Grunderna i MATLAB. Beräkningsvetenskap och Matlab

Storlek: px
Starta visningen från sidan:

Download "Grunderna i MATLAB. Beräkningsvetenskap och Matlab"

Transkript

1 Grunderna i MATLAB Beräkningsvetenskap I Beräkningsvetenskap och Matlab n Matlab är ett matematiskt verktyg och programmeringsmiljö som används inom beräkningsvetenskap men även inom andra områden. n En enkel miljö för att snabbt testa idéer och för att studera resultat n Finns även andra verktyg, t ex FreeMat, Maple, Mathematica, Comsol MultiPhysics, och andra programmeringsspråk som C/C++, Fortran, Java 1

2 Vad är MATLAB? n Utvecklat av MathWorks, Inc. n Första versionen klar i slutet av 70-talet n Ursprungligen MATrix LABoratory. n Matematisk labbmiljö för Numeriska beräkningar Grafik Programmering n Många kraftfulla fördefinierade funktioner med möjlighet att definiera egna. n Eget programmeringsspråk. Samverkan med andra språk C/C++, Java möjlig. Vad är MATLAB? n Över 25 tilläggsprogram (toolboxar) finns för speciella tillämpningsområden, t ex: signalbehandling bildbehandling statistik symbolisk matematik finansiell matematik Partiella differentialekvationer Parallella beräkningar n Körs under UNIX/Linux, Windows eller Macintosh. 2

3 Användningsområden n Undervisning: matematik (särskilt linjär algebra), beräkningsvetenskap, fysik, kemi, teknik, ekonomi etc n Forskning: labbmiljö för att testa lösningmetoder, studera, analysera problem, utföra beräkningar och visualisera resultat n Industrin: används på samma sätt som inom forskning exemplevis på utvecklingsavdelningar. T ex inom bioteknik, elektronik, bilindustri etc MATLAB-miljön n Utvecklingsmiljön (MATLAB desktop) har ett flertal fönster, Command window, Current folder, Workspace och Command History. 3

4 MATLAB-miljön n MATLAB styrs vanligen från kommandofönstret (Command Window) men även från menyerna. n Kommandon ges efter»-promptern och utförs när return-tangenten tryckts ned. n Exempel: n Avsluta matlab: >> ans = 61 >> exit MATLAB-miljön n I kommandofönstret kan man arbeta interaktivt som en avancerad miniräknare. Semikolon undertrycker utskrift. Om inget variabelnamn anges läggs variabeln i ans (=answer) >> a = 75 a = 75 >> b = 34; >> c = a*b c = 2550 >> a+b ans = 109 4

5 MATLAB-miljön n Hjälp fås via menyn Help n Men även att skriva demo i kommandofönstret ger information om hur man använder Matlab MATLAB-miljön Hjälp för enstaka kommandon kan göras direkt i kommandofönstret >> help kommando Ex) Vad gör kommandot exit? >> help exit EXIT Exit from MATLAB. EXIT terminates MATLAB. 5

6 Variabler i MATLAB En variabel i MATLAB n kan ses som behållare som innehåller ett värde av en viss typ (heltal, rella tal, text, ) n har alltid ett namn Måste börja på bokstav. Använd ej å, ä, ö, space, bindestreck (minus), plustecken etc i namnet n kan tilldelas ett värde n skapas när de behövs, utan speciell deklaration (är av typen matris ). n kan vara fördefinierad, t ex pi >> a = 3 a = 3 >> pi ans = Variabler i MATLAB n Variablerna visas i delfönstret Workspace n Kommandona du skrivit visas i Command History 6

7 Variabler i MATLAB n Kan även lista variabler i kommandofönstret med kommando who, whos >> who Your variables are: a ans >> whos Name Size Bytes Class a 1x1 8 double array ans 1x1 8 double array Grand total is 2 elements using 16 bytes Variabler i MATLAB n Variabler kan skrivas ut i olika format >> y = sin(2*pi/3); >> y y = >> format long; y y = >> format long e; y y = e- 001 Observera att noggrannheten är lika, det är bara själva utskriften som ändras. >> format short e; y y = e-001 >> format short; y y = % Standardformat åter e-001 betyder

8 Variabler i MATLAB n Variabler kan sparas på fil och laddas upp vid annan MATLAB-session senare. n I menyn används knapparna Spara Ladda upp n Variabler sparas då som s k MAT-filer, filer med ändelsen.mat n MAT-filer kallas binära och är ej läsbara eller editerbara. n Kan också använda save och load kommandot på motsvarande sätt i kommandofönstret. Spara och hämta variabler n Knappen Import Data kan användas för att ladda in andra format t ex spreadsheets (excel), ljudfiler, filmfiler, etc. n Välj filformat i det fönster som öppnas efter klickat på knappen 8

9 Funktioner Det finns mängder av fördefinierade funktioner, t.ex. för n elementär matematik n linjär algebra n grafik i 2D och 3D n integraler och differentialekvationer n statistik n Kurvanpassning Exempel: abs(x),sqrt(x),sin(x),log(x),log10(x), (Help -> Documentation -> Matlab -> Mathematics) Det finns många Toolboxar med specialiserade funktioner och man kan skapa sina egna. Matriser n Matrisen är den grundläggande datatypen. n En tvådimensionell matris är en tabell med rader och kolonner. n En matris med m rader och n kolonner har storleken m n (m gånger n). n Vektorer är specialfall av matriser, då antal rader eller antal kolonner är 1. Exempel: radvektor, 1 n, och kolonnvektor, m 1. n En matris av storlek 1 1 kallas skalär (vanligt tal). n Varje värde i matrisen kallas element. 9

10 Vektorer Kolonnvektor och radvektor i MATLAB Semikolon i vektorer ger radbyte >> vkol = [ 1; 2; 3; 4; 5 ] >> vrad = [ ], x = 3 vkol = % Kolonnvektor vrad = % Radvektor x = % Skalär 3 Vektorer Ändra enskilda element >> vrad(1) = -1.1; vrad(2) = 3.5; >> vrad vrad = >> vkol = vrad' %transponera vkol = vrad(1) anger att index 1 (position 1) ska tilldelas Tecknet betyder transponat 10

11 Generera vektorer n Kolonnotation används ofta för att skapa vektorer startvärde:steglängd:slutvärde om steglängd=1 kan det utelämnas >> vektor = 0:5 vektor = >> vektor2 = 0.0:0.05:2.0 vektor2 = Generera vektorer Kommandot linspace skapar också vektorer linspace(startvärde,slutvärde,antal_steg) >> v = linspace(0,2,10) v = Dessa två metoder används t ex när man skapar x-axlar vid grafik och vid numeriska beräkningar (diskretisering av x-axeln). 11

12 Hur skapas en matris? Skapa 1 A = Semikolon eller retur i matrisen ger radbyte Semikolon efter hela uttrycket undertrycker utskrift >> A = [1 7; 5 3]; >> A A = >> A = [ ] A = Matris elementvis 1 7 A = 5 3 >> A(1,1)=1; A(1,2)=7; >> A(2,1)=5; A(2,2)=3; >> A A =

13 Speciella matriskommandon n Finns inbyggda funktioner för att skapa vanliga (och ovanliga) matriser n Kan skapa mer avancerade matriser genom kombinationer eye(n) enhetsmatrisen ones(m,n) ett-matris zeros(m,n) noll-matris rand(m,n) slumpmatris + ett stort antal andra >> B = ones(2,3) B = >> eye(2) ans = >> C = zeros(2,2) C = Element, rader och kolonner n Man kan arbeta med enskilda element, rader, kolonner, submatriser >> A(2,1) ans = 5 Kolon (:) betecknar hel rad respektive hel kolonn >> A(2,:) ans = 5 3 >> A(2,:) = [0 0] A =

14 Delmatriser, kolon-notation Delmatriser till matrisen A, m n kan skapas snabbt med kolon-notation n A(:,j) j:te kolonnen av A n A(i,:) i:te raden av A n A(i:k,j:m) delmatris, rader i-k och kol j-m A = >> B = A(2:3,1:2) B = Exempel Plocka ut denna delmatris Workspace och Array Editor n Om man dubbelklickar på en variabel i delfönstret Workspace så öppnas ett nytt fönster, Array Editor Dubbelklicka på en variabel i Workspace n Kan man ändra variabelvärde men även storlek. 14

15 Bestämma storlek och längd >> A = [1 7; 5 3] >> vkol = [ 1; 2; 3; 4; 5 ] >> size(a), size(vkol), length(vkol) ans = 2 2 ans = 5 1 ans = 5 Matrisoperationer, aritmetiska n Matematiska operationer på matriser kan göras direkt, C = sin(a); och fungerar då elementvis n Addition/subtraktion OK om samma storlek, t ex C = A + B, där A och B är m n n Matrismultiplikation, C = A*B, fungerar bara om antal kolonner i A är samma som antal rader i B n Matrisdivision, C=A/B, betyder C=A*inv(B) \ (backslash) är speciell, t ex x=a\b ger lösning till linjärt ekvationssystem / används vanligen inte i matrissammanhang 15

16 Matrisalgebra Vad händer om storlekarna inte stämmer? >> A=[1,7;5,3]; >> x = [2; 1]; >> A*x ans = Ax = men xa = 1 5 fungerar inte >> x*a??? Error using ==> * Inner matrix dimensions must agree. är OK, 7 3 Vanliga räkneregler för matriser/vektorer gäller! Elementvisa operationer n Operationer, t ex *,/,^ kan även utföras elementvis Exempel: B^2 = B*B men B.^2 = b b b b >> B = [1 7;5 3]; >> B^2 ans = >> B.^2 ans =

17 Elementvisa operationer n På samma sätt är B*C vanlig matrismultiplikation mellan två matriser medan B.*C = b11c b21c n Ibland kan detta generera fel b b c c >> a = [2 4]; >> a.^2 ans = >> a^2 4 16??? Error using ==> ^ Matrix must be square. Linjära ekvationssystem n Backslash-operatorn, \ Används för att lösa ekvationssystem, Ax=b >> A = [-2 4;2 5]; b=[1;2]; >> x = A\b x = n Är en intelligent operator som ändrar metod efter vilket problem som ska lösas. Om vi har ett triangulärt system utförs framåt- resp bakåtsubstitution, dvs den utnyttjar strukturen på ekvationssystemet och utför pivotering där så behövs. 17

18 Komplexa tal n Komplexa tal kan skapas med complex >> z = complex(1.2, 2.5) z = i n eller i en beräkning >> z = sqrt(-2) z = i Komplexa tal n Givetvis fungerar vektorer >> z = complex([1.2 3],[-1 2.5]) z = i i n Speciella funktioner real(z) ger realdelen av z imag(z) ger imaginärdelen av z conj(z) konjugatet till z abs(z) - absolutbeloppet av z angle(z)- fasvinkeln i radianer 18

19 Enkel grafik (2D) n Gången när något ska plottas är Skapa en horisontell axel (x-axel) Beräkna funktionsvärden (y-axel) Plotta x mot y, plot(x,y) Spara figuren för att inkludera in en rapport senare (finns olika filformat, se help print ) >> x = linspace(0,2*pi,50); >> y = cos(x)+sin(x); >> plot(x,y) >> print djpeg minfig.jpg Enkel grafik (2D) n X-axel skapas genom x = linspace(x0,x1,antal_pkt); eller x = [x0:steglangd:x1]; n Plotkommandot kan utvidgas på många olika sätt, t ex (gör help plot ) >> plot(x,cos(x), -,x,sin(x), o ) Alternativt: >> plot(x,cos(x), - ) >> hold on; >> plot(x,sin(x), go ) 19

20 Enkel grafik (2D) Exempel:Plotta funktionen y=sin(x 2 ) i intervallet x=[0,5] med steg av 0.05 och använd en blå streckad linje och * som punktmarkeringar i datapunkterna. >> x=0:0.05:5; >> y=sin(x.^2); >> plot(x,y, b--* ); Enkel grafik, histogram n bar(x,y) eller bar(y) n bar(a, stacked ), bar(a, grouped ) n bar3(a) [A är en 6x3 matris nedan]! 20

21 Enkel grafik, tårtdiagram n pie(x), pie3(x) n pie3(x,utdrag,{ Bit 1, Bit 2, }) 3D-grafik n I 3D har man x, y och z-axel n Givet x-axel och y-axel måste man skapa x- värden för alla y-värden, och y-värden för alla x- värden, ett nät. Detta görs med kommandot meshgrid 21

22 3D-grafik Antag att f ( x, y) = xe 2 2 x y ska plottas i figuren n Axlarna i bilden fås genom n Nätet skapas genom n Funktionsvärdena beräknas för varje x och y- värde! >> x = 0:0.1:1; y = 0:0.2:1; >> [X, Y] = meshgrid(x,y); >> Z = X.* exp(-x.^2 - Y.^2); 3D-grafik n Slutligen plotta! >> mesh(x,y,z); 22

23 3D-grafik n Lite bättre upplösning om man ökar antalet punkter i x och y-led! >> x=linspace(0,1,50); y=linspace(0,1,50); >> [X,Y] = meshgrid(x,y); >> Z = X.* exp(-x.^2 - Y.^2); >> mesh(x,y,z); 3D-grafik n Byt mesh mot surf så fås en yta! >> surf(x,y,z); 23

24 3D-grafik n Ta bort rutnätet! >> shading( interp ); Exempel: Plotta Twin-peaks funktionen z=(x 2 +3y 2 )e (1-x*x-y*y), x=[-2,2], y=[-2,2] >> x=linspace(-2,2,50);y=linspace(-2,2,50); >> [X,Y]=meshgrid(x,y); >> Z=(X.^2+3*Y.^2).*exp(1-X.^2-Y.^2); >> surf(x,y,z); shading('interp'); 24

25 3D-grafik n Nivålinjer! >> contour(x,y,z,20); >> contour3(x,y,z,20); Grafik-fönstret n Använd menyerna i grafikfönstret för att rotera, zooma, flytta synvinklar, ändra linjetyper, lägga till text, ändra färgskalor, etc. 25

26 Spara kommandon i M-filer n En kommandofil är ett sätt att lagra kommandon som annars skulle skrivas interaktivt i kommandofönstret n Genom att köra filen så exekveras (utförs) alla kommandon i filen och resultat visas i kommandofönstret (eller grafikfönstret) n Ändelse på kommandofil måste vara.m, t ex minfil.m OBS! Fördel att lagra kod i fil vid inlämningsuppgifter. Filen (=koden) kan ju då redovisas. Spara kommandon i M-filer n M-filer skapas enklast i MATLABs editor skriv edit i kommandofönstret Eller klicka på New Script i menyn n Ett nytt fönster med en editor öppnas där man kan skriva in sina kommandon 26

27 Spara kommandon i M-filer n Matlabs editor n Skriv in kommandona precis på samma sätt som i kommandofönstret Spara kommandon i M-filer n Spara filen! Viktigt att ha kontroll på i vilken katalog m-filen sparas. 27

28 Observera att arbetskatalogen och katalogen där filen lagras måste stämma överens annars hittar inte Matlab filen och kan inte köra den. Klicka på mapparna i Current Folder eller på sökvägen i menyraden för att byta arbetskatalog. Spara kommandon i M-filer n Kör koden, dvs utför de kommandon som skrivits in genom ett av alternativen i kommandofönstret, skriva filnamnet utan ändelse (.m) >> MinFil kör koden i filen MinFil.m i editorn, klicka på run-knappen 28

29 Spara kommandon i M-filer Ett litet exempel MATLABs editor öppnas och följande kod skrivs in % Lisas ritprogram, LisasFil.m x0 = 0; x1 = 2*pi; n = 100; x = linspace(x0, x1, n); y = sin(x); plot(x,y); Spara kommandon i M-filer n Spara koden och skriv i kommandofönstret >> LisasFil n Koden körs då och ger resultatet Ex: plotta3d.m sphere.m 29

30 Text (textsträngar) n Text skrivs innanför apostrofer, dvs '' >> namn = 'Nisse'; >> utrop = ['Hej ' namn '!'] utrop = Hej Nisse! >> namn(2) = 'a' namn = Nasse n Exemplet visar att texter (textsträngar) fungerar som radvektorer med indexering. n Observera att man sammanfogar flera textbitar med hakparenteserna. Text När behövs textsträngar? n För att göra snyggare utskrifter av resultat Exempel Givet en vektor x skriv ut största elementet >> maxi = max(x); >> disp(['maxvärdet är = num2str(maxi)]); Maxvärdet är = disp skriver ut det den textsträng som står innanför parentesen num2str omvandlar från numeriskt värde till sträng 30

31 Text När behövs textsträngar? n T ex för att ha texter på axlarna i bilder, som skapats med plot-kommandot >> x = linspace(0,3*pi,50); y = sin(x); >> plot(x,y); >> title( Sinus mellan 0 till 3\pi ); >> xlabel( x ); ylabel( sin(x) ); \pi i en textsträng är s k LaTeX-syntax och kan användas för att skriva matematisk text Resultatet... Text...blir det här title(...) ylabel(...) xlabel(...) 31

32 Text När behövs textsträngar? n Inläsning av värde till variabel med ledtext Om x = input('ge ett tal'); läggs i en kommandofil blir resultatet när filen körs utskriften Ge ett tal: Markören står nu och väntar vid kolontecknet på att den som kör skall ge ett tal. Detta tal tilldelas sedan variabeln x. Ex: plotta3d_v2.m Några små tips n Piltangent återkallar tidigare kommandon, skriv början på kommandot och använd pilen. n kan också använda delfönstret command history Dubbelklicka på ett kommando för att upprepa (inkl utföra) kommandot Markera kommandot med musen, dra och släpp i kommandofönstret. Kommandot utförs ej utan man trycker på return för att utföra. Kan på det sättet ändra i kommandot innan utförande. 32

33 Några små tips n ctrl-c avbryter körningen av ett kommando (men stoppar inte MATLAB) n diary kan användas för att spara skärmutskrifter i en fil >> diary uppg1.txt diverse kommandon här >> diary off % stänger diary Allt som skrivs på skärmen mellan diary och diary off hamnar nu i filen uppg1.txt. Lämpligt att använda för att redovisa körexempel i inlämningsuppgifter t ex. Sammanfattning n MATLAB-miljön Command Window (arbetsfönster), Current Folder (filer), Workspace (variabler), Command History (tidigare kommandon) n Variabler i MATLAB Lagrar värden, skapas vid tilldelning, x=3.22; z=1e-20; Kommandon: whos, save, load, format n Matematiska funktioner och beräkningar Matlab fungerar som en avancerad miniräknare +, -, *, /, ^, sqrt(x), sin(x), log(x), exp(x), etc. n Vektorer och matriser A=[ 2 3; 2 1 ]; A(1,2)=4; A(2,:)=[ 3 4 ]; x=linspace(xstart,xstop,nstep); x=xstart:dx:xstop; length, size, zeros, ones, eye, rand, lu(a); x=a\b,.*,./,.^ 33

34 Sammanfattning n Grafik plot(x,y, r-* ), xlabel, ylabel, title, bar, pie, hold on, clf, print djpeg fig.jpg meshgrid, mesh, surf, shading, contour, contour3 n Textsträngar text= Hej ; text2=[text alla! ]; text2(2)= o ; disp(text), text=num2str(x) n Kommandofiler (M-filer) Alla kommandon kan sparas i en M-fil och köras som ett enkelt program. Kommandona utförs en i taget i ordning. Kommandofiler har ändelsen.m (LisasFil.m) och körs med Runknappen eller genom att skriva filnamnet i kommandofönstret. n Annat nyttigt exit, help, demo, diary, ctrl-c, input, piltangenten 34

Grunderna i MATLAB. Beräkningsvetenskap och Matlab

Grunderna i MATLAB. Beräkningsvetenskap och Matlab Grunderna i MATLAB Beräkningsvetenskap I Beräkningsvetenskap och Matlab n Matlab är ett matematiskt verktyg och programmeringsmiljö som används inom beräkningsvetenskap men även inom andra områden (matematik,

Läs mer

Matriser. Vektorer. Grunderna i MATLAB 2. Informationsteknologi. Informationsteknologi.

Matriser. Vektorer. Grunderna i MATLAB 2. Informationsteknologi. Informationsteknologi. Grunderna i MATLAB 2 stefan@it.uu.se Matriser Matrisen är den grundläggande datatypen. En tvådimensionell matris är en tabell med rader och kolonner. En matris med m rader och n kolonner har storleken

Läs mer

Matriser. Vektorer. Forts. Grunderna i MATLAB. Informationsteknologi. Informationsteknologi.

Matriser. Vektorer. Forts. Grunderna i MATLAB. Informationsteknologi. Informationsteknologi. Forts. Grunderna i MATLAB eva@it.uu.se Matriser Matrisen är den grundläggande datatypen. En tvådimensionell matris är en tabell med rader och kolonner. En matris med m rader och n kolonner har storleken

Läs mer

Grunderna i MATLAB. Beräkningsvetenskap och Matlab

Grunderna i MATLAB. Beräkningsvetenskap och Matlab Grunderna i MATLAB Beräkningsvetenskap I Beräkningsvetenskap och Matlab n Matlab är ett verktyg och programmeringsmiljö som används inom beräkningsvetenskap men även inom andra områden. n Finns även andra

Läs mer

Vad är MATLAB? Vad är MATLAB? Vad är MATLAB? Användningsområden. Att börja använda MATLAB. Informationsteknologi. Grunderna i MATLAB

Vad är MATLAB? Vad är MATLAB? Vad är MATLAB? Användningsområden. Att börja använda MATLAB. Informationsteknologi. Grunderna i MATLAB Vad är MATLAB? Grunderna i MATLAB Utvecklat av MathWorks, Inc. http://www.mathworks.com Första versionen klar i slutet av 70-talet Ursprungligen MATrix LABoratory. Matematisk labbmiljö för Numeriska beräkningar

Läs mer

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Vad är MATLAB? Användningsområden. Informationsteknologi. Grunderna i MATLAB

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Vad är MATLAB? Användningsområden. Informationsteknologi. Grunderna i MATLAB Beräkningsvetenskap och Matlab Grunderna i MATLAB Beräkningsvetenskap I Matlab är ett verktyg och programmeringsmiljö som används inom beräkningsvetenskap men även inom andra områden. Finns även andra

Läs mer

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi.

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi. Grunderna i MATLAB stefan@it.uu.se Innehåll Vad är MATLAB? Användningsområden MATLAB-miljön Variabler i MATLAB Funktioner i MATLAB Exempel och smakprov: Grafik Beräkningar Bilder GUI Vad är MATLAB? Utvecklat

Läs mer

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Vad är MATLAB? Användningsområden. Informationsteknologi. Informationsteknologi

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Vad är MATLAB? Användningsområden. Informationsteknologi. Informationsteknologi Beräkningsvetenskap och Matlab n Beräkningsvetenskap == Matlab? Grunderna i MATLAB Beräkningsvetenskap I/KF n Nej, Matlab är ett verktyg som används inom beräkningsvetenskap n Finns även andra verktyg,

Läs mer

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi.

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi. Grunderna i MATLAB eva@it.uu.se Innehåll Vad är MATLAB? Användningsområden MATLAB-miljön Variabler i MATLAB Funktioner i MATLAB Eempel och smakprov: Grafik Beräkningar Bilder GUI Vad är MATLAB? Utvecklat

Läs mer

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab?

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab? Beräkningsvetenskap och Matlab Beräkningsvetenskap == Matlab? Grunderna i Matlab Beräkningsvetenskap I Institutionen för, Uppsala Universitet 1 november, 2011 Nej, Matlab är ett verktyg som används inom

Läs mer

Vad är MATLAB? Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi.

Vad är MATLAB? Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi. Grunderna i MATLAB stefan@it.uu.se Vad är MATLAB? Utvecklat av MathWorks, Inc. http://www.mathworks.com Första versionen klar i slutet av 70-talet Matematisk labbmiljö för Numeriska beräkningar Grafik

Läs mer

Vad är MATLAB? Användningsområden. Var kan man köra MATLAB? MATLAB-miljön: avsluta. MATLAB-miljön: Start. Informationsteknologi. Grunderna i MATLAB

Vad är MATLAB? Användningsområden. Var kan man köra MATLAB? MATLAB-miljön: avsluta. MATLAB-miljön: Start. Informationsteknologi. Grunderna i MATLAB Vad är MATLAB? Grunderna i MATLAB stefan@it.uu.se Utvecklat av MathWorks, Inc. http://www.mathworks.com Ursprungligen MATrix LABoratory. Första versionen klar i slutet av 70-talet Matematisk labbmiljö

Läs mer

Innehåll. Vad är MATLAB? Vad är MATLAB? Informationsteknologi. Grunderna i MATLAB. Informationsteknologi. Informationsteknologi. Vad är MATLAB?

Innehåll. Vad är MATLAB? Vad är MATLAB? Informationsteknologi. Grunderna i MATLAB. Informationsteknologi. Informationsteknologi. Vad är MATLAB? Innehåll Vad är MATLAB? Grunderna i MATLAB stefan@it.uu.se Användningsområden MATLAB-miljön Variabler i MATLAB Funktioner i MATLAB Vektorer, matriser, linjära ekv system Enkel D-grafik Spara i m-filer

Läs mer

MATLAB Matrix laboratory

MATLAB Matrix laboratory MATLAB Matrix laboratory Utvecklat av MathWorks Inc Introduktion till MATLAB Stefan@it.uu.se Utvecklat av MathWorks, Inc Första versionen klar i slutet av 70-talet Matematisk labmiljö för Numeriska beräkningar

Läs mer

MATLAB the Matrix Laboratory. Introduktion till MATLAB. Martin Nilsson. Enkel användning: Variabler i MATLAB. utvecklat av MathWorks, Inc.

MATLAB the Matrix Laboratory. Introduktion till MATLAB. Martin Nilsson. Enkel användning: Variabler i MATLAB. utvecklat av MathWorks, Inc. Introduktion till MATLAB Martin Nilsson Avdelningen för teknisk databehandling Institutionen för informationsteknologi Uppsala universitet MATLAB the Matrix Laboratory utvecklat av MathWorks, Inc. Matematisk

Läs mer

Laboration: Grunderna i Matlab

Laboration: Grunderna i Matlab Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt

Läs mer

Beräkningsverktyg HT07

Beräkningsverktyg HT07 Beräkningsverktyg HT07 Föreläsning 1, Kapitel 1 6 1.Introduktion till MATLAB 2.Tal och matematiska funktioner 3.Datatyper och variabler 4.Vektorer och matriser 5.Grafik och plottar 6.Programmering Introduktion

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB 29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna

Läs mer

Datorövning 1: Introduktion till MATLAB

Datorövning 1: Introduktion till MATLAB Datorövning 1: Introduktion till MATLAB Om datorövningarna Övningarna går ut på att bekanta sig med MATLAB och se hur man löser olika typer av problem. Arbetet är självständigt. Hoppa över sådant ni tycker

Läs mer

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

Laboration: Vektorer och matriser

Laboration: Vektorer och matriser Laboration: Vektorer och matriser Grundläggande om matriser Begreppet matris är en utvidgning av vektorbegreppet, och det används bl a när man löser linjära ekvationssystem. Namnet Matlab står för MATrix

Läs mer

Introduktion till Matlab

Introduktion till Matlab Inledande matematik, I1 2011/2012 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor

Läs mer

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script

Läs mer

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32)

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32) Programmeringsteknik och Matlab Övning Dagens program Övningsgrupp 2 (Sal Q22/E2) Johannes Hjorth hjorth@nada.kth.se Rum 458 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d2

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 2 november 2015 Sida 1 / 23 Föreläsning 2 Index. Kolon-notation. Vektoroperationer. Summor och medelvärden.

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar

Läs mer

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2011/2012 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Version för IT-programmet Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht10 1 Inledning Ni kommer använda Matlab i nästan alla kurser i utbildningen. I matematikkurserna kommer vi ha studio-övningar nästan

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. För att lösa uppgifterna

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB Introduktion till MATLAB Om laborationen Övningarna går ut på att bekanta sig med MATLAB och se hur man löser olika typer av problem. Arbetet är självständigt. Hoppa över sådant ni tycker verkar för lätt

Läs mer

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson Introduktion till MATLAB Introduktion till MATLAB sid. 2 av 12 Innehåll 1 Vad är MATLAB? 3 1.1 Textens syfte..................................... 3 2 Grundläggande

Läs mer

TSBB14 Laboration: Intro till Matlab 1D

TSBB14 Laboration: Intro till Matlab 1D TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen

Läs mer

Introduktion till Matlab Föreläsning 1. Ingenjörsvetenskap

Introduktion till Matlab Föreläsning 1. Ingenjörsvetenskap Introduktion till Matlab Föreläsning 1 Ingenjörsvetenskap Magnus.Eriksson@miun.se 1 Dagens agenda MATLAB- vad ska det vara bra för? Arrayer, matriser och vektorer Manipulation av arrayer Kompakta arrayoperationer

Läs mer

At=A' % ' transponerar en matris, dvs. kastar om rader och kolonner U' % Radvektorn U ger en kolonnvektor

At=A' % ' transponerar en matris, dvs. kastar om rader och kolonner U' % Radvektorn U ger en kolonnvektor % Föreläsning 1 26/1 % Kommentarer efter %-tecken clear % Vi nollställer allting 1/2+1/3 % Matlab räknar numeriskt. Observera punkten som decimaltecken. sym(1/2+1/3) % Nu blev det symboliskt pi % Vissa

Läs mer

Introduktion till MATLAB Föreläsning 1

Introduktion till MATLAB Föreläsning 1 Introduktion till MATLAB Föreläsning 1 FY021G Ingenjörsvetenskap Magnus.Eriksson@miun.se Reviderad 2007-09-23 1 Dagens agenda MATLAB - vad ska det vara bra för? Arrayer, matriser och vektorer Manipulation

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2011/2012 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor runt om i världen,

Läs mer

TAIU07 Matematiska beräkningar med MATLAB för MI. Fredrik Berntsson, Linköpings Universitet. 15 januari 2016 Sida 1 / 26

TAIU07 Matematiska beräkningar med MATLAB för MI. Fredrik Berntsson, Linköpings Universitet. 15 januari 2016 Sida 1 / 26 TAIU07 Matematiska beräkningar med MATLAB för MI Fredrik Berntsson, Linköpings Universitet 15 januari 2016 Sida 1 / 26 TAIU07 Kursmål och Innehåll Målet med kursen är att Ge grundläggande färdighet i att

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU STUDIO 1 LMA515b - 2016/2017 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. Starta Matlab genom att

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 27 oktober 2015 Sida 1 / 31

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 27 oktober 2015 Sida 1 / 31 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 27 oktober 2015 Sida 1 / 31 TANA17 Kursmål och Innehåll Målet med kursen är att Ge grundläggande färdighet

Läs mer

Matriser och Inbyggda funktioner i Matlab

Matriser och Inbyggda funktioner i Matlab Matematiska vetenskaper 2010/2011 Matriser och Inbyggda funktioner i Matlab 1 Inledning Vi skall denna vecka se på matriser och funktioner som är inbyggda i Matlab, dels (elementära) matematiska funktioner

Läs mer

Matlabövning 1 Funktioner och grafer i Matlab

Matlabövning 1 Funktioner och grafer i Matlab Matlabövning 1 Funktioner och grafer i Matlab I den här övningen ska vi titta på hur man konstruerar funktioner i Matlab och hur man kan rita funktionsgrafer. Läs först igenom PM:et. Gå sedan igenom exemplen

Läs mer

Matlabövning 1 Funktioner och grafer i Matlab

Matlabövning 1 Funktioner och grafer i Matlab Matlabövning 1 Funktioner och grafer i Matlab I den här övningen ska vi titta på hur man konstruerar funktioner i Matlab och hur man kan rita funktionsgrafer. Läs först igenom hela PM:et. Gå sedan igenom

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 TMV157-2014/2015 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 TMV216/MMGD20-2017/2018 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

KPP053, HT2016 MATLAB, Föreläsning 2. Vektorer Matriser Plotta i 2D Teckensträngar

KPP053, HT2016 MATLAB, Föreläsning 2. Vektorer Matriser Plotta i 2D Teckensträngar KPP053, HT2016 MATLAB, Föreläsning 2 Vektorer Matriser Plotta i 2D Teckensträngar Vektorer För att skapa vektorn x = [ 0 1 1 2 3 5]: >> x = [0 1 1 2 3 5] x = 0 1 1 2 3 5 För att ändra (eller lägga till)

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

MATLAB. Vad är MATLAB? En kalkylator för linlär algebra. Ett programspråk liknande t.ex Java. Ett grafiskt verktyg.

MATLAB. Vad är MATLAB? En kalkylator för linlär algebra. Ett programspråk liknande t.ex Java. Ett grafiskt verktyg. MATLAB Vad är MATLAB? En kalkylator för linlär algebra. Ett programspråk liknande t.ex Java. Ett grafiskt verktyg. 1 När används MATLAB? Några exempel: För små beräkningar när en räknedosa inte riktigt

Läs mer

Matriser och Inbyggda funktioner i Matlab

Matriser och Inbyggda funktioner i Matlab CTH/GU STUDIO 1 TMV036a - 2012/2013 Matematiska vetenskaper Matriser och Inbyggda funktioner i Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1 Moore: 2.3, 3.1-3.4, 3..1-3.., 4.1, 7.4 1 Inledning Nu

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En

Läs mer

Mer om funktioner och grafik i Matlab

Mer om funktioner och grafik i Matlab CTH/GU 2/22 Matematiska vetenskaper Inledning Mer om funktioner och grafik i Matlab Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och cosinus

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 TMV206-2018/2019 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

Introduktion & MATLABrepetition. (Kap. 1 2 i MATLAB Programming for Engineers, S. Chapman)

Introduktion & MATLABrepetition. (Kap. 1 2 i MATLAB Programming for Engineers, S. Chapman) Numeriska Metoder och Grundläggande Programmering för P1, VT2014 Föreläsning 1, Introduktion & MATLABrepetition. (Kap. 1 2 i MATLAB Programming for Engineers, S. Chapman) January 20, 2014 Kursansvarig

Läs mer

Exempel att testa. Stora problem och m-filer. Grundläggande programmering 4. Informationsteknologi. Informationsteknologi.

Exempel att testa. Stora problem och m-filer. Grundläggande programmering 4. Informationsteknologi. Informationsteknologi. Grundläggande programmering 4 stefan@it.uu.se - Huvudprogram och underprogram - Egna funktioner - Olika typer av fel - Lite om effektiv programmering Exempel att testa Programmen för några vardagsproblem

Läs mer

Grundläggande kommandon

Grundläggande kommandon Allmänt om Matlab Utvecklades på 70-talet som ett lättanvänt gränssnitt till programbiblioteken LINPACK (linjär algebra) och EISPACK (egenvärdesproblem), ursprungligen skrivna i Fortran. En kommersiell

Läs mer

Kapitel 4. Programmet MATLAB

Kapitel 4. Programmet MATLAB Kapitel 4. Programmet MATLAB MATLAB (namnet härlett ur MATrix LABoratory) är ett matematikprogram baserat på matrisalgebra, som blivit mycket använt för fysikaliska och tekniska tillämpningar. Den ursprungliga

Läs mer

Matriser och linjära ekvationssystem

Matriser och linjära ekvationssystem Linjär algebra, I1 2011/2012 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader

Läs mer

Instruktion för laboration 1

Instruktion för laboration 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara

Läs mer

M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1

M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 Ove Edlund LTU 2014-11-07 Ove Edlund (LTU) M0043M, M1 2014-11-07 1 / 14 Några elementära funktioner i Matlab Exempel exp Beräknar e

Läs mer

Lägg märke till skillnaden, man ser det tydligare om man ritar kurvorna.

Lägg märke till skillnaden, man ser det tydligare om man ritar kurvorna. Matlabövningar 1 Börja med att läsa igenom kapitel 2.1 2 i läroboken och lär dig att starta och avsluta Matlab. Starta sedan Matlab. Vi övar inte på de olika fönstren nu utan återkommer till det senare.

Läs mer

Du kan söka hjälp efter innehåll eller efter namn

Du kan söka hjälp efter innehåll eller efter namn Du kan söka hjälp efter innehåll eller efter namn Skalärer x = 2 y = 1.234 pi, inf Ex: Skriver du >> x+100*pi Så blir svaret ans = 316.1593 (observera decimalpunkt.) Vektorer v = [1 2 3 4] radvektor u

Läs mer

Laborationstillfälle 1 Lite mer om Matlab och matematik

Laborationstillfälle 1 Lite mer om Matlab och matematik Laborationstillfälle Lite mer om Matlab och matematik En första introduktion till Matlab har ni fått under kursen i inledande matematik. Vid behov av repetition kan materialet till de övningar som gjordes

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

Grafritning och Matriser

Grafritning och Matriser Grafritning och Matriser Analys och Linjär Algebra, del B, K1/Kf1/Bt1, ht11 1 Inledning Vi fortsätter under läsperiod och 3 att arbete med Matlab i matematikkurserna Dessutom kommer vi göra projektuppgifter

Läs mer

MATLAB övningar, del1 Inledande Matematik

MATLAB övningar, del1 Inledande Matematik MATLAB övningar, del1 Inledande Matematik Övningarna på de två första sidorna är avsedda att ge Dig en bild av hur miljön ser ut när Du arbetar med MATLAB. På de följande sidorna följer uppgifter som behandlar

Läs mer

En introduktion till MatLab

En introduktion till MatLab Chalmers tekniska högskola En introduktion till MatLab Gustafsson Gabriel gabgus@student.chalmers.se Johansson Việt Simon simoj@student.chalmers.se Författare: Norell Pontus npontus@student.chalmers.se

Läs mer

Linjär algebra. 1 Inledning. 2 Matriser. Analys och Linjär Algebra, del B, K1/Kf1/Bt1. CTH/GU STUDIO 1 TMV036b /2013 Matematiska vetenskaper

Linjär algebra. 1 Inledning. 2 Matriser. Analys och Linjär Algebra, del B, K1/Kf1/Bt1. CTH/GU STUDIO 1 TMV036b /2013 Matematiska vetenskaper CTH/GU STUDIO 1 TMV06b - 2012/201 Matematiska vetenskaper Linjär algebra Analys och Linjär Algebra, del B, K1/Kf1/Bt1 1 Inledning Vi fortsätter även denna läsperiod att arbete med Matlab i matematikkurserna

Läs mer

Matlabföreläsningen. Lite mer och lite mindre!

Matlabföreläsningen. Lite mer och lite mindre! Inmatning: Här är lite exempel på inmatning i Matlab: >> pi 3.1416 >> format long >> ans 3.141592653589793 Matlabföreläsningen Lite mer och lite mindre! >> format %återställer format (%- tecknet gör att

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 2 TMV157-2014/2015 Matematiska vetenskaper Matriser och vektorer i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi

Läs mer

ATT RITA GRAFER MED KOMMANDOT "PLOT"

ATT RITA GRAFER MED KOMMANDOT PLOT MATLAB, D-plot ATT RITA GRAFER MED KOMMANDOT "PLOT" Syntax: Vi börjar med det enklaste plot-kommandot i matlab,,där x är en vektor x- värden och y en vektor med LIKA MÅNGA motsvarande y-värden. Anta att

Läs mer

Funktioner och grafritning i Matlab

Funktioner och grafritning i Matlab CTH/GU STUDIO 1b MVE350-2014/2015 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab. Sedan ser vi

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning läsvecka 4 Magnus oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/17 Denna föreläsning (läsvecka 4) Kursadministration (redovisning projekt 2,

Läs mer

1.1 MATLABs kommandon för matriser

1.1 MATLABs kommandon för matriser MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion

Läs mer

Lab 1, Funktioner, funktionsfiler och grafer.

Lab 1, Funktioner, funktionsfiler och grafer. Lab 1, Funktioner, funktionsfiler och grafer. Starta gärna en dagbok genom att ge kommandot diary lab1. Skriv in alla beräkningar som efterfrågas i uppgifterna i dagboken. Glöm inte diary off om det skrivna

Läs mer

Motivering för programmering. F1: Introduktion, Matlabrepetition (kap. 1 2) Att kunna programmera. Interpreterat/kompilerat

Motivering för programmering. F1: Introduktion, Matlabrepetition (kap. 1 2) Att kunna programmera. Interpreterat/kompilerat F1: Introduktion, Matlabrepetition (kap. 1 2) Gemensam intro Kursinnehåll Varför programmera? Egenskaper hos Matlab Kommando-, redigerings-, arbetsplats-, tabell-, guide- och hjälpfönster, kommando-, funktions-,

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem CTH/GU STUDIO 1 LMA515c - 2016/2017 Matematiska vetenskaper 1 Inledning Linjära ekvationssystem Denna studioövning börjar med att vi påminner oss om matriser i Matlab samtidigt som vi börjar se på matriser

Läs mer

Mer om funktioner och grafik i Matlab

Mer om funktioner och grafik i Matlab CTH/GU 2017/2018 Matematiska vetenskaper Mer om funktioner och grafik i Matlab 1 Inledning Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och

Läs mer

Department of Physics Umeå University 27 augusti Matlab för Nybörjare. Charlie Pelland

Department of Physics Umeå University 27 augusti Matlab för Nybörjare. Charlie Pelland Matlab för Nybörjare Charlie Pelland Introduktion till Matlab Matlab (matrix laboratory) är ett datorprogram och ett programspråk som används av ingenjörer runt om i världen. Ni kommer att använda er av

Läs mer

Inledning till matematik med Matlab kompendium för M1 och TD

Inledning till matematik med Matlab kompendium för M1 och TD Matematiska vetenskaper Carl-Henrik Fant 16 september 2005 Inledning till matematik med Matlab kompendium för M1 och TD1 2005. Allmänt. MATLAB är ett interaktivt program med mycket kraftfulla numeriska

Läs mer

SF1672, Linjär Algebra med Matlab för F1 Lab0

SF1672, Linjär Algebra med Matlab för F1 Lab0 SF1672, Linjär Algebra med Matlab för F1 Lab0 Denna labb är tänkt att öva datorhantering och öva inledande Matlab. Eftersom förkunskaperna varierar finns en hel del uppgifter så att alla kan få något att

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

KPP053, HT2016 MATLAB, Föreläsning 3. Plotter och diagram Läsa och skriva data till fil

KPP053, HT2016 MATLAB, Föreläsning 3. Plotter och diagram Läsa och skriva data till fil KPP053, HT2016 MATLAB, Föreläsning 3 Plotter och diagram Läsa och skriva data till fil 2D-plott (igen) x = linspace(-10,10); %godtyckligt intervall % punkt framför * och ^ ger elmentvis operation y = x.^2

Läs mer

Matriser och linjära ekvationssystem

Matriser och linjära ekvationssystem Linjär algebra, AT3 211/212 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni redan vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader

Läs mer

Introduktion till MATLAB, med utgångspunkt från Ada

Introduktion till MATLAB, med utgångspunkt från Ada Introduktion till, med utgångspunkt från Desktop-miljö som innefattar editor, kommandofönster, graffönster och mycket mer. Interpreteras Snabbt att testa kommandon Terminal + emacs + gnatmake Kompileras

Läs mer

jsp?d=&a=827474&sb2231i0=1_

jsp?d=&a=827474&sb2231i0=1_ Ingenjörsrollen Från DNs kultursidor http://www.dn.se/dnet/jsp/polopoly. jsp?d=&a=827474&sb2231i0=1_827 474 Jag läste till en examen i teknisk fysik på KTH för att jag trodde att matematiken och siffrorna

Läs mer

Linjär algebra med MATLAB

Linjär algebra med MATLAB INGENJÖRSHÖGSKOLAN Matematik Fredrik Abrahamsson, Anders Andersson Innehåll Linjär algebra med MATLAB 1 Grundläggande begrepp 1 1.1 Introduktion...................................... 1 1.2 Genomförande

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:

Läs mer

Funktioner och grafritning i Matlab

Funktioner och grafritning i Matlab CTH/GU LABORATION 3 MVE11-212/213 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på (elementära) matematiska funktioner i Matlab, som sinus och cosinus.

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 2. Linjär Algebra, Villkor och Logik 1 Linjär Algebra Programsystemet Matlab utvecklades ursprungligen för att underlätta beräkningar från linjär

Läs mer

2 Matrisfaktorisering och lösning till ekvationssystem

2 Matrisfaktorisering och lösning till ekvationssystem TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan

Läs mer

(a) Skriv en matlabsekvens som genererar en liknande figur som den ovan.

(a) Skriv en matlabsekvens som genererar en liknande figur som den ovan. Matematik Chalmers tekniska högskola 2014-08-27 kl. 08:30-12:30 Tentamen MVE355, Programmering och numeriska beräkningar med matlab. Ansvarig: Katarina Blom, tel 772 10 97. Plats: L Inga hjälpmedel. Kalkylator

Läs mer

MAPLE MIKAEL STENLUND

MAPLE MIKAEL STENLUND MAPLE MIKAEL STENLUND. Introduktion I dina inlämningsuppgifter skall ett program som heter Maple användas för att lösa ett antal matematiska problem. Maple är ett symbolhanterande program som har ett antal

Läs mer