Digital- och datorteknik
|
|
|
- Katarina Nyberg
- för 7 år sedan
- Visningar:
Transkript
1 Digital- och datorteknik Föreläsning #17 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola
2 Tallriksmodellen Stackoperationer Element kan endast läggas till och tas bort ovanifrån, d v s via toppen av stacken. Denna princip för att komma åt elementen kallas "sist in - först ut" (eng. last in - first out, LIFO). Att lägga nya element på stacken benämns "push. Att hämta element från stacken benämns "pull" (ibland "pop"). top-of-stack, TOS bottom-of-stack, BOS
3 Stackoperationer Tallriksmodellen Stacken realiseras i datorn genom användandet av en stackpekare SP, som håller reda på TOS. Stacken initieras genom att SP laddas med BOS. stackpekare SP Ett element läggs på stacken med PUSH -instruktionen, som lagrar data från ett processorregister till stacken med adresseringsmetoden register indirect SP, pre-decrement. T ex: PSHA SP - 1 SP, A M(SP) TOS TOS=BOS-n... BOS-2 BOS-1 BOS Ett element hämtas från stacken med PULL -instruktionen, som hämtar data från stacken till ett processorregister med adresseringsmetoden register indirect SP, post-increment. T ex: PULX M(SP) X, SP + 1 SP FF 16 Figur F.19 Stackens tillväxt och adressering via stackpekaren.
4 Stackoperationer Demonstrationsexempel 1 stackoperationer a) Ge en sekvens av instruktioner som definierar en stack med början på adress och placerar operanderna 06 16, och på stacken. b) Vad är stackpekarens innehåll när sekvensen i a) genomlöpts av processorn?
5 Modularisering i subrutiner Behovet av modularisering I ett välstrukturerat program bör man se till att organisera sin programkod i subrutiner. Fördelarna med detta är: Återanvändning: en funktion som behöver användas ofta i olika delar av programmet kan placeras i en modul för att undvika att programmerarna återuppfinner hjulet när de skriver sina individuella programdelar. Effektivisering: flera programmerare kan arbeta parallellt och bidra till koden genom att ha ansvar för var sin subrutin.
6 Modularisering i subrutiner Anrop till subrutin med bokmärke Vid anrop (hopp) till en subrutin måste det garanteras att programflödet kan återvända till korrekt (anropande) läge i programmet. Detta kan åstadkommas genom att ett bokmärke sparas på stacken vid anropet. Detta bokmärke utgörs av innehållet i PC vid tidpunkten för anropet till subrutinen. Tack vare stackens egenskaper (LIFO) går det att, inifrån en subrutin, göra ett anrop till ännu en subrutin, och ändå komma tillbaka till det ursprungliga anropet.
7 Modularisering i subrutiner Anrop till subrutin med bokmärke Anrop till subrutin görs med JSR eller BSR ( jump / branch to subroutine ). JSR Adr SP - 1 SP, PC M(SP), Adr PC BSR Adr SP - 1 SP, PC M(SP), PC + Offset PC Återhopp från subrutin görs med RTS ( return from subroutine ). BSR använder samma adresseringsmetod (PC-relativ adressering) som BRA, BEQ etc RTS M(SP) PC, SP + 1 SP
8 Modularisering i subrutiner Tillfällig lagring av data i subrutin Stackens egenskaper (LIFO) möjliggör inte bara att man kan lagra bokmärken på ett praktiskt sätt; det går också att tillfälligt lagra data på stacken medan subrutinens kod exekveras: Innehållet i register vars data inte får förstöras kan sparas (med PUSH-instruktioner) i början av subrutinens kod, och återställas (med PULL-instruktioner) i slutet av koden. T ex: PSHA SP - 1 SP, A M(SP) [ spara A ] PSHCC SP - 1 SP, CC M(SP) [ spara flaggor ] PULCC M(SP) CC, SP + 1 SP [ återställ flaggor ] PULA M(SP) A, SP + 1 SP [ återställ A ]
9 Modularisering i subrutiner Tillfällig lagring av data i subrutin Stackens egenskaper (LIFO) möjliggör inte bara att man kan lagra bokmärken på ett praktiskt sätt; det går också att tillfälligt lagra data på stacken medan subrutinens kod exekveras: Extra utrymme för lagring av data kan göras tillgängligt i början av koden respektive tas bort i slutet av koden. Varje byte i detta utrymme kan sedan ses som en tillfällig variabel som adresseras via metoden indirekt SP-register med offset. T ex: LEASP -8,SP SP - 8 SP [ skapa utrymme ] CLR 3,SP 0 M(SP+3) [ nollställ en variabel ] LDA 0,SP M(SP) A [ läs annan variabel ] LEASP 8,SP SP + 8 SP [ ta bort utrymme ]
10 Assemblerprogrammering Primärminnets användning Den rekommenderade användningen av primärminnet i FLIS-processorn är: Adress FA 16 : Programkod Adress F 16 : Globala variabler (data med relativt lång livslängd) Adress F 16 : Programstack (data med relativt kort livslängd) Adress FB 16 FC 16 : In- och ut-portar A (reserverat för kommunikation med sensor och/eller ställdon) Adress FD 16 FD 16 : Vektorer (reserverat för lagring av speciella hoppadresser)
11 Assemblerprogrammering Assemblerdirektiv etiketter Vi har ju sett att när man skriver program i assemblerspråk har man ersatt maskininstruktionernas binära representation med symboliska namn på instruktionerna. T ex skriver vi LDA #7, istället för den två byte långa sekvensen F0 07, när vi vill ange den instruktion som laddar register A med konstanten 7. Vi skulle på ett liknande sätt vilja ersätta lägen (minnesadresser) i primärminnet med symboliska namn. Detta låter sig göras i assemblerspråk om man sätter en etikett ( label ) framför den instruktion eller databyte vars adress vi vill kunna referera till. Exempel: Loop DECA BNE Loop
12 Assemblerprogrammering Assemblerdirektiv startadress För att en etikett skall kunna användas i programmet måste dess läge (d v s minnesadress) kunna beräknas. Detta är möjligt om det är känt var i minnet programkod och data är placerade. Med hjälp av assemblerdirektivet ORG har programmeraren möjlighet att ange en startadress för kod eller data. Exempel: ORG $20 Start LDSP #$20 ; etiketten Start får värdet LDA #7 BRA Skip NOP Skip INCA ; etiketten Skip får värdet 27 16
13 Assemblerprogrammering Assemblerdirektiv initierade data Förutom programkod är det också möjligt att lägga in datavärden i minnet när man skriver i assemblerspråk. Dessa värden kommer att finnas på det angivna läget då programmet startar, och kallas därför initierade data. Med hjälp av assemblerdirektivet FCB (form constant byte) kan en eller flera bytes av kända data läggas på en angiven plats i minnet. Exempel: ORG $20 Start LDSP #$20 ; etiketten Start får värdet ORG $FF FCB Start ; värdet läggs i resetvektor
14 Assemblerprogrammering Assemblerdirektiv initierade data Förutom programkod är det också möjligt att lägga in datavärden i minnet när man skriver i assemblerspråk. Dessa värden kommer att finnas på det angivna läget då programmet startar, och kallas därför initierade data. Med hjälp av assemblerdirektivet FCS (form constant string) kan en sträng med ASCII-tecken läggas på en angiven plats i minnet. Exempel: LDX #Hello ; etiketten Hello har värdet LDA 0,X ORG $60 Hello FCS Hello world ; sträng med 11 ASCII-tecken
15 Assemblerprogrammering Assemblerdirektiv icke initierade data Det är också möjligt att i förväg reservera utrymme i minnet. Minnesinnehållet i detta utrymme är odefinierat då programmet startar, och är huvudsakligen tänkt att användas för lagring av globala variabler (data med relativt lång livslängd). Med hjälp av direktivet RMB (reserve memory bytes) kan utrymme för en eller flera bytes reserveras på en angiven plats i minnet. Exempel: ORG $0 Count RMB 1 ; plats för räknarvariabel ; etiketten Count får värdet List RMB 8 ; plats för lista med 8 element ; etiketten List får värdet 01 16
16 Assemblerprogrammering Assemblerdirektiv övrigt Egendefinierade symboler: definieras med direktivet EQU T ex: Max_val EQU 37 Min_val EQU 12 Range EQU (Max_val Min_val) Hexadecimal konstant: talet föregås av tecknet $. T ex: $40 = = Binär konstant: talet föregås av tecknet %. T ex: %1011 = = B 16 = Teckenkonstant: tecknet omges av enkla citationstecken. T ex: A = = = ASCII-värdet för stora A
17 Assemblerprogrammering Demonstrationsexempel 2 subrutiner Skriv en subrutin AddAY som adderar två 8-bitars tal utan tecken. De två talen skall finnas i Y- resp. A-registret vid anrop av subrutinen. Mest signifikanta byten skall returneras i Y-registret och minst signifikanta byten i A-registret. Av de interna registren får subrutinen endast påverka Y- och A- registren samt flaggregistret. Z-flaggan skall sättas till 1 om summan är lika med noll. De övriga flaggornas värden saknar betydelse. Subrutinens kod skall placeras med början på adress Visa även hur stackens innehåll ser ut om subrutinen anropas från ett huvudprogram vars kod börjar på adress Top-of-stack (TOS) sätts till 20 16,
Digital- och datorteknik
Digital- och datorteknik Föreläsning #17 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola F-36 FLEX- och FLIS-datorn Ext-8 Tallriksmodellen Stackoperationer
Digital- och datorteknik
Digital- och datorteknik Föreläsning #16 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Behovet av ändring av programflödet För att kunna skriva
Digital- och datorteknik
Digital- och datorteknik Föreläsning #18 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Assemblerprogrammering Assemblatorer vs kompilatorer
Digital- och datorteknik
Digital- och datorteknik Föreläsning #8 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Assemblatorer vs kompilatorer En assemblator är ett program
Digital- och datorteknik
Digital- och datorteknik Föreläsning #15 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Dataväg med pekarregister och stackpekare: I vår sjunde,
Digital- och datorteknik
Digital- och datorteknik Föreläsning #19 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Normaltillstånd vs undantagstillstånd I normaltillstånd
Programexempel för FLEX
Aktivera Kursens mål: Konstruera en dator mha grindar och programmera denna Aktivera Förra veckans mål: Konstruera styrenheten. genom att. implementera olika maskininstruktioner i styrenheten. Kunna använda
Assemblerprogrammering del 3
Assemblerprogrammering del 3 Dagens föreläsning behandlar: Kompendiet kapitel 9 och 10.4 Arbetsboken kapitel 16 Ur innehållet: Modularisering, subrutiner och strukturerad programutveckling (flödesdiagram)
Extrauppgifter för CPU12
1 Extrauppgifter för CPU12 X1a) Skriv en instruktionssekvens som nollställer bit 3-0 i alla minnesord i adressintervallet 2035H, 2049H Använd X-registret för adressering X1b) Skriv en subrutin som maskerar
Assemblerprogrammering del 1
Assemblerprogrammering del 1 Dagens föreläsning behandlar: Kompendiet kapitel 9 Arbetsboken kapitel 15 Ur innehållet: Assemblerspråket Programmerarens bild Assemblering/disassemblering Funktion: Översätter
7) Beskriv tre sätt att överföra parametrar mellan huvudprogram och subrutin.
1(5) Övningstentamen i Mikrodatorer och assemblerprogrammering, ELGA05 Hjälpmedel: Bifogad lista med memokoder för MC68xxx. Samtliga programmeringsuppgifter ska innehålla flödesschema med förklaringar
EDA Digital och Datorteknik
Digital och Datorteknik EDA45 200/20 EDA 45 - Digital och Datorteknik Dagens föreläsning:, Extra material Ext 8 Ur innehållet: Programmerarens bild av FLEX Instruktionsuppsättning Register åtkomliga för
Övningsuppgifterna i kapitel F avser FLIS-processorn, vars instruktioner och motsvarande koder definieras i INSTRUKTIONSLISTA FÖR FLISP.
Övningsuppgifter Övningsuppgifterna i kapitel F avser FLIS-processorn, vars instruktioner och motsvarande koder definieras i INSTRUKTIONSLISTA FÖR FLISP. F.2 Ett antal på varandra följande minnesord har
Digital och Datorteknik EDA /2010. EDA Digital och Datorteknik
EDA 45 - Digital och Datorteknik Dagens föreläsning: Assemblerprogrammering för FLEX, Extra material Ext 8 Ur innehållet: Programmerarens bild av FLEX Instruktionsuppsättning Register åtkomliga för programmeraren
Reducerad INSTRUKTIONSLISTA för FLIS-processorn
Reducerad INSTRUKTIONSLI för FLIS-processorn 2013-11-08 2(10) Innehåll Sidan 3 Programmerarens bild av FLIS-processorn 4 Förklaring av beteckningar i instruktionslistan 5 Enkel dataflyttning 5 Logik 5
TSEA28 Datorteknik Y (och U)
TSEA28 Datorteknik Y (och U) Föreläsning 2 Kent Palmkvist, ISY TSEA28 Datorteknik Y (och U), föreläsning 2, Kent Palmkvist 2017-01-17 2 Dagens föreläsning Kort repetition Större programmeringsexempel Subrutiner
TSEA28 Datorteknik Y (och U)
TSEA28 Datorteknik Y (och U), föreläsning 2, Kent Palmkvist 2018-01-16 3 TSEA28 Datorteknik Y (och U) Föreläsning 2 Kent Palmkvist, ISY Praktiska kommentarer Mail kommer skickas ut när labanmälan är möjlig
Programmering i maskinspråk (Maskinassemblering)
Programmering i maskinspråk (Maskinassemblering) Programutveckling i assemblerspråk Begreppet assemblerspråk introduceras i häftet Ext-20. En del korta programavsnitt skrivs med assemblerspråk i övningsuppgifterna
Styrenheten styrsignalsekvenser programflödeskontroll
Styrenheten styrsignalsekvenser programflödeskontroll Kontroll av programflöde Instruktionerna är ordnade sekventiellt i minnet och utförs normalt i denna ordning. Vissa programkonstruktioner kräver dock
F4: Assemblerprogrammering
F4: Assemblerprogrammering Hoppinstruktioner Branch Jump Med vilkor IF satser Loopar while-loopar do-while- loopar for-loopar Stackhantering Underprogram 1 BRA rel_adr Branch Always Relativadressering
Programmering i maskinspråk (Maskinassemblering)
Ext-15 (2013-08-26) sida 1 Programmering i maskinspråk (Maskinassemblering) Programutveckling i assemblerspråk Begreppet assemblerspråk introduceras i arbetsboken (ARB) kapitlen 14-16. En del korta programavsnitt
Assemblerprogrammeringsuppgifter för FLIS-processorn
1 (2013-05-02) Assemblerprogrammeringsuppgifter för FLIS-processorn 1. I simulatorn för FLISP-datorn kan man ansluta strömbrytarmodulen DIPSWITCH till en inport och sifferindikatorn 7-SEGMENT till en utport.
Digital- och datorteknik. Mekatronik-, data- och elektroingenjör Åk 1/ lp 1o2. Lars-Eric Arebrink. Av institutionen utgiven. vid flera tillfällen
Institutionen för data- och informationsteknik Avdelningen för datorteknik TENTAMEN KURSNAMN Digital- och datorteknik PROGRAM: KURSBETECKNING Mekatronik-, data- och elektroingenjör Åk / lp o2 LEU43 EXAMINATOR
Lösningsförslag tenta
Lösningsförslag tenta 2013-12-16 (Version 5 med reservation för eventuella fel. Uppdaterad 140417.) 1. X = 1010 0101 2 ; Y = 0101 1011 2 (8 bitars ordlängd) a) [0, 2 n 1] = [0, 2 8 1] = [0, 255] b) [ 2
CPU. Carry/Borrow IX. Programräknare
Laboration:. Jämförelser mellan assembler och C. CPU ACCA ACCD ACCB 8-bitars ackumulatorer eller 16- bitars ackumulator CCR 1 1 1 SXH I NZVC Flaggregister Carry/Borrow IX IY PC Indexregister X Indexregister
Assemblerprogrammering
2012-02-14 Assemblerprogrammering Övningsuppgifter 2011 Lösningar (Med reservation för diverse fel!) 1. Hur många E-klockperioder använder CPU12 (HCS12) för att köra programsekvensen nedan? ORG $1000 LDAA
Lösningsförslag till Tenta i Mikrodator
Lösningsförslag till Tenta i Mikrodator 040117 1. Vilka register finns det i processorn och vad används dessa till? D0 till D7: Dataregister som används för beräkningar A0 till A6: Adressregister som används
Digital- och datorteknik
Digital- och datorteknik Föreläsning #14 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Vad vi har åstadkommit hittills: Med hjälp av kombinatoriska
Datorteknik. Föreläsning 3. Assembler, stack och subrutiner, programmeringskonventionen. Institutionen för elektro- och informationsteknologi, LTH
Datorteknik Föreläsning 3 Assembler, stack och subrutiner, programmeringskonventionen Mål Att veta hur maskinkoden för ett program byggs upp Att börja programmera i assembler på riktigt Att kunna skriva
Stack och subrutiner Programmeringskonventionen
Stack och subrutiner Programmeringskonventionen Du ska förstå hur en instruktion behandlas i processorn Du ska känna till några fler instruktioner Du ska veta hur maskinkoden för ett program byggs upp
Tentamen. Datorteknik Y, TSEA28
Tentamen Datorteknik Y, TSEA28 Datum 2015-08-18 Lokal TERE, TER4 Tid 14-18 Kurskod TSEA28 Provkod TEN1 Kursnamn Provnamn Datorteknik Y Skriftlig tentamen Institution ISY Antal frågor 7 Antal sidor (inklusive
Tentamen. Datorteknik Y, TSEA28
Tentamen Datorteknik Y, TSEA28 Datum 2017-08-15 Lokal TER4 Tid 14-18 Kurskod Provkod Kursnamn Provnamn Institution Antal frågor 6 Antal sidor (inklusive denna sida) 6 Kursansvarig Lärare som besöker skrivsalen
Dataminne I/O Stack 0x005D 0x3D SP low byte 0x005E 0x3E SP high byte
CT3760 Mikrodatorteknik Föreläsning 4 Tisdag 2005-09-06 Stacken I datasammmanhang är en stack ett minnesområde. Det är processorn som använder stacken. För att skapa en stack anger man en adress i stackpekarregistret.
Ext-13 (Ver ) Exempel på RTN-beskrivning av FLEX-instruktioner
Ext-3 (Ver 204-04-08) Exempel på RTN-beskrivning av FLEX-instruktioner. Figur på sidan 2 i detta häfte visar hur datorn FLEX är uppbyggd. På sidan visas dessutom hur ALU:ns funktion väljs med styrsignalerna
Övningsuppgifter i Mikrodatorteknik 4p/5p
Övningsuppgifter i Benny Thörnberg Mittuniversitetet Inst. för Informationsteknologi och medier Hösten 2005 1 Exekvering av assemblerkod 1.1 Statusflaggors beteende Vad blir C-, N- och Z- flaggornas värden
Tentamen. Datorteknik Y, TSEA28
Tentamen Datorteknik Y, TSEA28 Datum 2017-10-26 Lokal TER1, TER3 Tid 8-12 Kurskod TSEA28 Provkod TEN1 Kursnamn Provnamn Datorteknik Y Skriftlig tentamen Institution ISY Antal frågor 6 Antal sidor (inklusive
Övning2 Datorteknik, HH vt12 - Programmering
Övning2 Datorteknik, HH vt12 - Programmering För denna övning behöver man adresskarta och beskrivning av laborationsplattform. Finns bland föreläsningsanteckning samt i bilaga l till Lab l. Använd även
Kontrollskrivning Mikrodatorteknik CDT209 2007-09-20 S2-704
Kontrollskrivning Mikrodatorteknik CDT209 2007-09-20 S2-704 Svar Svar till uppgifterna lämnas på separat papper. En poäng per uppgift. Max 30 poäng. Bonuspoäng beräknas enligt följande tabell: 6-10 poäng
Ext-13 (Ver ) Exempel på RTN-beskrivning av FLEX-instruktioner
Ext-3 (Ver 203-04-2) Exempel på RTN-beskrivning av FLEX-instruktioner. Figur på sidan 2 i detta häfte visar hur datorn FLEX är uppbyggd. På sidan visas dessutom hur ALU:ns funktion väljs med styrsignalerna
Konstruera en dator mha grindar och programmera denna Använda en modern microcontroller
Aktivera Kursens mål: LV5 Fo12 Konstruera en dator mha grindar och programmera denna Använda en modern microcontroller Aktivera Förra veckans mål: Konstruera styrenheten. genom att. implementera olika
Lösningsförslag till Tenta i Mikrodator
Lösningsförslag till Tenta i Mikrodator 050113 1. Vilka register finns det i processorn och vad används dessa till? D0 till D7: Dataregister som används för beräkningar A0 till A6: Adressregister som används
Föreläsningsanteckningar 2. Mikroprogrammering I
Föreläsningsanteckningar 2. Mikroprogrammering I Olle Seger 2012 Anders Nilsson 2016 Innehåll 1 Inledning 2 2 En enkel dator 2 3 Komponenter 3 3.1 Register............................... 3 3.2 Universalräknare..........................
Digital- och datorteknik
Institutionen för data- och informationsteknik Avdelningen för datorteknik TENTAMEN KURSNAMN Digital- och datorteknik PROGRAM: KURSBETECKNING Mekatronikingenjör (samt data- och elektroingenjör) Åk / lp
LEU240 Mikrodatorsystem
Institutionen för data- och informationsteknik 2011-10-11 LEU240 Mikrodatorsystem Vi har tidigare i olika sammanhang sett att det är önskvärt att kunna använda ett högnivåspråk som C för att skriva program
LABORATION. Datorteknik Y Datorkonstruktion D
LABORATION Datorteknik Y Datorkonstruktion D Mikroprogrammering (del 1 och 2) Version 3.1 2012 (AE) Namn och personnummer Godkänd Godkänd Uppg. 1-3 Uppg. 4-6 1 1 Inledning Syftet med laborationen är att
Per Holm Lågnivåprogrammering 2014/15 24 / 177. int och double = = 2, 147, 483, 647
Lågnivåprogrammering Föreläsning 2 Lågnivåprogrammering Förberedelse inför laboration 2. Maskinspråk, assemblerspråk Talrepresentation En enkel dator, komponenter Instruktionsformat, instruktionscykel
CE_O3. Nios II. Inför lab nios2time
IS1200 Exempelsamling till övning CE_O3, 2015 CE_O3. Nios II. Inför lab nios2time 3.1. Logiska operationer (se uppgift 1.2 c) Repetera (eller lär dig) innebörden av de logiska operationerna "bitvis AND",
FLEXIBLE INSTRUCTION SET PROCESSOR FLISP
2014-08-19 FLEXIBLE INSTRUCTION SET PROCESSOR FLISP FLISP - HANDBOK Detta häfte utgör den sammanfattande beskrivningen av FLISprocessorn. Häftet är indelat i två delar. Del 1 behandlar assemblerprogrammerarens
Assemblerprogrammering del 2
Assemblerprogrammering del 2 FLISP och omvärlden Dagens föreläsning behandlar: Kompendiet kapitel 9 Arbetsboken kapitel 16 Ur innehållet: In- och ut-enheter Tilldelningar och uttrycksevaluering Programflödeskontroll
F2: Motorola Arkitektur. Assembler vs. Maskinkod Exekvering av instruktioner i Instruktionsformat MOVE instruktionen
68000 Arkitektur F2: Motorola 68000 I/O signaler Processor arkitektur Programmeringsmodell Assembler vs. Maskinkod Exekvering av instruktioner i 68000 Instruktionsformat MOVE instruktionen Adresseringsmoder
FLEXIBLE INSTRUCTION SET PROCESSOR FLISP
2013-08-14 FLEXIBLE INSTRUCTION SET PROCESSOR FLISP Detta häfte utgör den sammanfattande beskrivningen av FLISprocessorn. Häftet är indelat i två delar. Del 1 behandlar assemblerprogrammerarens bild av
Lösningar till tentamen i EIT070 Datorteknik
Lösningar till tentamen i EIT070 Datorteknik Institutionen för Elektro- och informationsteknik, LTH Onsdagen den 7 mars 2012, klockan 14:00 19:00 i Vic 2, 3. Tillåtna hjälpmedel: på tentan utdelad formelsamling,
Avbrottshantering. Övningsuppgifter
Avbrottshantering Övningsuppgifter 2013 Besvara kortfattat följande frågor rörande CPU12. Redogör för vad som händer vid RESET och varför detta sker. Förklara kortfattat vad som händer vid ett IRQ avbrott
Laboration 2 i Datorteknik- Assemblerprogrammering II
Högskolan i Halmstad 1 (8) - Assemblerprogrammering II Målet med laborationen är att få begrepp om Subrutiner. in/utparametrar. Lokala variabler Maska in bitar till ett register Konstruktion av subrutiner
LABORATION. Datorteknik Y
LABORATION Datorteknik Y Mikroprogrammering Version 3.3 2012 (AE) 2013 (AE) 2017 (KP) Namn och personnummer Godkänd Uppg. 1-3 1 1 Inledning Syftet med laborationen är att skapa en känsla för vad som händer
Programräknaren visar alltid på nästa instruktion som skall utföras. Så fort en instruktion har hämtats så visar programräknaren på nästa instruktion.
F5 Föreläsning i Mikrodatorteknink 2006-09-05 Programräknaren visar alltid på nästa instruktion som skall utföras. Så fort en instruktion har hämtats så visar programräknaren på nästa instruktion. Programräknaren
Tentamen. EDA432 Digital och datorteknik IT INN790 Digital och datorteknik GU. Måndag 23 oktober 2006, kl i V-salar
EDA432 Digital och datorteknik IT INN790 Digital och datorteknik GU Tentamen Måndag 23 oktober 2006, kl. 08.30 12.30 i V-salar Examinatorer Rolf Snedsböl, tel. 772 1665 Kontaktpersoner under tentamen Som
Fö 5+6 TSEA81. Real-time kernel + Real-time OS
Fö 5+6 TSEA81 Real-time kernel + Real-time OS Stackens användningsområde * JSR / RTS : returadress * Temporärdata (push / pop) void myfunc(void) { int i; // hamnar nog i register int test[10]; // hamnar
Lågnivåprogrammering. Föreläsning 2 Lågnivåprogrammering. Binära tal. En enkel modell av datorns inre
Lågnivåprogrammering Föreläsning 2 Lågnivåprogrammering Förberedelse inför laboration 2. Maskinspråk, assemblerspråk Talrepresentation En enkel dator, komponenter Instruktionsformat, instruktionscykel
Lösningar till tentamen i EIT070 Datorteknik
Lösningar till tentamen i EIT070 Datorteknik Institutionen för Elektro- och informationsteknik, LTH Torsdagen den 13 mars 2014, klockan 14:00 19:00 i MA:10. Tillåtna hjälpmedel: på tentan utdelad formelsamling,
Maskinorienterad programmering. Mekatronikingenjör åk 2/ lp 3. Lars-Eric Arebrink. Av institutionen utgiven. vid flera tillfällen.
Institutionen för data- och informationsteknik Avdelningen för datorteknik TENTAMEN KURSNAMN Maskinorienterad programmering PROGRAM: Dataingenjör och elektroingenjör åk 1/ lp 3 Mekatronikingenjör åk 2/
Lösningar till tentamen i EIT070 Datorteknik
Lösningar till tentamen i EIT070 Datorteknik Institutionen för Elektro- och informationsteknik, LTH Onsdagen den 13 mars 2013, klockan 14:00 19:00 i Vic 2 A-D, 3 A-C. Tillåtna hjälpmedel: på tentan utdelad
Exempel 3 på Tentamen
Institutionen för data- och informationsteknik CHALMERS TEKNISKA HÖGSKOLA Exempel 3 på Tentamen Grundläggande datorteknik Examinator Kontaktperson under tentamen Tillåtna hjälpmedel Häfte Instruktionslista
Laboration nr 3 behandlar
(2013-04-20) Laboration nr 3 behandlar Konstruktion och test av instruktioner (styrsignalsekvenser) för FLISP Följande uppgifter ur Arbetsbok för DigiFlisp ska vara utförda som förberedelse för laborationen.
Digital- och datorteknik. Lars-Eric Arebrink. vid flera tillfällen. Betyg 4: 36 poäng Betyg 5: 48 poäng
Institutionen för data- och informationsteknik Avdelningen för datorteknik TENTAMEN KURSNAMN Digital- och datorteknik PROGRAM: Data-, elektro- och mekatronikingenjör åk / lp och 2 KURSBETECKNING LEU43
EDA215 Digital- och datorteknik för Z
EDA25 Digital- och datorteknik för Z Tentamen Måndag 7 december 2007, kl. 08.30-2.30 i M-salar Examinatorer Rolf Snedsböl, tel. 772 665 Kontaktpersoner under tentamen Som ovan. Tillåtna hjälpmedel Häftet
Laboration Datorteknik TSIU02 2. I/O-programmering
Laboration Datorteknik TSIU02 2. I/O-programmering Stefan Gustafsson version 1.1 1. Inledning Laboration: I/O-programmering Du skall i denna laboration programmera TUTOR till att signalera i Morsekod.
F5: Högnivåprogrammering
F5: Högnivåprogrammering Parameteröverföring Koppling mellan låg- och högnivåprogrammering Lokala variabler Heapen Datatyper 1 Subrutin, parameteröverföring: 1(3) Via register genom värde Skicka data via
F5: Högnivåprogrammering
1 F5: Högnivåprogrammering Parameteröverföring Koppling mellan låg- och högnivåprogrammering Lokala variabler Heapen Datatyper 1 Subrutin, parameteröverföring: 1(3) Via register genom värde Skicka data
LABORATION. Datorkonstruktion D
LABORATION Datorkonstruktion D Mikroprogrammering Version 4.0 2017 (AN) 1 1 Inledning Syftet med laborationen är att skapa en känsla för vad som händer i en enkel dator då en maskinkodsinstruktion (även
