaregler Inloggning TDDI22 Tentaregler Logga in i tentasystemet genom att välja session exam system och logga in med ditt vanliga LiU- ID. Välj inte att ha denna session som standardsession. Verifiera att dina

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

Logik och Jämförelser. Styrsatser: Villkorssatsen if och repetitonssatsen for. Scriptfiler. Kommentarer. Tillämpningar: Ett enkelt filter.

Logik och Jämförelser. Styrsatser: Villkorssatsen if och repetitonssatsen for. Scriptfiler. Kommentarer. Tillämpningar: Ett enkelt filter. TAIU07 Föreläsning 3 Logik och Jämförelser. Styrsatser: Villkorssatsen if och repetitonssatsen for. Scriptfiler. Kommentarer. Tillämpningar: Ett enkelt filter. 27 januari 2016 Sida 1 / 21 Logiska variabler

Läs mer

Känguru 2018 Student gymnasieserien i samarbete med Jan-Anders Salenius (Brändö gymnasium)

Känguru 2018 Student gymnasieserien i samarbete med Jan-Anders Salenius (Brändö gymnasium) sida 0 / 9 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Ett rätt svar ger 3, 4 eller 5 poäng. I varje uppgift är exakt ett svar korrekt. Felaktigt

Läs mer

Linköpings Tekniska Högskola Instutitionen för Datavetenskap (IDA) Torbjörn Jonsson, Erik Nilsson Lab 2: Underprogram

Linköpings Tekniska Högskola Instutitionen för Datavetenskap (IDA) Torbjörn Jonsson, Erik Nilsson Lab 2: Underprogram Mål Lab 2: Underprogram Följande laboration introducerar underprogram; procedurer, funktioner och operatorer. I denna laboration kommer du att lära dig: Hur man skriver underprogram och hur dessa anropas.

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2010-04-10 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGc Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Känguru 2018 Mini-Ecolier (åk 2 och 3)

Känguru 2018 Mini-Ecolier (åk 2 och 3) sida 0 / 6 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Ett rätt svar ger 3, 4 eller 5 poäng. I varje uppgift är exakt ett svar korrekt.

Läs mer