k=1 r n 1 3n 3, 1 tol n
|
|
- Ludvig Magnusson
- för 6 år sedan
- Visningar:
Transkript
1 ÙÒØÓÒ ØÓÖ ØÓÖÐÓÖØÓÒ ¾ Ú ËÚÒ ËÔÒÒ ÊÚÖ Ø ¾¼¼ Ú ÂÒ Ù ØÚ ÓÒ
2 ÁÒÐÒÒ ËØÖ Ø ÐÒ Ú ÒÒ ÐÓÖØÓÒ ÒÐÖ ÓÑ ÓÙÖÖ ÖÖ ÑÒ Ú ØÖØÖ Ñ Ö¹ ÙÑÑØÓÒº ÀÐ ÐÓÖØÓÒÒ ¹ ÙØÓÑ ÙÔÔØ ¾º½ Ö ÅÔÐ Ö ØØ ÖÖ ¹ ÝÖ Ô ÅØÐº À Ò ÅØÐÑÒÙÐ ÐØØÐÐÒк Î ÐÖ Ò Ù Ú ÑØ Ô ÙÖ Ò Ñ ØØÔ»»ÛÛ󼄯 ºÐغ»ÑØÑØÐØ»ÔÖ ÓÒлһ ÙÒ¾¼¼»ÙÒ¾¼¼ºØÑÐ ÖÖ ÒÓÑ ØØ ØØØ ÒÓÑ ÒÒ ÒÐÒÒ Ó ÒÚ ÒÒÖÒ Ò¹ Òº ÃÓÑÔÐØØÖ ÑÓØÚÖÒÒ Ô Ò ¾º ÂÑÖ Ò ½¾¾ ÐÖÓÓÒ Ó Ð ÒÒÒ Ú ÚÒÒ º¾¾º Ä Ó ÒÓÑ ÔØÐØ ÓÑ ÓÙÖÖ ÖÖ ÐÖÓÓÒ ÓÑ Ù ÒØ ÓÖØ Ø ÒÒÒº ËÖ ÙÑÑØÓÒ ¾º½ Î ÐÐ ÒÙ ÙØÖ ÒÙÑÖ ÙÑÑØÓÒ Ú ÒÖ ÖÖº Ö ØØ Ö Ø ØØÖ Ú ÓÑ ÒÖ ÐÐ Ù ÐÐ ÜÑÔÐÒ ÖÒ Ð ÙÑÑÓÖÒ Ñ ÙÑ Ùѵ Ó ØØØ Ô Ñ Ø Ü Ñ ÓÑÑÒÓØ ØÖ º ËÖÒ k 4 Ö ÙÑÑÒ π 4 /90º ÖÒ ÖÒ ÙÑÑ Ñ ØÖ ÖØ ÓÖÖØµ k=1 ÑÐÖº ÌÖ ÖØ ÑÐÖ ØÝÖ ØØ Ú ØÓÐÖÖÖ ØØ Ð ÚÖ ÓÐÙØÐÓÔÔ Ø Ö Ð Ñ tol = º ÂÑÖÐ Ñ ÒØÖÐ Ö Ö ØØÖÑ ÙÔÔ ØØÒÒÒ Ó r n tol ÓÑ r n 1 3n 3, ( ) 1/3 1 1 tol n 3n3 3tol ØÑ ÙÖ ÑÒ ØÖÑÖ ÓÑ Ú Ö ØØ ÖÒ ÙÑÑ Ñ ÑÐÖ ÒÚÒ ÅØÐ Ö ÖÒÒÒµº Ð ÒÙ ØØ ÒØÐ Ú ÖÒ ØÖÑÖ Ó ÙÑÑÖº ÖÒ ÒÖÑÚÖØ Ô π 4 /90º ØØ Ò Ö ÒÓÑ ØØ Ô Ò Ö ÖÚ Ö ÓÖÑØ ÐÓÒ ØÓÐ ¹Ò Ð ½» ØÓе ½» µµ ½Ò ½º»º ÙÑÑ ÙÑ µ ÃÓÒØÖÓÐÐÖ Ú Ð Ö Ö ÒÓÒØÒº Á ØØ ÐÐ Ò Ú ÑÖ Ñ ÅØÐ ÒÝ ÚÖº Ð Ô»¼ ¹ ÙÑÑ Ö ÒÙ ÓÑ ÐÐØ ÑÑÒ ÓÖÑØ ÐÓÒ ÚÖ ÒØ ÙÔÔÖÔ µ Ñ Ó ¹ ÑÐÖ ÒÓÖÒÒØº ÒÚÒ ØÒÒØÒ ÔÐ ÙÔÔØ Ö ØØ ØÖÐÐ ÖÒ Ñ ÅØÐÓÑÑÒÓÒº Ø Ö ÚØÚ ØØ ØÐÐÚÖ Ò ÖÔØÐ ÓÑ Ö ÖÒÒÖÒº ½
3 ËÙÑÑ ÒØÐ ØÖÑÖ ÒØÐ ÖØ ÑÐÖ Ð ÒÐØ ÅØÐ Ð π 4 /90 ÙÑÑ ÊÒÒÖÒ ÜÑÔÐØ ÓÚÒ Ò ÒÚÒ Ö ØØ ØØ ÒÙÑÖ Ø ÚÖ Ô πº Ø ÖÐØÚ ÐØ ÚÖØ Ú π ÖÒØ Ñ ÒÒ ÑØÓ Ò ÖÐØÚØ ÐØØ Ú ½ ÚÖ 1/4 Ú Ø ÖÐØÚ ÐØ Ö ÙÑÑÒ Ø Ö ÐÑÔÐØ ØØ ÖÒ Ö ÙÑÑÒ Ñ ÑÑ ÒØÐ ÑÐÖ ÓÑ ÑÒ Ò Ö πº Î ØÖ ÒÙ Ò Ö ÓÑ Ñ ÖÑÒ Ò ÑÖ Ñ Ò ÓÑØÖ Öº ¾º¾ ÖÒ e 6 ÒÓÑ ØØ ÙÑÑÖ ÖÒ Î Ö ÐÐØ ÖÙÖ ÓÒ ÓÖÑÐÒ k=0 6 k k! a 0 = 1, a k+1 = 6 k + 1 a k Ö ØÖÑÖÒº ÅÓØÚÖ Ö ØØÖÑ ÙÔÔ ØØÒÒÒ ÅÓØÚÖÒ r n 2a n+1 ÓÑ n r n = a n+1 + a n+2 + a n+3 + a n a n a n+1 a n a n a n+1 a n+4...? ÓÖØ ØØ Ó Ú ÐÙØ Ö ÓÒÑÒØ ÖÒ ÒÙ ØÖØÚØ ØÖÑÖ Ó Ð ÙÑÑÓÖ ØÐÐ Ö ØØÖÑÒ ÐÖ ÐØÒ ÓÑ Ò ¹ غÅÒ Ò Ö Ö ½ Ö ÒÐÖÒ ÓÑ Ù ÒØ Ö ÚÖØÝº ¾
4 ØÐÐ Ð ÆÛ ŹРËÖÚ Ò ÐÐÖ ÑØ ÖÒ ÙÖ Ò Ñ µ ÐÒ ÙÒØÓÒ ÒØÐØÖÑÖ ÜÔ ÙÑ ØÓе ± ÒÖ ÒÖÑÚÖØ Ú ±ØÓÐ ØÓÐÖÒ Ò ½ ¼ ¼ ÛÐ ¾ ØÓе ½½µµ» ½µ ½ Ò ÒØÐØÖÑÖ ËÔÖ ÐÒ ÙÒÖ ÒÑÒØ ÜÔ ÙѺ Ù Ö ÒÙ ÔØ ÅØÐ¹ÙÒØÓÒÒ ÜÔ ÙѺ ÒÓÑ ØØ ÅØÐ ÖÚ ÒØÐØÖÑÖ ÜÔ ÙÑ ¹µ Ö Ù ØØ ÒÖÑÚÖ ØÐÐ e 6 Ñ ØÖ ÖØ ÑÐÖº ÂÑÖ ÚÖØ Ñ ÅØÐ ÜÔ µ ÃÖ ÓÑ ÖÒÒÒ Ò Ö ØØ ÑÐÖ ÒÓÖÒÒØ Ó ÑÖ Ò Ò Ò Ñ ÅØÐ ÜÔ µ º Ú ÐÙØ Ñ ÓÖÑØ ØÖÖ ÅØÐ ØÐÐ ØØ Ú ÒÓÖÑÐØ ÒØÐ ÖÓÖº Á ÑÒ Ú Øµ ÒÖ ÙÒØÓÒÒ ÓÚÒ ØØ Ò ØÐÐØ ÖÒÖ e x Ö x 0º ¾º Á ÑÒ Ú Øµ ÖÒ cosxº ÒÚÒ ÑØÓÒ ØØ ÙÑÑÖ ÖÒ k=0 ( 1) k x2k (2k)! ÒÚÒ ØØ ØÖÑÖÒ Ö u k = ( 1) k x 2k /(2k)! Ó Ð ÙÑÑÓÖÒ s n ÙÔÔÝÐÐÖ ÖÙÖ¹ ÓÒÖÒ x 2 u k+1 = (2k + 2)(2k + 1) u k, s k+1 = s k + u k+1. ÎÐ Ö ÝÒÒÐ ÚÖÒ ÂÑÖ Ñ ÅØÐ ÚÖ Ö cosxº ÌÐÐÚÖ Ò ÅØÐ¹ÙÒØÓÒ Ø Ü Ó ÒÙ ÓÑ ÖÒÖ cos x Ó ÐÙØÖ ÐØ ÖÒØÖØ Ö ÑÒÖ Ò Ò ÚÒ ØÓÐÖÒ º ÜÑÔÐÚ Ò ÙÒØÓÒ ÐÒ ÒÐ Ñ ÙÒØÓÒ ÒØÐØÖÑÖ Ó ÒÙ Ü ØÓеº ÇÑ Ù ØÖ Ñ ÑÒÙØÖ ÒØ ÐÝØ ØÓÑÑ Ò ÙÒÖÒ ÙÒØÓÒ Ò ÒÐÖÒ ØÔ ÓÑ ÚÖ ÐÔ ÒÒ ØØ ÑØºµ
5 ÒÚÒ ÙÒØÓÒÒ Ö ØØ ÖÒ cos 10, cos 20, cos30 Ó cos 40º ÂÑÖ Ó Ñ ÅØÐ ÚÖº Ë Ô ØÖÑÖÒ ÖÒ Ö Øµ Ó Ö ÖÐÖ Ú ÓÑ Öº ÖÐÖÒ Ì ÓÖØ ÔÖÓÒØØÒØ Ô ÒÖ ÖÒ Ò Ð ÒÐÖÒ Ò ØÐÐÒÐк ÖÒ ÒÝÓ cos 40º ØØÖ ÎÖÖ ËÚÖ ÓÙÖÖ ÖÖ ÅØÐ Î ÐÐ ÒÙ Ö ØØ ÜÔÖÑÒØÐÐØ ØÙÙÑ Ú ØÖÓÒÓÑØÖ ÓÙÖÖ ÖÖ Ú ÙÒØÓÒ ÖÖ Ú ÓÖÑÒ ¾ 1 2 a 0 + a k cos(kt) + b k sin(kt), k=1 Ö = a k Ó = b k Ö ÖÐÐ ØÐÐÖº Ò ØÖÑ Ò Ò Ö Ò Ó ÖÚ ÓÑ u k (t) = a k cos(kt) + b k sin(kt) = A k cos(kt + δ k ) Ó Ö ÐÐØ Ò ÖÑÓÒ ÚÒÒÒ Ñ ÚÒÐÖÚÒ k Ó ÔÖÓ 2π/kº ÑÔй ØÙÒ Ú ÓÖÑÐÒ A k = a 2 k + b2 k. Î ÐÐ ÐÐØ Ö ÒÙ ÓÖÑ ÙÒØÓÒÖ Ñ Ö Ó Ö ÖÚÒ Öº ¾º ÖÖÐ Ö ÀÑØ ѹÐÖÒ ÓÙÖÓºÑ Ú ÙÒºÑ Ú ÖºÑ Ó Ú Ð ÙÑÑÓÖºÑ ÖÒ ØÓÖÚÒÒÒ Ñ ÒÚÒ ÖÒÔÔÒ ÆØ Ôµº ÒÖ ØÚ ÐÖ ÒÓÑ Ã ½½¼¼ Ø ¹½¼¼º¼½¼ ÎÖÐÒ Ã ÚÖÖ ÑÓØ ÒÜ k ÓÚÒ Ó Ø Ö Ø ÚÖÐÒº ÒÖ ÒØ ÚÖÐÖ ÓÖØ ØØÒÒÒº ÃÓÒØÖÒ Ó ÐÐ ÐÖ Ò ÐÖ ÚÖÐÒ ÒÓÐÐ Ó ÚØÓÖÖÒ Ó Ó Óº ¾ ÀÖ ÑÓØ ÚÖÖ 1 2 a 0 Ø ÓÑ ÓÖÑÐ ÑÐÒÒ Ó ÖÐ ÒÒÖÒ ÐÐ c 0 º
6 Î ÐÐ ÒÙ ÖÒ Ð ÙÑÑÓÖ ØÐÐ ÙÒØÓÒ ÖÒ k=1 sin kt k = sin t + sin 2t 2 + sin 3t ¾º ËÐ Ò ÒÓÐÐ ¼ Ó ÞÖÓ Þ Ãµµ Ó ÓÒ Þ Ãµµº»Ã ÈÐÓØØ Ù ÚØ ¼ ÒÓÐл¾ ÓÒ Þ Øµµ ÔÐÓØ Ø ¼µ ½ ¼ Ó ½µ Ò Øµ ÔÐÓØ Ø ½µ ¾ ½ Ó ¾µ Ò ¾ ص ÔÐÓØ Ø ¾µ ¾ Ó µ Ò Øµ ÔÐÓØ Ø µ Ó ÚÖ ØÐÐ Ù ØÖØØÒÖº ¾º ÎÐÐ ÑÒ ÐÔÔ ÖÚ Ò ÑÝØ Ò ÑÒ Ö Ö ÒÓÐл¾ ÓÒ Þ Øµµ ÓÖ ½½¼¼ Ó µ Ò Øµ ÔÐÓØ Ø µ ØØÐ ³Ð ÙÑÑ ß³ ÒØ¾ ØÖ µ ³Ð³ µ ÔÙ Ò Ì Ö Ô Ú ÔÙ ÒÒÖ ÒÒÒ Ù ØÖØÖ ÖÒÒÒº Ø Ö ØØ ÖÝØ Ñ ØÖй ÓÑ ÐÐ ½¼¼ ØÒ ØÖ Ö ÐÒ Øº ÎÖÖ ÓÙÖÖ ÖÒ ÓÒÚÖÖ ÊØ Ò Ú Ù ØÖÓÖ Ö Ö ÙÑÑÒ 4π < t < 4πº π 2 4π 3π 2π π π 2π 3π 4π π 2 t ÃÓÒÚÖÖÖ Ò ØÖÓÒÓÑØÖ ÓÙÖÖ ÖÒ ÐÓÖÑØ غ Ü 2π < t < 2π ÅØÐ ØÝÖ ÒØ ÓÑ Ö ÐÒ ÖÖ Ø Ö ØØÖ ØØ Ô Ò ÖÔØÐ ÓÑ ÒÒÐÐÖ ÖÒ ÓÚÒ Ó Ö Ò ÖÒ ÓÑÑÒÓÖÒº Ä ÑÖ ØÐÐ ØØ ÐÐ ÒÙ ØÖÑÖ Ó ÖÑ ÚÒ Ð ÙÑÑÓÖÒ Ö Ù ÙÒØÓÒÖº
7 ¾º ËÐ ÒÙ Ò ÓÒØÖ ÒÓÑ a k = 2 π cos(kπ/2) 1 k 2, k 1, a 1 = 1 2, b k = 0 ÒÓÐÐ ¾»Ô Ó¾»Ô Ó Ã Ô»¾µº» ÓÒ Þ Ãµµ¹Ãº õ ± Ó ½µ ÓÒÖ Ó ½µ½»¾ ÓÞÖÓ Þ Óµµ Ó ÖØ ÙÔÔ ÒÖ Ð ÙÑÑÓÖ ÒÓÑ ÒÓÐл¾ ÓÒ Þ Øµµ ÓÖ ½½¼¼ Ó µ Ó Øµ ÔÐÓØ Ø µ ÔÙ Ò ÀÙÖ Ö Ö ÙÐØØØ ÙØ ÖÐÖÒÒ ÒÒ ØÐÐ ØÖ Ø ÐÒ ÚÒÒ º¾º Ë Ó ÚÖØ ØÐÐ ÚÒÒÒºµ Ë Ú ÙÑÑÒ y ½ π ¹ π 2 π 2 π 3π 2 2π 5π 2 3π t ¾º ¾º Ø Ö Ò ÚÖÐØ ØØ Ð Ò ÖÖÒ ÓÚÒ ÖØØº Ö ØØ ÖÒÐ ÒØ¹ ÖÒÒ Ö ÖÚØ ØØ ÖÔØ Ú ÖºÑ ÓÑ ÙØÓÑØ Ø Ú Ö ÙÔÔ ØÖÑÖ Ó Ð ÙÑÑÓÖ ÖÖ Ú ØÝÔÒ ÓÚÒ ÓÑ ÓÒØÖÒ Ö ÒÚÒ ÓÑ ÓÚÒº ÀÑØ ÓÑ Ø ÒØ ÖÒ Ö ÓÖØµ Ú ÖºÑ Ó ÚÖ Ñ¹ÐÖ ÖÒ ÙÖ Ò Ñ º ÒÚÒ ÐÔÙÒØÓÒÒ ÐÔ Ú Ö ËÖÚ Ò ÝÑÒ¹¼º ÝÑܽº ÅØÐº ÃÖ Ú Ö Ö ØØ Ô ÖÒ ØÖÑÖ Ó Ð ÙÑÑÓÖº Å ÒÓÖÑÐ ÙÔÔÐ ÒÒ Ô ÖÑÒ Ö Ø ÒØ ÐÒØ ØØ Ø Ñ ÑÖ Ò ¼ ØÖÑÖº ÖÝØ Ò Ñ ØÖйº 0 t π ÐÐÖ ØØ k=0 cos(2k + 1)t = π (2k + 1) 2 4 (π t). ½µ 2 Á ÑÒ Ú Ø Ò Ù Ú ØØ ÒÓÑ ÒÖÒÒ ÒÓÑ ØØ ØÑÑ Ó ÒÙ ¹ ÖÒ Ö ÖÐØ ½µº Å ÐÔ ÚÅØÐ Ö Ø ÑÐÐÖØ ØØ ÒØ Ö Ø ØÖÓÐØ ØØ ½µ ÐÐÖº
8 ÁÒÒÒ Ù ÒÚÒÖ Ú Ö ÚÖ Ù ÖÚ Ò ÒÓÐÐ Ó Ó Óº Ù Ò ÒÚÒ ØØ Ó ½»¾ ½¹ ¹½µºÃµº» ú¾µ ÐÑ ÒØ ÝÑÒ¹½ºÝÑܽº ÒÒÒ Ù ÒÚÒÖ Ú Öº ËÒ Ù ÒÚÒØ Ú Ö Ö ØØ ÖØ ÚÒ ØÖÐØ Ò Ù ÑÑ Ò ØÖ ÒÓÑ ÓÑÑÒÓØ ÙÔÐÓØ ¾½½µ ÓÐ ÓÒ ÔÐÓØ Ø Ô» Ô»¾ ÓÒ Þ Øµµ¹Øµ ³Ö³µ ÖØ ÚÒ ÖÐØ Ñ Ö Öº Ö ÚÐ t ÚÖÖ ÐØÒ ØÑÑ ËÚÖ ¾º½¼ ¾º½½ ¾º½¾ Á ÑÒ Ú Øºµ ÄØ ÙÔÔØ º l ÚÖ πº ÊØ ÙÒØÓÒÒ f Ó Ó ÒÙ ¹ Ó ÒÙ ÖÖº ÃÓÒØÖÒ Ò Ù ÑØ ÖÒ Ø ØÐÐ ÙÔÔØÒº Ó ÒÒ Ú ØÖÝÐ Ø ÑÒ ÒÐÖÒ ØÐÐÒÐÐÖ ÖØØ ÚÖÒº ÇÑ ÖÒ ÙÑÑÙÒØÓÒ Ö Ò ÖÒ ÖÒ Ò ÑÒ ÚÒ ÖÒ Ó ÖØ ÙÔÔ Ö ØØÖÑÖº ØØ Ö ØØ Ö Ñ ÖÔØØ Ú Ð ÙÑÑÓֺѺ Á ¾º Ö ÙÑÑÙÒØÓÒÒ Ò ÐÚÚ ÐÖØ Ó ÒÙ Úº ËÖÚ ÒÝÓ Ò ÒÓÐÐ Ó Ó Ó Ò ÒÒ ÒÐÒÒµº ËÖÚ Ó Ò ÙÒØÓÒ ³ÑÜ Ó Øµ ¼µ³ Ó Ö Ú Ð ÙÑÑÓÖº Á ÑØØÒ Ú Ò Ò Ø ØÐÐ ØÖÑÒ u n ÖØØ Ó Ö ØØÖÑÒ r n ÐØØ º ÚÖ Ø Ú Ð ÙÑÑÒ ÐØØ Ó ÒÖ Ø ÖÒ ÙÑÑ ÖÒØ ÓÑ ÑÒ ÒÚØ Ò ÖØØ ÙÒØÓÒµº Ö ØÓÖ ÖÒ ÙÖÒ ØÖØ ÐØ ÒÓÑ ØØ Ö Ñ ÑÙ Ò ÒÖ Ö ÖÒØµº ÌÖÝ Ô ÚÐÖ ØÒÒØ ÑÐÐÒ Ðµ Ö ØØ Ò Ø Ð ÙÑѺ ÖÝØ Ñ ØÖйº Å ÐÔ Ú Ú Ð ÙÑÑÓÖ Ò ÑÒ ÓÒØÖÓÐÐÖ ÐÐ ÚÖ ÚÒÒÖÒ Ô ÓÙ¹ ÖÖÓÒØÖº ÇÑ ÑÒ ÒØ ØÝÖ ÓÑ ØØ ÔÖØÐÒØÖÖ Ò ÑÒ ÐØ ÅØÐ ÖÒ ÙØ ÓÒØÖÒº ØØ Ö Ñ Ò ÒÙÑÖ ÑØÓÒ Ò ÓÙÖÖØÖÒ ¹ ÓÖÑØÓÒ Ìµº Ø ÒÒ ÒØÙÖÐØÚ ØØ ÅØÐÓÑÑÒÓ ÓÑ ØÖ غ Å ÐÔ Ú Ñ¹ÐÒ ÓÙÖÓ Ò ÑÒ ÒÚÒ ØØ Ö ØØ ÖÒ ÓÙÖÖÓÒ¹ ØÖÒ Ö Ò ÚÒ ÙÒØÓÒº ÌØØ Ô ÓÙÖÓºÑ Ó Ð ÑÖ ØÐÐ ØØ ÒÜ Ö Ö ÙØÒ ØØ Ø ØÖ ÓÑ ÅØÐ ÒÖÖ ÚØÓÖÖ Ñ ÖÒ Ô k = 1º Î ÐØÖ ÓÙÖÓ ÖÒ 2 8 = 256 ÓÒØÖ ÒÙÑÖ Ø ÚÐØ ÚÖÖ ÑÓØ ½¾ ØÖÑÖ Ò ØÖÓÒÓÑØÖ ÓÙÖÖ ÖÒµº Î ÐÐ ÒÙ Ô ÙØÚÐÒÒ Ú Ò ÝÖÒØ Úº Ò Ò ÒÖ ÒÓÑ ÙÒØÓÒ ³ Ø Ôµ ¹ Ø Ôµ³ ØØ Ò ÖÚÖ Ò ÖÐÖÒº ÅØÐ Ö ÐØØÖ Ö ÐÓ ÚÐÐÓÖ Ò ÑÒ ØÒÓÐÓÖº ÇÑ Ø Ö Ò ÚØÓÖ ÐÖ Ø Ôµ Ò ÚØÓÖ Ñ ÑÑ ÒØÐ ÐÑÒØ ÓÑ Øº Ò Ö ØØÓÖ ÐÑÒØ Ö ÚÐÐÓÖØ Ø Ô Ö ÒØ Ø Ó ÒÓÐÐÓÖ Ö ÚÖØº ÊØ ÒÙ ÙÔÔ ÝÖÒØ ÚÒ ÔÖØÐ ÙÑÑÓÖ Ñ ÐÔ Ú ÓÑÑÒÓÒ ÓÙÖÓ Ú Ð ÙÑÑÓÖ
9 ¾º½ ÍÒÖ Ô ÑÑ ØØ ØÖÒÐÚÒ ÓÑ Ò ÖÚ ÓÑ ÙÒØÓÒ ³Øº Ø Ôµ ¾ Թصº Ø Ôµ³ ¾º½ Á ÑÒ Ú Øºµ ÒÖ ÒÙ Ò ÐÓÑ ÓÑÔÐÖ ÙÒØÓÒ Ñ ÔÖÒ Ó ÓÐ ÙØ ÒÒ Ô ÓÐ ÐÒØÖÚÐк ØØ Ö Ð Ö ÙÒØÓÒ³ ØÔ»¾µº Ø ¹ Ø Ô» µº Ø Ô»¾µ³ ÃÖ ÒÙ ÓÙÖÓ ÖÒ ÓÒØÖÒº ÙØÓÑ ÖØ ÙÒØÓÒÒ ÙÔÔº ÃÖ Ò Ú Ð ÙÑÑÓÖ Ó ÓÒØÖÓÐÐÖ ØØ Ð ÙÑÑÓÖÒ ÒÖÑÖ Ò ÚÒ ÙÒØÓÒÒº ÀØØ ÖÒ Ô ØØ Ø ÜÑÔÐ Ô Ò ÓÒ Ø ÙÒØÓÒ Ó ÙÒÖ ÓÙ¹ ÖÖ Öº ¾º½ Ö ÒÒ ÙÔÔØ Ô Ö ÒÓ ÅÔÐ ØØÖ Ò ÅØÐº ÇÑ Ò ÙÒØÓÒ f Ö ÖÐÐ ÓÒØÒÙÖÐ Ó b a f(x) 2 dx = 0 Ö f(x) = 0 Ö ÚÖ x ÒØÖÚÐÐØ [a, b]º Ä ÐÐÖ ØØ ÓÑ f Ó g Ö ÖÐÐ ÓÒØÒÙÖÐ Ó b a (f(x) g(x)) 2 dx = 0 Ö f(x) = g(x) Ö ÚÖ x ÒØÖÚÐÐØ [a, b]º ÀÙÖ Ú Ò ÚÐÖ ÖÐÐ ØÐÒ a 0, a 1, a 2, b 1 Ó b 2 ÐÖ ÖÑÓØ ÒØÖÐÒ 2π 0 (e x ( a a 1 cos x + a 2 cos 2x + b 1 sin x + b 2 sin 2x)) 2 dx ¾µ ÐÖ ¼º ÀÙÖ ÓÒØÖÒ a 0, a 1,...,b 3 ÚÐ Ö ØØ ÒØÖÐÒ ¾µ Ð ÐØÒ ÓÑ ÑÐØ Ö ÒÖ ÜÔÖÑÒØ Ñ ÅÔк Ö ØØ ÙÒÒ ÐØØ ÑÖ ÓÐ ÒØÖÐÚÖÒ Ò Ø ÚÖ ÐÑÔÐØ Ñ ÓÑÑÒÓØ ÚÐ ±µ ØÖ Ø ØØ Ò ÒØÖÐ ÖÒØ º ÍØØÖÝØ ¾µ Ò ÙÔÔØØ ÓÑ Ò ÙÒØÓÒ Ú ÚÖÐÖÒ a 0, a 1,...,b 2 º ÖÒ Ò ÖÑÒ ÓÒÐÐ ÒÐÝ Ò ÚØ Ù ØØ Ò ÑÒÑÔÙÒØ Ö Ò ØØÓÒÖ ÔÙÒØº ÅÔÐ Ò ÒÙ ÐÔ ØÑÑ ÓÒØÖÒ a 0, a 1,...,b 2 º ÃÒÒÖ Ù Ò ØÐÒ ÝØ ÒÙ ¾µ e x ÑÓØ f(x) Ó ØÑ ØÐÒ a 0, a 1,...,b 2 ØØ 2π 0 ÐÖ ÑÒÑк (f(x) ( a a 1 cosx + a 2 cos 2x + b 1 sin x + b 2 sin 2x)) 2 dx ËÚÖ a k = Ó b k =
10 ¾º½ ÚÖÙÖ µ ÇÔÖØÓÒÒ ØØ ÝØ ÐÐ ÒÙ Ò ÓÙÖÖ Ö ÑÓØ Ó ÒÙ Ó ÐÐ Ó ÒÙ ÑÓØ ÒÙ µ ÐÐ Ö Ò ÀÐÖØØÖÒ ÓÖÑØÓÒº ÃÓÒØÖÓÐÐÖ ÙÖÖÒ Ô ÓÑ ÐØ ØÐÐ ØÓÖÓÑÔÒØ Ô ÐÒ ØØ ÖÒ Ö Ø ÓÙÖÖÓÒØÖÒ Ö Ò ÝÖÒØ Ú ÓÑ ÓÚÒ Ó Ö Ò ÝØØ ÒÓÑ ÑÐÐÒ Ó Ó Ó Ó ¹ÑÐÐÒ ÒÓÐÐ ¼ Ó Ö Ú Öº Ö ÑÓØ ÚÖÒ Ñ ØÖÒÐÚÒº ¾º½ ÚÖÙÖ µ ÓÙÖÖ ÖÖ Ò ÒÚÒ ÒØ Ö Ö ØØ ÖÔÖ ÒØÖ ÙÒØÓÒÖ ÚÒ Ú ÓÖÑÐÖ ÙØÒ ÚÒ ÒØ ÓÑ ÖÙÖ ÐÐ Ö ÖÙ º ËÒØ Ò ÑÒ ÒÓÑ ØØ ÚÐ ÓÒØÖÒ ÐÙÑÔÚ Ó ÒØ ÐÐØ Ö ÒØ ÚØÒº Ö ÒÙ ØØ ÒÙÑÖ Ø ÜÔÖÑÒØ Ñ ØØº ÆÓÖÑÐÖÐ ÐÙÑÔØÐ ÒÖÖ Ñ ÙÒØÓÒÒ ÖÒÒº Ö ØØ ÑÑ ÒØÐ ÓÒØÖ ÓÑ ÒÒÒ ÖÒ Ú ÓÙÖÓµ Ò Ú Ö Öº ËÙÑÑÙÒØÓÒÒ Ö ÒÙ ÓÒ Ó Ø Ö ÖÖ ÐÑÔÐ Ø ØØ ÒÚÒ Ú Öº Ľ½¾ ± Ã Ö Ú Ù ÒØ ÒÖ Ô ÒÓÐм ÓÖÒÒ Þ Óµµº» Ä ¾µ ÓÖÒÒ Þ Óµµº» Ä ¾µ Ú Ö ËØÓÖÐ ÓÖÒÒÒ Ô ÓÙÖÖÓÒØÖÒ ÚÐ ÙÒÖ ÑÑ ÓÑ Ö ÝÖÒØ Ú¹ Òº ÍÔÔÖÔ ÜÔÖÑÒØØ ÒÒÙ Ò Ò ÒÓÑ ØØ Ö ÓÑ ÓÑÑÒÓÒ ÓÑ ØÐй ÚÖÖ ÓÒØÖÒ ÐÙÑÔÚ º ÅÒ Ö Ò ÒÒÒ ÙÒØÓÒ ÑÒ Ñ ÐÒÒ ÙØ Òº ÒÒÙ ÚÖÖ ÖÙ Ö ÑÒ ÓÑ ÑÒ ØØÖ Ø Ü ØÖ Ö Ø ÓÒØÖ¹ Ò ØÐÐ ¼º Ó ½ µ¼ ¼ ¼ Ó ½ µ¼ ¼ ¼ Ú Ö ÄÙ ÅØÐ Á ÑÒ Ú Øºµ ÅØÐ Ö Ö ØØ Ñ Ò ÔÖÑØÚ ÐÙÙÒØÓÒ ÓÑ ÒÖ ÙØ ÐÖ ØÐÐ ØÐÖÒ Ñ ØØ Ú 2 13 = 8192 ÐÑÒØ ÙÒÒ Ô Ò Ð Ý ØÑ Ò ÑÒ ÒÖ ÑÔÐÒ ÖÚÒ Òµº ÃÓÑÑÒÓØ Ö ØØ Ò ÚØÓÖ Ü ØÐÐ ØÐÖÒ Ö ÓÙÒ Üµº Ì Ø Ñ Ü Ó ¾ Ô ¼»½¾ ½½¾µµ ÓÙÒ ¼º½ ܵ Ö Ò ÖÒ ØÓÒ Ó Ü ÖÒÒ ½ ½¾µ ÓÙÒ ¼º½ ܵ
11 Ö ÖÒØ ÖÙ º Ò ÓÑ ÚÐÐ Ò ÑØ ѹÐÒ ØÓÒÒÖØÓÖºÑ Ó Ø ØÖº ÒÒ ÒÚÒÖ Ò ÖÙÖ ÓÒ ÚØÓÒ Ú ÒÖ ÓÖÒÒÒ Ö ØØ ÒÖÖ Ò Ó ÒÙ Ð Ó Ò ØÐÐ ØÐÖÒº Ì Ø ØÐÐ ÜÑÔÐ ØÓÒÒÖØÓÖ ¼ ½ ¼ºµ Ó ØÓÒÒÖØÓÖ ¼ ¾ ¼º¾µº Ø Ö Ø ÖÙÑÒØØ ÒÖ ÖÚÒ Ò Ø ÒÖ ÚÖ¹ ØØÒ Ó Ø ØÖ ÑÔÐØÙÒº ÅÜÑÐÖÚÒ Ò ÐÖ Ô ÙÒÖ ÀÞ Ó ÒÔÔØ Ø Ô ÖÙÒ Ú Ò ÔÔÖÓÜÑØÚ Ó ÒÙ ÖÒÒÒ Ñ ÅÐÙÖÒ¹ ÙØÚÐÒµº Ò ÖÐÖÒ Ú ØÓÒÒÖØÓÖÒ ÒÒ ØØ ÑØ Ô ÙÖ Ò Ñ º ÃÒ Ù ÔÐ ÑÙ Ñ ØÓÒÒÖØÓÖ ÄØØÖØÙÖÖØÒÒ ÖÑÒ Æº ² Ù Ø ÓÒ º ¾¼¼¾µ Ò ÁÒØÖÓÙØÓÖÝ ÅØÐ ÓÙÖ ¹ ÛØ Ò¹ ÒÖÒ ÔÔÐØÓÒ ÔÖØÑÒØ Ó ÐØÖÐ ÒÒÖÒ ÄÒÔÒ ÍÒÚÖ ØÝ ÄÒÔÒº ÖÑÒ Æº ² Ù Ø ÓÒ º ¾¼¼¾µ ÅØÐ ÓÖ ÒÒÖ ÜÔÐÒ ËÔÖÒÖº ÈÖØ¹ÒÒÖ º ² ËÖ º ¾¼¼½µ ÒÚÒÖÒÐÒÒ Ö ÅØÐ ÁÒ ØØÙ¹ ØÓÒÒ Ö ÒÓÖÑØÓÒ ØÒÓÐÓ ÍÔÔ Ð ÍÒÚÖ ØØ ÍÔÔ Ðº ËÑÓÒ Ãº ½ µ ÅØÐ ÈÖÑÖ ÔÖØÑÒØ Ó ÅØÑØ ÍÒÚÖ ØÝ Ó ÐÓÖ¹ º ËÔÒÒ Ëº ¾¼¼µ ËÝ ØÑ Ó ØÖÒ ÓÖÑÖ Á ÃË ½¼
Å Ø Ñ Ø Ø Ø Ø ÌÓÑÑÝ ÆÓÖ Ö ¾ Ù Ù Ø ¾¼¼ ÓÖÑÐ Ö Ó Ø ÐÐ Ö Ø ÐÐ Å Ø Ñ Ø Ø Ø Ø Ô ÙÒ Ú Ö Ø Ø Ó Ø Ò ÓÐÓÖ
ÅØÑØ ØØ Ø ÌÓÑÑÝ ÆÓÖÖ ¾ ÙÙ Ø ¾¼¼ ÓÖÑÐÖ Ó ØÐÐÖ ØÐÐ ÅØÑØ ØØ Ø Ô ÙÒÚÖ ØØ Ó ØÒ ÓÐÓÖ ËÒÒÓÐØ ØÓÖ ËÒÒÓÐØ ØÓÖ ÄÓÖÑ ÒÒÓÐØ ÖÐÒÒ Ô ØØ ÒÐØ ÙØÐÐ ÖÙÑ Ë ÇÑ ÐÐ ÙØÐÐ Ö Ð ÒÒÓÐ ÐÐÖ Ö Ò ÒÐ ØØ È µ Ò µ Ò Ëµ ØØ Ö Ò Ð ÒÒÓÐØ ÒØÓÒÒº
ËÐ ½ ØØ ÒØÖÖ ÒÙÑÖ Ø ÚÖØÙÖµ ÐØ ÓÑ ÖØ ÖÒ Ð ËÐ ¾ ÁÒØÖÐÖ Ê ÈÖÓÐÑØ (Ü) Ü ÖÖ ÓÑ (Ü) Ö ÚÒ Ò Ø ÒÖ ÑØÔÙÒØÖ Ü Ò Ø (Ü) Òµ ÆÙÑÖ Ð ÒÒ ÔÖÒÔ ÖØ Ö Ü Ú Ð Ò ÔÙÒØÖ Ü 0 Ü ÜÆ Ö Ü 0 = ÜÆ = ÇÑ Ú ØÒØ ÒÐÒÒ ØÐÒ = = Æ Ö ØØ ÒØÖÒÒ
ËÐ ½ ÁÒØÖÖ ÒÙÑÖ Ø ÚÖØÙÖµ ÁÒØÖÐÖ Ê ÈÖÓÐÑØ (Ü) Ü ÖÖ ÓÑ (Ü) Ö ÚÒ Ò Ø ÒÖ ÑØÔÙÒØÖ Ü Ò Ø (Ü) Òµ ËÐ ¾ ÈÖÒÔ Ö ÒÙÑÖ Ð ÒÒ ÖØ Ö Ü Ú Ð Ò ÔÙÒØÖ Ü 0 Ü ÜÆ Ö Ü 0 = ÜÆ = ÇÑ Ú ØÒØ ØÐÒ = = Æ Ö ØØ ÒØÖÒÒ Ô ÚÖ ÐÒØÖÚÐÐ [Ü Ü+]
Ö ÙÔ ØÙ Ú ÖÖ Ö ÓØÐ Ò Ä Ö ÆÓÖ Ò ËÚ Ö Ñ Ø ÓÖÓÐÓ Ó Ý ÖÓÐÓ Ò Ø ØÙØ ÆÓÖÖ Ô Ò ¾¼ Ñ Ö ¾¼½¾ ÁÒÒ ÐÐ ½ ÖÙÒ ¾ ÍØÖ Ò Ò ÃÓÑÔÐ ØØ Ö Ò Ö Ö Å ØÓ º½ Ö Ò Ò Ú Ö ØÝ º º º º º º º º º º º º º º º º º º º º º º º º º¾ Ð ÓÖ
Ð ËÅ ½¹½¾¹¼¾ ½ ÅØØ ØÐ ÔÔÒÒ ÇÖÖÒÒ ÖÐÖ ÑØØ ÔÔÒØ ÐÓÒ ½º¾ Ñ ¼ ØÒÓÐÓÖ ÒÖÚÖÒº ¾ ÓÖÑÐ µ ÌÐÐ ÑØ ÓÖÖÒ ÚÐ ÓÖ ÂÓÑ ÅÐÐ ÚÖº µ ÌÐÐ ÑØ ÖØÖÖ ÚÐ Ö ÒÒ Ö ÓÒ ÚÖº µ ÌÐÐ Ù ØÖÒ ÑÒ ÚÐ ÌÓÑ ÏÖ ÜØÙ ÑÙ ÑØ ÂÓÒ ÀÖ ØÖØÙ ¹ ÑÙ º µ ÁÒ
Ì ÆÌ Å Æ ËØ Ø Ø ÑÓ ÐÐ Ö Ò Ö Á ÌÅ˽ ¼ ÑÒ Ò Ò ½ Ñ Ö ¾¼¼ Ð Ô Îº ÂÓÙÖ ÂÓ Ò Ù Ø Ú ÓÒ Ò Òº ½ À ÐÔÑ Ð ÍØ Ð ÓÖÑ Ð ÑÐ Ò Ñ Ø ÐÐ Ö Ì Ô ÙÖ Ò ÒÚÒ ÓÖ Ð Ø Ó ØÝÔ Ó Ò Ö Ò Ó º ÈÓÒ Ö Ò Ò ÍÔÔ Ø ÖÒ Ö Ú ÖÚ Ð ØÝÔ Ö Ò Ø ØØ ÐØ
ÝÖ Ö Ò ØØ Ò Ø ÓÒ Ù ØÖ Ø ÓÒ ÑÙÐØ ÔÐ Ø ÓÒ Ó Ú ÓÒ Ö ØÑ Ø ÙØØÖÝ ÙØ Ö Å ÌÄ Ñ ÓÔ Ö ØÓÖ ÖÒ ¹» Ü ÑÔ Ðº ÇÑ Ø Ö ØÑ Ø ÙØØÖÝ Ø ½ ¾ Ò Ú Å ÌÄ ¹ÔÖÓÑÔØ Ò ÒÑ ØÒ Ò Ò Ú
ÁÒØÖÓ Ù Ø ÓÒ Ø ÐÐ Å ÌÄ Ö ØÑ Ø ÙØØÖÝ Å Ø Ñ Ø ÙÒ Ø ÓÒ Ö Ø ØÝÔ Ö Ó Ú Ö Ð Ö Î ØÓÖ Ö»Ð ØÓÖ ½ ÝÖ Ö Ò ØØ Ò Ø ÓÒ Ù ØÖ Ø ÓÒ ÑÙÐØ ÔÐ Ø ÓÒ Ó Ú ÓÒ Ö ØÑ Ø ÙØØÖÝ ÙØ Ö Å ÌÄ Ñ ÓÔ Ö ØÓÖ ÖÒ ¹» Ü ÑÔ Ðº ÇÑ Ø Ö ØÑ Ø ÙØØÖÝ
ÃÓÑÔÙØØÓÒÐÐ ÁÒØÐÐÒ ÐÓÖØÓÒ ¾ Ê ËÚÒÖ ÖÞ ÅÙ Ø ÀÒ ÇÐÓ ÓÒ ÑÖ ¾¼¼¾ ÁÒÒÐÐ ½ ËÝØØ Ñ ÒÒ ÐÓÖØÓÒ ¾ ÌÓÖ ÒÐÝ º½ ÖÙ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º½º½ ÅÖ ÖÙ º º º º º º º º º º º º
( ) = 3 ( + 2)( + 4) ( ) =
ÊÒÚÒÒÖ ØÐÐ ÔØÐ ÓÑÔÒØ º½ ËÖÚ Ý ØÑÒ ÒÒ Ô ØÐÐ ØÒ ÓÖѺ ÒØ ØØ Ù Ö Ò ÒÐ Ó Ý ÙØ ¹ Òк µ µ Ý(Ø) + Ý(Ø) 2 Ý(Ø) + 3 Ý(Ø) 5 µ 4 Ú(Ø) + 5Ú(Ø) 2 Ý(Ø) + 2Ý(Ø) 5Ú(Ø) µ Ú(Ø) + 2Ú(Ø) 3 Ý(Ø) + 7 Ý(Ø) + 4Ý(Ø) 5Ú(Ø) µ Ý (3)
ÁÒÒ ÐÐ ½ ÁÒØÖÓ Ù Ø ÓÒ ½ ½º½ ÝÒ Ñ Ð Ø Ð Ò Ö Ò Ú ÔØ Ú È ¹Ð Ö º º º º º º º ½ ½º¾ ÃÓÖØ ÓÑ ØÓÖ ÑÙÐ Ö Ò Ö º º º º º º º º º º º º º º º º º º º º ¾ ¾ Ø Ð Ö
ÝÒ Ñ Ð Ø Ð Ò Ö Ò Ö ÔØ Ú È ¹Ð Ö Ö ØÓ Ö Ê ÑÕÙ Ø Ê Ö Ò Ö Ê Ö Ä ÓÒ Ö Ø Ò Ä Æ Ð ÓÒ Ò Ö Ë ÖÐÙÒ Ù Ø Ú Ì ÒÓ ½¾ Ñ ¾¼¼ ÁÒÒ ÐÐ ½ ÁÒØÖÓ Ù Ø ÓÒ ½ ½º½ ÝÒ Ñ Ð Ø Ð Ò Ö Ò Ú ÔØ Ú È ¹Ð Ö º º º º º º º ½ ½º¾ ÃÓÖØ ÓÑ ØÓÖ ÑÙÐ
Ö Ò histogramtransformationº
ÍÐØÖ Ð Ù Ð ÓÖ Ø ÓÒ ÌË ½ Å Ò Ð Ö ÍØÚ Ð Ú Å Ø Ò Ö ÓÒ ÁÅ̵ ¾¼½ ÍÔÔ Ø Ö Ú Å Ö Å ÒÙ ÓÒ ÎÄ ÁË µ ¾¼½ ÓÒØ ÒØ ÍÔÔ Ø Ò Ä Ò Ê ¹ Ø Ò Ê ÒÒ ØÖÐ Ó ÓÙÖ ÖØÖ Ò ÓÖÑ Ò Ð ÒÚ ÐÓÔÔ Ø Ø ÓÒ ÒÚ ÐÓÔÔ Ø Ø ÓÒ Ñ Ú Ö ØÙÖ ËÙ ÑÔÐ Ò Ò
ÁÒÒ ÐÐ ÓÑ ØÖ Ð Ö Ð Ñ ÒØ ÓÔ ÒØÓ Ð¹Ã Û Ö ÞÑ Ð Ö Ø Ð Ö ÔÖ Ø ÙØ ÓÖÑ ÙÒ Ö ½ ¼¼¹ Ó ½ ¼¼¹Ø Рغ Î Ø º ÖØ ¾
Å Ø Ñ Ø Ò ¾¼½¾¹¼ ¹½ Æ Ö Ò Ð Ð Ö Ò ØÓÖ Æ Ð Ö ÓÒ Ò Ð º Ö ÓÒ Úº ½ ÁÒÒ ÐÐ ÓÑ ØÖ Ð Ö Ð Ñ ÒØ ÓÔ ÒØÓ Ð¹Ã Û Ö ÞÑ Ð Ö Ø Ð Ö ÔÖ Ø ÙØ ÓÖÑ ÙÒ Ö ½ ¼¼¹ Ó ½ ¼¼¹Ø Рغ Î Ø º ÖØ ¾ Ð Ö Ð Ñ ÒØ ÓÑ ØÖ Ð Ñ ÒØ ÙÔÔ Ú Ö Ö Ú Ò
Î Ö Ä Ì ½º Ì Ö Ò Ø ÜØ¹ Ð ÓÑ ÒÔÙØº ¾º ÈÖÓ Ö Ö Ð Ò Ó ØÑÑ Ö Ø ÓÔØ Ñ Ð ÙØ Ò Øº º Ö ÙØ Ò ÎÁ¹ Ð Ú ¹ÁÒ Ô Ò ÒØµº º ÎÁ¹ Ð Ò Ò ÓÒÚ ÖØ Ö Ø ÐÐ Ü ÑÔ ÐÚ Ò È ¹ к
ÐÐÑÒØ ÓÑ Ä Ì Ä Ì Ö Ò Ú Ö ÙØÚ Ð Ò Ú Ì ¹ Ý Ø Ñ Ø ÓÑ ÙØÚ Ð Ô ¼¹Ø Рغ Ì ÐÐØ Ö ØÚ Ò Ö µ Ö ÒØ Ò ØØ ØÒ Ñ Ö Ô ÒÒ ÐÐ Ò ÓÖÑ Ø Ö Ò º Ò ÐØ ØØ Ô ØÖÙ ØÙÖ Ö Ó ÙÑ ÒØ ÁÒÒ ÐÐ ÖØ Ò Ò ÃÐÐ ÖØ Ò Ò ÓØÒÓØ Ö Ê Ö Ò Ö ØÓ Ø Ò Ö
s N = i 2 = s = i=1
ÁÒØÖÓ Ù Ø ÓÒ Ø ÐÐ Å ÌÄ ¹ÔÖÓ Ö ÑÑ Ö Ò Ð ÓÖ ØÑ Ö ËÖ ÔØ¹ Ó ÙÒ Ø ÓÒ Ð Ö ÄÓ ÙØØÖÝ Î ÐÐ ÓÖ Ø Ö ¹ Ø Ö Ê Ô Ø Ø ÓÒ Ø Ö ÐÓÓÔ Öµ ÓÖ¹ Ø Ö Û Ð ¹ Ø Ö ½ ÖÒ ÔÖÓ Ð Ñ Ø ÐÐ ÔÖÓ Ö Ñ ÒÐ Ò Ò Ò Ø ÐÐ ØØ Ö Ú ØØ ÔÖÓ Ö Ñ ØØ ÔÖÓ
¾ ½ ½¼ ÈÖÓ Ö ÑÑ Ö Ò Ø Ò Ö Ì½ Ä ÓÖ Ø ÓÒ Ö Ð Ö Ø ¾¼¼¼»¾¼¼½ ÝÐÐ ØØ Ò ÑÒ Ó Ô Ö ÓÒÒÙÑÑ Ö Ñ Ð ÐÐ Ö ÑÓØ Ú Ö Ò º Ç Ë ÇÑ ÒØ ÒÒ Ú ØØ Ò Ø Ñ Ú Ö ÓÚ Ò Ò Ò Ö Ù Ò Ò Ú ØØ Ò Ö Ùй Ø Ø Ø Ö ÔÔÓÖØ Ö Ó Ò Ö ÔÔÓÖØ Ö Ò Ý Ø Ñ
x 2 + ax = (x + a 2 )2 a2
ÅÐ Ö Î ½ ½º ÒØ Ñ Å ÔÐ º ¾º Î Ö Ô Ø Ø ÓÒ Ú Ð Ò Ö Ð Ö º º ÇÐ ØØ ØØ Ö ÔÖ ÒØ Ö ÑÒ Ö ÔÐ Ò Ø»ÖÙÑÑ Øº µ ÁÐÐÙ ØÖ Ö Ð Ø Ö Ð Ñ Å ÔÐ Ð Ö Ò Ò Ð Ø Ò Ö µ ÐÐ Ø Ü Ð Ò Ö Ó Ò Ö Ö ÙÖÚÓÖ º Á Å ÔРй Ð Ø Ö Ñ Ò ÙÒ Ö Ô ÙÖ ÙÖÚ
huvudprogram satser funktionsfil utparametrar anrop av funktionsfil satser satser
Á ÈÖÓÖÑ ØÖÙØÙÖ Ð ÒÒ ½ ÀÙÚÙÔÖÓÖÑ Ó ÙÒÖÔÖÓÖÑ ÆÖ ÑÒ Ð Ö ØÓÖ ÔÖÓÐÑ Ö Ö ÑÒ ÓØ Ð ÙÔÔ ÔÖÓÐÑØ ÐÔÖÓÐѺ ËÒ ÖÚÖ ÑÒ Ò Å¹Ð Ö ÚÖ Ðº ÌÝÔ Ø ÖÚÖ ÑÒ Ò ÓÑÑÒÓл ÖÔØÐ ÓÑ ÐÐ ÙÚÙÔÖÓÖѵ ÓÑ ÒÖÓÔÖ ÙÒØÓÒ ÐÖ ÓÑ Ó ÐÐ ÙÖÙØÒÖ ÐÐÖ ÙÒÖÔÖÓÖѵº
ËØÝÖÒ Ò Ú Ð Ò Ñ Ò ØÓÖ ØØ ÔÖÓ Ø Ö ÁË ÓÖ ÓÒ Ý Ø Ñ ½ Ù Ù Ø ¾¼¼¾ ÂÓ Ò Ð Ò ÜÜÜÜÜܹÜÜÜÜ È Ö Ö ¼ ½½¹ Ô ÖÓ ÁÒÒ ÐÐ ½ ÁÒÐ Ò Ò ¾ Ð Ò Ò ¾º½ ÃÓÒ ØÖÙ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÀÖ
2E I L E I 3L E 3I 2L SOLUTIONS
Ä Ò Ô Ò ÍÒ Ú Ö Ø Ø Ú ÐÒ Ò Ò Ö ÀÐÐ Ø Ø ÐÖ Ò Ð Ä ÖÑ Ö Ð Á Ì ÓÖ Ð Á ÒÙÑÑ Ö Ì ÆÌ Å Æ ÌÅÅÁ½ ¹ ÀÐÐ Ø Ø ÐÖ ÖÙÒ ÙÖ ¾¼½ ¹¼ ¹¾ ½ ½º Ò Ö ØØ ÙÔÔÐ Ð ÓÖ Ú ØÐ Ö ØØ Ú Ò ÐÙÑ Ò ÙÑÔÖÓ Ðº ÒÒ Ð Ð Ø Ñ Ò ÔÙÒ ØÐ Ø F Ô Ñ ØØº ÀÙÖ
Ö ÆË Ò Ö ÚÒ Ò Ö Ð Ö Î À ØÓÖ Ó Ò Ö ÐÐ Ö ÚÒ Ò Ò Ð Ö Ø Ò Æ ÑÒ ÖÚ ÖÒ ÐÐ Ö ÒØÐ Ò ÐÚ ÓÒ Ö Ó Ö ÒÒ Ðк ÍÔÔ Ð ÔÖÓ Ò ÐÐ Ö ÙÖ Ñ Ò Ð Ø Ö Ø º ÇÔ Ö Ø Ú Ô Ø Öº Ë Ö Ø
Ö ÆË Ò Ö ÚÒ Ò Ö Ð Ö Î À ØÓÖ Ó Ò Ö ÐÐ Ö ÚÒ Ò Ò Ð Ö Ø Ò Æ ÑÒ ÖÚ ÖÒ ÐÐ Ö ÒØÐ Ò ÐÚ ÓÒ Ö Ó Ö ÒÒ Ðк ÍÔÔ Ð ÔÖÓ Ò ÐÐ Ö ÙÖ Ñ Ò Ð Ø Ö Ø º ÇÔ Ö Ø Ú Ô Ø Öº Ë Ö Øº Ö ÑØ º ÌÀÆÇ»ËÍÆ Ì Ë ½ ÓÔÝÖ Ø ÅÒ Æ Ð ÓÒ ¾¼¼¾ À ØÓÖ
ÁÒÒ ÐÐ Á ÝÖ ÖÒ ÓÑ ËÙÖ Ð¹ Ö ÓÑ ØØ Ö ÁÁ ÌÖ Ö ÓÑ Ñ Ò Ñ Ø ÒÒ Ø ÐÐ Ó Ò Ð Ø Ö ÁÁÁ йÀ Ò Ö Ñ Ö Ð ÓÒ ÁÎ Ò Ö Ø ÖÙÒ Ò Î Ò Ò Ö ÖÙÒ Ò ÃÒÒ ÓÑ ÓÑ ÚÖ Ö Ð ÓÒ Á ¹ Ð Ñ
ØÖ ÖÙÒ ÖÒ Ë Ý ¹ÙйÁ Ð Ñ ÅÓ ÑÑ Á Ò Ð¹Ï Á ÐÐ Æ ÑÒ Ò Æ Ö Ò ÖÑ ÖØ Ë ÑÑ Ò ØØÒ Ò ÐÐ Ö Ñ Ö Ø ÐÐ ÐÐ Ó Ñ Ö Ó ÚÐ Ò Ð Ö Ú Ö Ñ ÈÖÓ Ø Ò ÅÓ ÑÑ º ØØ Ö ØÖ ÖÙÒ ÖÒ ÒØÐ Ò Ø Ò ÖÒ ÖÙй Ø ºÓÑ Ñ Ö Ø ÐÐØ Ð ÓÑ Ö Ú Ò Ñ Ð Ø Ö Ð
u(t) = u 0 sin(ωt) y(t) = y 0 sin(ωt+ϕ)
Ã Ô ¹ ÑÔ Ö ÑÓ ÐÐ Ö Ò ÌÚ ÖÙÒ ÔÖ Ò Ô Ö Ö ØØ Ý Ñ Ø Ñ Ø ÑÓ ÐÐ Ö ÓÑ Ò Ö Ó Ø µ Ý Ð Ø ÑÓ ÐÐ Ý º ÒÚÒ Ò ØÙÖÐ Ö Ñ Ð Ò Ò Ö Ð Ò Æ ÛØÓÒ Ð Ö Ø Øµº Á Ð Ò Ú ÝÔÓØ Ö Ó ÑÔ Ö Ñ Ò µº Ë Ã Ô ¾ ÑÔ Ö ÑÓ ÐÐ Ö Ò ÒÒ Ø Ò ÑÒ ËÝ Ø Ñ
Verktyg för visualisering av MCMC-data. JORGE MIRÓ och MIKAEL BARK
Verktyg för visualisering av MCMC-data JORGE MIRÓ och MIKAEL BARK Examensarbete Stockholm, Sverige 2010 Verktyg för visualisering av MCMC-data JORGE MIRÓ och MIKAEL BARK Examensarbete i datalogi om 15
Stapeldiagram. Stolpdiagram
Á Î Ù Ð Ö Ò Ö Ñ ¹ Ö Ö Å ØÖ Ö Ó Ð Ö ÇÖ ÒØ Ö Ò º Ä ÐÚºµ ½ À ØÓ Ö Ñ Ó Ø Ô Ð Ö Ñ Å ÓÑÑ Ò ÓÒ Ö Ø Ñ Ó Ø Ò Ñ Ò Ö Ø Ø Ô Ð Ö Ñ Ö Ô Ø Ú ØÓ Ö Ñº ØÓÐÔ Ö Ñ ËÝÒØ ܺ Ö Üµ Ê Ø Ö ØØ Ø Ô Ð Ö Ñ Ú Ö Ð Ñ ÒØ Ò Üº Ø Ñ Üµ Ê Ø
Föreläsning 13 5 P erceptronen Rosen blatts p erceptron 1958 Inspiration från mönsterigenk änning n X y = f ( wjuj + b) j=1 f där är stegfunktionen.
Ä Ò Ö Ó ÃÓÑ Ò ØÓÖ ÓÔØ Ñ Ö Ò Ö Ö Ã Ð Å Ø Ñ Ø ÒØÖÙÑ Ö Ð Ò Ò ½ Æ ÙÖ Ð ÒØÚ Ö ÁÒØÖÓ Ù Ø ÓÒ È Ö ÔØÖÓÒ Ð Ö Ð Ö ËÙÔÔÓÖØ Î ØÓÖ Å Ò ÀÓÔ Ð ÓÐØÞÑ ÒÒÑ Ò Ò ÁÒØÖÓ Ù Ø ÓÒ ØØ ÒÝØØ Ö Ò Ò ØØ È Ö ÐÐ ÐÐ Ø Ø Ö Ò Ø ÁÒÐÖÒ Ò ÇÔØ
f(x) = f t (x) = e tx f(x) = log x X = log A Ö Ð e X = A f(x) = x X = A Ö Ð X 2 = A. (cosa) 2 + (sin A) 2 = I, p (k) (α) k=0
½»¾¹¼ ÙÒ Ø ÓÒ Ö Ú Ñ ØÖ Ö Ë Ø ÙØ Ö Ú p(a) Ö p(x) Ö ØØ ÔÓÐÝÒÓѺ ÆÙ ÐÐ Ú Ú ÙÖ Ñ Ò Ò Ò Ö f(a) Ö Ñ Ö ÐÐÑÒÒ ÙÒ Ø ÓÒ Öº Ü ÑÔ Ð Ô ÙÒ Ø ÓÒ Ö f(x) ÓÑ Ò Ú Ö ÒØÖ Ö f(x) = f t (x) = e tx ÓÑ Ö e ta Ö ËÝ Ø Ñ Ó ØÖ Ò ÓÖÑ
=
ËÝ ØÑ Ó ØÖÒ ÓÖÑÖ ØÓÖÐÓÖØÓÒ ½ Ú ËÚÒ ËÔÒÒ ÊÚÖ Ø ¾¼¼ Ú ÑÖÒ ÑÖÓÐÞ Ó ÂÒ Ù ØÚ ÓÒ ÁÒÐÒÒ ÈÖÓÖÑÑØ Ö ÒÒ ØÓÖÚÒÒ Ö Ð ÖÒÒ Ú ÒÚÖÒ Ó Ò¹ ÚØÓÖÖ ÑØ ÓÒÐ ÖÒ Ú ÑØÖ Ö Ñ ÐÔ Ú ÅØÐ Ó ÅÔÐ Ð Ð ÒÒ Ú ÖÒØÐÚØÓÒÖ Ñ ÐÔ Ú ÅÔк À ÐÖÓÓÒ
ÈÖÓ Ö ÑÚ Ö Ö ÙÒ ÖÚ Ò Ò ÓÑ Ö Ò ¹ Ò ¹ ÓÙÒ ¹Ñ ØÓ Ò Ã Ò Ø Ö Ø ÒÓÑ Ú Ð Ò Ò Ö ÙØ Ð Ò Ò Ò Ú ÐÑ Ö ÂÓÒ Ø Ò Ð Ø Ø ÝÐÐ Ö Ò Ø ÒÒ ÙÖ Ö Ò Ê ÑÐ ÂÓ Ò Î ÐÐÝ ÓÒ ÁÒ Ø ØÙØ ÓÒ Ò Ö Ñ Ø Ñ Ø Ú Ø Ò Ô Ö ÐÑ Ö Ø Ò ÓÐ Ø ÓÖ ÙÒ Ú Ö
Ð ÓÖ Ø Ñ Ö ÙÖ Ä Ò ½ Å ËË ¹ ÁÒØÖÓ ÙØ ÓÒ ÔÖÓ Ö ÑÑ Ø ÓÒ Â Î Ë Ø Ò Î Ö Ð Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ¾ Ñ Ö ¾¼¼
Ä Ò ½ Å ËË ¹ ÁÒØÖÓ ÙØ ÓÒ ÔÖÓ Ö ÑÑ Ø ÓÒ Â Î Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ¾ Ñ Ö ¾¼¼ Ç Ø Ð Ò Ö Ö ÙÒ Ð ÓÖ Ø Ñ Ö ÙÖ Ú ÙÒ ÙÐ Ø Ø Ø Ð Ö Ð Ð Ò ÒØÖ Ô Ö Ö ÙÖÖ Ò Ø Ð ÓÖ Ø Ñ
σ ϕ = σ x cos 2 ϕ + σ y sin 2 ϕ + 2τ xy sinϕcos ϕ
ÃÓÑÔÐ ØØ Ö Ò ÓÖÑ Ð ÑÐ Ò Ì Ò Ñ Ò Ú º Ö ÀÐÐ Ø Ø ÐÖ ÄÙÒ ÍÒ Ú Ö Ø Ø Ù Ù Ø ¾¼½¾ ½ ËÔÒÒ Ò Ö τ σ ÆÓÖÑ Ð ÔÒÒ Ò σ = ÔÒÒ Ò ÓÑÔÓÒ ÒØ Ú Ò ÐÖØ ÑÓØ Ò ØØÝØ Ë ÙÚ ÔÒÒ Ò τ = ÔÒÒ Ò ÓÑÔÓÒ ÒØ Ø Ò ÒØ ÐÐØ Ø ÐÐ Ò ØØÝØ ËÔÒÒ Ò
=
ËÝ ØÑ Ó ØÖÒ ÓÖÑÖ ØÓÖÐÓÖØÓÒ ½ Ú ËÚÒ ËÔÒÒ ÊÚÖ Ø ¾¼½¾ Ú ÂÒ Ù ØÚ ÓÒ Ó ÌÓÑ ÖÒ ØÑ ÁÒÐÒÒ ÈÖÓÖÑÑØ Ö ÒÒ ØÓÖÚÒÒ Ö ØÓÖØ ØØ ØÙÖ ÑØÖ ÓÔÖØÓÒÖ Ñ ÅØÐ Ó ÅÔÐ ÒÚÖÒ ÒÚØÓÖÖ Ó ÓÒÐ ÖÒ Ñ ÅØÐ Ó ÅÔÐ ÒÖÐ ÖØ ØØÓÒÖ Ð ÒÒÖ ÜÔÓÒÒØÐÑØÖ
ÁÒÐÒÒ ÒÒ ØÓÖÚÒÒ Ö Ò ÒØÖÓÙØÓÒ ØÐÐ ÅØÐº ËÝ ØÑØ ÒÚÒ Ö ÓÑ Ò ÚÒ¹ Ö ÖÒÓ Ñ ÒÝ ÑØÖ ÓÔÖØÓÒÖ Ó Öº À Ò ÅØÐÑÒÙÐ ØÐÐÒÐ ÓÑ Ù Ö ÚÒ Úº ÚÒÒÖÒ Ö ØÒØ ØØ ÒÓÑÖ Ô Ò Ò ÑÒ Ú
ÙÒØÓÒ ØÓÖ ÁÒÐÒ ØÓÖÚÒÒÖ Ó ÖÔØØÓÒ Ú ÅØÐ Ú ËÚÒ ËÔÒÒ ÊÚÖ Ø ¾¼¼ Ú ÂÒ Ù ØÚ ÓÒ ÁÒÐÒÒ ÒÒ ØÓÖÚÒÒ Ö Ò ÒØÖÓÙØÓÒ ØÐÐ ÅØÐº ËÝ ØÑØ ÒÚÒ Ö ÓÑ Ò ÚÒ¹ Ö ÖÒÓ Ñ ÒÝ ÑØÖ ÓÔÖØÓÒÖ Ó Öº À Ò ÅØÐÑÒÙÐ ØÐÐÒÐ ÓÑ Ù Ö ÚÒ Úº ÚÒÒÖÒ Ö ØÒØ
0, x a x a b a 1, x b. 1, x n. 2 n δ rn (x), { 0, x < rn δ rn (x) = 1, x r n
Ë ÒÒÓÐ Ø ÐÖ È ÚÓ Ë ÐÑ Ò Ò ÒÙ Ö ¾¼½¼ ÁÒÒ ÐÐ ½ Ö ÐÒ Ò ÙÒ Ø ÓÒ Ö Ó ÒÒÓÐ Ø ÑØØ ¾ ¾ ËØÓ Ø Ú Ö Ð Ö ÇÑ ÈÓ ÓÒ¹ Ö ÐÒ Ò Ò ½¼ º½ ÈÓ ÓÒ Ö ÐÒ Ò ÓÑ ÖÒ Ö ÐÒ Ò Ö ÒÓÑ Ð Ö ÐÒ Ò º ½½ º¾ ÈÓ ÓÒ¹ Ö ÐÒ Ò ÓÑ Ò ÑÓ ÐÐ Ö Ó ÖÙØ Ó
Multivariat tolkning av sensordata
Multivariat tolkning av sensordata Totalförsvarets forskningsinstitut, FOI Hanna Smedh Examensarbete i matematisk statistik 3, 30 högskolepoäng Vt/ht 2009 Handledare: Peter Anton, Leif Nilsson och Pär
½ ÐÐ Ö À ÖÖ ÇÐÓ Ó ÐÚÓÖÒ À ÖÖ ÇÐÓ Ö Ö ÓÑ ÓØØ ¹ Ö Û Ö ÐÐ Ö Ö Ñ¹ Ð Ù Ò ÓÒÓÑ ØÝ Ø ¹À ÖÖ ÇÐÓ ÓÑÑ Ö Ñ ÒÖ Ó Ò Ö Ð Û Ö Òº À ÖÖ ÇÐÓ Ö Ö Ö Ö ÒÒ Ö Ò ÒØÞ Ñ Ð Û Öº
Æ Ö Ø Ö Â ÒÙ Ö ¾¼¼ ½ ÐÐ Ö À ÖÖ ÇÐÓ Ó ÐÚÓÖÒ À ÖÖ ÇÐÓ Ö Ö ÓÑ ÓØØ ¹ Ö Û Ö ÐÐ Ö Ö Ñ¹ Ð Ù Ò ÓÒÓÑ ØÝ Ø ¹À ÖÖ ÇÐÓ ÓÑÑ Ö Ñ ÒÖ Ó Ò Ö Ð Û Ö Òº À ÖÖ ÇÐÓ Ö Ö Ö Ö ÒÒ Ö Ò ÒØÞ Ñ Ð Û Öº Ö ÒØÞ Ö Ð Ó Ð Û Ñ Ð Û ÓÒ Ò ÓØØ
Imperativ programering
Imperativ programering Lösningen till Inlämningsuppgift 1A sommaren 2007 Jesper Wilhelmsson 21 juni 2007 1 Program 1 1.1 C - غ ÒÙ Ø Óº ÒÙ Ø º ÒØ Ñ Ò µ Ö ÓÖ ³ ³ ³ ³ µ ÔÖ ÒØ ± µ ÔÖ ÒØ Ò µ Ö ØÙÖÒ ÁÌ ËÍ ËË
Dlnx = 1 x. D 1 4 x4 = 1 4 4x3 = x 3. F(x) = x3 + x2. + x2. F (x) = G (x) = x 2 + x = f(x). Ó G(x) =
ÃÓÑÔ Ò ÙÑ ÈÖÓÔ ÙØ Ñ Ø Ñ Ø ÁÁ Ò Ð ÙÔ Ö Ø Ø Ú Å Ð Ò À Å Ø Ñ Ø Ò Ø ØÙØ ÓÒ Ò Ó Ñ Ó ¾¼¼ ÁÒÒ ÐÐ ½ ÁÒÐ Ò Ò ¾ ÁÒØ Ö Ð Ö ¾º½ Ö Ú Ø Ó ÔÖ Ñ Ø Ú ÙÒ Ø ÓÒ º º º º º º º º º º º º º º º º º º ¾º¾ ÈÖ Ñ Ø Ú ÙÒ Ø ÓÒ Ø ÐÐ
¾
ÁÒØÖÓ Ù Ø ÓÒ Ø ÐÐ Å ÔÐ Ò Ö ÀÓÐ Ø ¾ Ñ Ö ¾¼¼ ¾ ÁÆÆ À ÄÄ ½ ÁÒÒ ÐÐ ½ ÖÙÒ ¾ ½º½ ØØ Ø ÖØ Å ÔÐ Ö Ï Ò ÓÛ µ º º º º º º º º º º º º º º º º º ¾ ¾ Ö ØÑ Ø ÙØØÖÝ Ò Ú Ö Ð Ö Å Ò ÔÙÐ Ø ÓÒ Ú Ð Ö ÙØØÖÝ Ò ÙÒ Ø ÓÒ Ö ÖÒ ÚÖ
Införande av objektorienterade mönster för ökad förändringsbarhet i mjukvarusystem
Avdelning för datavetenskap Andréas Jonsson Införande av objektorienterade mönster för ökad förändringsbarhet i mjukvarusystem Introduction of object oriented patterns to increase software modifiability
1 S nr = L nr dt = 2 mv2 dt
Ë Ñ Ò ÖÚÓÖØÖ Ö Ð Ó ÓÒ ËØÖ Ò Ò Ö ÖÓ Ö Ø ¾½º Å ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ ÏÓÖÙÑ Ø³ ¾ ¾ Ö Ð Ø Ú Ø ÈÙÒ ØØ Ð Ò ¾ ¾º½ Ï Ö ÙÒ ÒØ Ö Ð Ö Ö Ð Ø Ú Ø ÈÙÒ ØØ Ð Ò º º º º º º º º º ¾ ¾º¾ Ê Ô Ö Ñ ØÖ ÖÙÒ ÒÚ Ö ÒÞ º º º º º º º
ÁÒØÖÓ Ù Ø ÓÒ Ø ÐÐ Å ÔÐ ½ Ñ ¾¼¼
ÁÒØÖÓ Ù Ø ÓÒ Ø ÐÐ Å ÔÐ ½ Ñ ¾¼¼ ¾ ÁÆÆ À ÄÄ ½ ÁÒÒ ÐÐ ½ ÖÙÒ ¾ ½º½ ØØ Ø ÖØ Å ÔÐ Ö Ï Ò ÓÛ µ º º º º º º º º º º º º º º º º º º º ¾ ¾ Ö ØÑ Ø ÙØØÖÝ ¾ Ò Ú Ö Ð Ö Å Ò ÔÙÐ Ö Ò Ú Ð Ö ÙØØÖÝ Ò ÙÒ Ø ÓÒ Ö ÖÒ ÚÖ Ò Ö Ú
Anpassning av copulamodeller för en villaförsäkring
Anpassning av copulamodeller för en villaförsäkring Emma Södergren Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2012:9 Matematisk statistik December
a = ax e b = by e c = cz e
ËÁÃÍÅ ËÌÇ ÃÀÇÄÅË ÍÆÁÎ ÊËÁÌ Ì ÈÊÇ Ä ÅË ÅÄÁÆ Ê ÃÇÆ ÆË Ê Å Ì ÊÁ ÆË ËÁà РÁ Ĺ ½ ½º ÃÖ Ø ÐÐ ØÖÙ ØÙÖ ½¹½º ÃÓÔÔ Ö Ö ¹ ØÖÙ ØÙÖ Ó Ò Ø Ø Ò º»Ñ 3 º Ö Ò Ñ ÐÔ Ö Ú µ Ã ÒØÐÒ Ò Ò ÓÒÚ ÒØ ÓÒ ÐÐ Ò Ø ÐÐ Òº µ Ú ØÒ Ø Ñ ÐÐ
Ë ÑÑ Ò ØØÒ Ò ÃÓ ÑÓÐÓ ÑÑ ÙØ ÖÓØØ Ö Ð Ò Ñ Ø Ò Ö Ö ÒÓÑ Ò ÓÑ Ó ÖÚ Ö Ø ÍÒ Ú Ö ÙѺ ÍÖ ÔÖÙÒ Ø Ö Ö Ø Ð ÜØ Ö Ú Ñ¹ Ñ ØÖÐÒ Ò Ö Ö Ð Ø ÚØ Ó ÒØ Ñ Ò ØÖÓ ÓÑÑ ÙÖ ÓÐÐ Ó
ËÔ ØÖ Ð Ò ÐÝ Ú ÑÑ ÙØ ÖÓØØ Ò ØÙ ØØ Ú ÍÒ Ú Ö ÙÑ Ñ Ø Ò Ö Ö ÒÓÑ Ò Ú Ò Ë Ó Ó Ø º Ö Ö Ò Ð Ö ÖÓ Ø º Ë ½¼ Ü Ñ Ò Ö Ø ÒÓÑ Ø Ò Ý ÖÙÒ Ò Ú ½ ¼ Ô À Ò Ð Ö Ð Ü ÊÝ ÁÒ Ø ØÙØ ÓÒ Ò Ö Ý Ë ÓÐ Ò Ö Ø Ò Ú Ø Ò Ô ÃÙÒ Ð Ì Ò ÓÐ Ò
Ö Ð Ò Ò ÒØ Ò Ò Ö Ö Ú Ö ÙÖ Ò Ê Ô Ø Ø ÓÒ ÙÖ Å ¹ Ø Ñ Ø Ôº Ì˵ Ö Ö Ø Ö Ø ØÙ Ö Ò ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ º ÃÙÖ Ò Ú Ø Ö ØØ ÖÑ Ò Ó Ò Ú Ô Ö ÙÒ
Ê Ô Ø Ø ÓÒ ÙÖ Å Ø Ñ Ø Ö Ð Ò Ò Ñ Ø Ö Ð ÑÑ Ò ØÐÐØ Ú ÌÓÑ Ö Ñ Ò ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ Ö ÙÔÔÐ Ò ¾¼½ Ö Ð Ò Ò ÒØ Ò Ò Ö Ö Ú Ö ÙÖ Ò Ê Ô Ø Ø ÓÒ ÙÖ Å ¹ Ø Ñ Ø Ôº Ì˵ Ö Ö Ø Ö Ø ØÙ Ö Ò ÙÐØ Ø ÓÑÖ Ø Ö
ÌÁÄÄ ÅÈ ÁËÃÊ Ì ËÌÊÍÃÌÍÊ Ê ÂÙÐ Ù ÖÞ Þ Ò Ó Â Ò ËØ Ú Ò Å Ì Å ÌÁÃ À ÄÅ ÊË Ì ÃÆÁËÃ À ËÃÇÄ Ì ÇÊ Ë ÍÆÁÎ ÊËÁÌ Ì Ì ÇÊ ¾¼¼½
ÌÁÄÄ ÅÈ ÁËÃÊ Ì ËÌÊÍÃÌÍÊ Ê ÂÙÐ Ù ÖÞ Þ Ò Ó Â Ò ËØ Ú Ò Å Ì Å ÌÁÃ À ÄÅ ÊË Ì ÃÆÁËÃ À ËÃÇÄ Ì ÇÊ Ë ÍÆÁÎ ÊËÁÌ Ì Ì ÇÊ ¾¼¼½ ÊÇÊ Ì ÖÑ Ò Ö Ø Ñ Ø Ñ Ø Ø Ö ØØ ÑÝ Ø Ö ØØ Ô ØÖÙÑ Ú ÓÐ Ñ Ø Ñ Ø ÑÒ Ò ÓÑ Ô ØØ ÐÐ Ö ÒÒ Ø ØØ
1 k j = 1 (N m ) jk =
ÂÓÖÒ ÖÒ ½ ÖÙÖ ¾¼¼ ÀÙÚÙÖ ÙÐØØØ ÓÒ ÔØÐ Ö ØØ ÚÖ ÚÖØ ÑØÖ Ö ÐÓÖ¹ Ñ Ñ Ò ÓÖÒÑØÖ ÓÑ Ú ØÐÐØÖ ÓÑÔÐÜ ÑØÖ ÐÑÒØµ ÓÑ ÐÐ ÂÓÖÒ ÒÓÖÑÐÓÖÑ Ö ÑØÖ Òº ËÓÑ ÔÔ ÓÒ Ö ÒÓÖÑÐÓÖÑÒ Ò¹ Ö Ø ØØ ØÓÖØ Ø ÚÖØÝ ØÖ ÓÑ Ò ÐÐÑÒØ ÒØ ÖÓÖ ÓÒØÒÙÖÐØ
º º ËÝÒ ÔØ ÔÐ Ø Ø Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾¼ º Æ ÙÖÓØÖ Ò Ñ ØØ Ö º º º º º º º º º º
Æ ÙÖÓ Ý ÓÐÓ ¹ Ò ÑÑ Ò ØØÒ Ò Ú ³ÈÖ Ò ÔÐ Ó Æ ÙÖ Ð Ë Ò ³ Ú Ö ÓÒ ¼º½¾ Ò Ø Ä ÙÒ ÕÙ Ø ¾¼ ÒÙ Ö ¾¼¼ Ë ÑÑ Ò ØØÒ Ò ÒÒ Ö ÔÔÓÖØ Ö Ó Ö Ö Ò Ö Ú Ú Ø Ø ÓÒ ÔØ Ò ÓÑ Ö ÓÑÑ Ö Ã Ò Ð Ë Û ÖØÞ ² Â Ð Ó ³ÈÖ Ò ÔÐ Ó Æ ÙÖ Ð Ë Ò ³ ½
Vattenabsorption i betong under inverkan av temperatur
LUNDS TEKNISKA HÖGSKOLA LUNDS UNIVERSITET Avd Byggnadsmaterial Vattenabsorption i betong under inverkan av temperatur Tina Wikström Rapport TVBM-5084 Lund 2012 ISRN: LUTVDG/TVBM--12/5084--SE (1-66) ISSN:
Ø Ú Ø Ò Ô Ö Ø Ò Ç Ð ÓÒ ² Ñ Ð À Ú Ð Ö Ò Ú Ö Ü Ñ Ò Ö Ø ¾¼¼¼ ¼ ÒÒ Ö ÔÔÓÖØ Ö Ö Ú Ò ÓÑ Ò Ð Ú Ø Ö Ø ÓÑ ÖÚ Ö ØØ Ö ÐÐ Ò Ò Ø Ü Ñ Ò Ø Ú Ø Ò Ôº ÐÐØ Ñ Ø Ö Ð ÒÒ Ö ÔÔÓÖØ Ú Ð Ø ÒØ Ö ÚÖØ Ø Ö Ð Ú Ø ØÝ Ð Ø ÒØ Ö Ø Ó Ò Ø
Ï Ö Ð Ä Æ Ò Ò ÐÝ Ó Ø Ë ÙÖ ØÝ Ò Æ Ó Á ¼¾º½½ ¹ À Ò Ð Ò Ò ÙÖ Ò ¾¼¼½ ÌÓ ÂÓÒ ÓÒ Ø Ó º Ø º Ö ÈÖÓ Ø Ø Ø ÊÓÝ Ð ÁÒ Ø ØÙØ Ó Ì ÒÓÐÓ Ý ÃÌÀµ Ô ÖØÑ ÒØ Ó Å ÖÓ Ð ØÖÓÒ Ò ÁÒ ÓÖÑ Ø ÓÒ Ì ÒÓÐÓ Ý ÁÅÁ̵ Á ÓÖ Ø Ò ½ ¼ Ã Ø ËÛ Ò
Ä Ò Ô Ò ÙÒ Ú Ö Ø Ø ÄÖ ÖÔÖÓ Ö ÑÑ Ø Å Ö Ã Ð Ö Ò ÅÓØ Ú Ø ÓÒ Ó ÐÚÙÔÔ ØØÒ Ò ÀÙÖ Ò Ò ÐÖ Ö ÔÚ Ö Ü Ñ Ò Ö Ø ½¼ ÔÓÒ ÄÁÍ¹Ä Ê¹Ä¹ ¹¹¼»½¼ ¹¹Ë À Ò Ð Ö ÂÓ Ñ Ë ÑÙ Ð ÓÒ
Ä Ò Ô Ò ÙÒ Ú Ö Ø Ø ÄÖ ÖÔÖÓ Ö ÑÑ Ø Å Ö Ã Ð Ö Ò ÅÓØ Ú Ø ÓÒ Ó ÐÚÙÔÔ ØØÒ Ò ÀÙÖ Ò Ò ÐÖ Ö ÔÚ Ö Ü Ñ Ò Ö Ø ½¼ ÔÓÒ ÄÁÍ¹Ä Ê¹Ä¹ ¹¹¼»½¼ ¹¹Ë À Ò Ð Ö ÂÓ Ñ Ë ÑÙ Ð ÓÒ ÁÒ Ø ØÙØ ÓÒ Ò Ö Ø Ò Ú Ø Ò Ô Ó ÐÖ Ò Ú ÐÒ Ò ÁÒ Ø ØÙØ
Ú Ö Ö ÐÒ Ö ØØ Ö Ú Ø Ú Ò Ò ¹ Ú Ö ÓÑ Ò Ø ÓÒ Ö Ú Ñ Ò Ö ¹ Ø Öº ËØÝÖ Ú ØØ Ø ÜØ ÖÒ Ð Ò ÑÓØ Ð ÙÐÐ º Á Ó Ç ÓÐ ÔÖ Ð Ú ÝÒº ÍÒ Ø Ö ÖÒ ÐÒ Ø Ñ ÐÐ Ò ÔÓ Ò ÀÓÑ ÖÓ Ö Ø
ÒØ Ò Ò Ö ÄÎ ÂÓ Ò Î ÐÐ ÙÑ Ñ Ö ¾¼¼ ÒÑÖ Ò Ò Ö Å Ò Ó ÙÐÐ ÓÖ ÒØ Ò Ò Ö ÑØ Ò Ø Ò Ò Ö ½ ½º½ ÐÐÑÒØ ÀÓÑ ÖÓ ÁÐ Ò Ó Ç Ý Ò ØÚ Ð Ö Ú Ò ØÖÓ Ò Ý ÐÒ ÓÑ ØÓ Ú ÔÓ º ÁÒØ ÑÝ Ø Ú Ö Ø ÖÒ ÒÒ Ú Ö º ÁÐ Ò º ¹ ¼ Ç Ý Ò º ¼ Ö Ò Ö º
Ø Ú Ø Ò Ô ÊÓ ÖØ Ù Ø Ú ÓÒ Ó È Ö¹ÇÚ Ê Ò Ý ÓÓØÔÖ ÒØ ÌÓÓÐ ÓÜ Ö Ñ ÛÓÖ Ü Ñ Ò Ö Ø ¾¼¼¼ ¼ ÓÓØÔÖ ÒØ ÌÓÓÐ ÓÜ Ö Ñ ÛÓÖ ÊÓ ÖØ Ù Ø Ú ÓÒ Ó È Ö¹ÇÚ Ê Ò Ý ¾¼¼¼ Ö ØØ ÖÒ Ó Ã ÖÐ Ø ÍÒ Ú Ö Ø Ø ÒÒ Ö ÔÔÓÖØ Ö Ö Ú Ò ÓÑ Ò Ð Ú Ø
ÁÒØÖÓ ÙØ ÓÒ ËÎ ÈÖÓ Ö ÑÑ Ø ÓÒ Ï Ä Ò Ò ÓÖÑ Ø ÕÙ Ë Ø Ò Î Ö Ð Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ¾ ÒÓÚ Ñ Ö ¾¼¼
ÁÒØÖÓ ÙØ ÓÒ ËÎ Ä Ò Ò ÓÖÑ Ø ÕÙ Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ¾ ÒÓÚ Ñ Ö ¾¼¼ Ç Ø Ð Ò ½½ ½ ¾ ÓÒÒ ØÖ Ð ÔÖ Ò Ô ËÎ ÓÒÒ ØÖ Ð ØÖÙØÙÖ ³ÙÒ Ö Ú ÓÒÒ ØÖ Ð ÙÖ Ë ÚÓ Ö Ö ÖÓÙÔ Ö ÙÒ
Självorganiserande strömningsteknik
Självorganiserande strömningsteknik i Viktor Schaubergers fotspår Lars Johansson Morten Ovesen Curt Hallberg Institutet för Ekologisk Teknik Forskningsrapporter 1 Malmö - 2002 Ë ÐÚÓÖ Ò Ö Ò ØÖ ÑÒ Ò Ø Ò
Â Ú ËÖ ÔØ ÇŠغ ÈÖÓ Ö ÑÑ Ø ÓÒ Ï Ä Ò Ò ÓÖÑ Ø ÕÙ Ë Ø Ò Î Ö Ð Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ½ ÓØÓ Ö ¾¼¼
Â Ú ËÖ ÔØ غ Ä Ò Ò ÓÖÑ Ø ÕÙ Ú Ö ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓ ½ ÓØÓ Ö ¾¼¼ Ç Ø Ò ½ ¾ ÓÒÒ ØÖ ÔÖ Ò Ô Ù Ë ÚÓ Ö Ò Ú Ù Ö Ò Ë ÚÓ Ö ÑÓ Ö Ë ÚÓ Ö ÑÓ Ö ÙÒ ØÝ ³ÙÒ Ñ ÒØ Ù Ë ÚÓ Ö ÓÖ Ö ÙÒ
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-08-29 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
ÁÒ Ø ØÙØ ÓÒ Ò Ö Ý Ø ÑØ Ò Ô ÖØÑ ÒØ Ó Ð ØÖ Ð Ò Ò Ö Ò Ü Ñ Ò Ö Ø Ö ØØÖ Ò Ú ÙÓÖÓ ÓÔ Ð Ö Ü Ñ Ò Ö Ø ÙØ ÖØ Ð Ò Ð Ò Ú Ì Ò ÓÐ Ò Ä Ò Ô Ò Ú À Ò ÖÓÐÙÒ ÄÁÌÀ¹ÁË ¹ ¹¼» ¾ ¹Ë Ä Ò Ô Ò ¾¼¼ Ô ÖØÑ ÒØ Ó Ð ØÖ Ð Ò Ò Ö Ò Ä Ò Ô
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-12-16 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Ê Ò ÓÑ Û Ð Ò Ö Ò ÓÑ Ò ÖÝ ÙÖÚ Ý Ó ÓÑ Ö ÒØ Ö ÙÐØ Ö Ò Ò ÀÓÐÐ Ò Ö Â «Ö Ý º ËØ ØÖ Ø ÁÒ Ø Ô Ô Ö Û Ú ÙÖÚ Ý Ó ÓÑ Ö ÒØ Ö ÙÐØ ÓÖ Ö Ò ÓÑ Û Ð Ò Ö Ò ÓÑ Ò ÖÝ ÊÏÊ˵º
Ê Ò ÓÑ Û Ð Ò Ö Ò ÓÑ Ò ÖÝ ÙÖÚ Ý Ó ÓÑ Ö ÒØ Ö ÙÐØ Ö Ò Ò ÀÓÐÐ Ò Ö Â «Ö Ý º ËØ ØÖ Ø ÁÒ Ø Ô Ô Ö Û Ú ÙÖÚ Ý Ó ÓÑ Ö ÒØ Ö ÙÐØ ÓÖ Ö Ò ÓÑ Û Ð Ò Ö Ò ÓÑ Ò ÖÝ ÊÏÊ˵º ÇÒ ½ Û Ö Ú Ò Ö Ò ÓÑ Û Ð Û Ø º º º ÒÖ Ñ ÒØ Ò Ö Ò ÓÑ
x + y + z = 0 ax y + z = 0 x ay z = 0
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 2011-12-13 kl 1419 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade
¾ ÓÖ ÓÖ ØÓÚ ½ ¼ ½ µ Ó ÙÚÐ º Ñ Ð Ò Ì Ö º ÊÓÑ Ò ½ µº ÇÖ Ò Ð Ø Ø Ø Ð Æ ÔÓ ÓÖ ÒÒÝ º ÖÒ ÖÝ Ò Ú ËÚ Ò ËØÓÖ ½ µº Ä Ù ÖÐ ËØÓ ÓÐѺ ÌÖÝ Ø Ó ÐØ Ø ÓÐ ËØÓ ÓÐÑ ½
Ó ÙÚÐ º Ú ÓÖ ÓÖ ØÓÚº Ú Ö Ø Ò Ò Ø Ò Ö Ù Ù Ø ¾¼¼½º ¾ ÓÖ ÓÖ ØÓÚ ½ ¼ ½ µ Ó ÙÚÐ º Ñ Ð Ò Ì Ö º ÊÓÑ Ò ½ µº ÇÖ Ò Ð Ø Ø Ø Ð Æ ÔÓ ÓÖ ÒÒÝ º ÖÒ ÖÝ Ò Ú ËÚ Ò ËØÓÖ ½ µº Ä Ù ÖÐ ËØÓ ÓÐѺ ÌÖÝ Ø Ó ÐØ Ø ÓÐ ËØÓ ÓÐÑ ½ Á Ö Ø
Svenska Matematikersamfundet MEDLEMSUTSKICKET
Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 oktober 2009 Redaktör: Ulf Persson Ansvarig utgivare: Tobias Ekholm Dinner with the Devlin: Persson Logikern Pelle Lindström död: Dag Westerståhl More Sex.
Tentamen i TMME32 Mekanik fk för Yi
Ì ÒØ Ñ Ò ÌÅÅ ¾ Ì Æ½µ Å Ò Ö Ì ÒØ Ñ Ò ØÙÑ ¾¼½ ¹¼ ¹½ к ½ ¹½ º Ü Ñ Ò ØÓÖ Ä Ö ÂÓ Ò ÓÒº ÂÓÙÖ Ú Ò Ä Ö ÂÓ Ò ÓÒº Ì Ð ÓÒ ¼½ ¹¾ ½½¾¼º Ö Ø ÒØ Ñ Ò ÐÓ Ð Ò Ðº ½ Ó ½ º ¼º À ÐÔÑ Ð Ê ØÚ Ö ØÝ ÑØ ØØ ¹ Ð ÓÖµ Ñ ÒØ Ò Ò Ö Ò
Tmem. ::= {mem data := Tmem data ;mem free := Tmem free ;mem null := Tmem null ;mem code := Tmem code }
ÓÖÑ Ð Î Ö Ø ÓÒ Ó Å ÑÓÖÝ ÅÓ Ð ÓÖ ¹Ä ÁÑÔ Ö Ø Ú Ä Ò Ù Ë Ò Ö Ò Ð ÞÝ Ò Ú Ö Ä ÖÓÝ ÁÆÊÁ ÊÓÕÙ ÒÓÙÖØ ½ Ä Ò Ý Ü Ö Ò ßË Ò Ö Ò º Ð ÞÝ Ú ÖºÄ ÖÓÝÐ ÒÖ º Ö ØÖ غ Ì Ô Ô Ö ÔÖ ÒØ ÓÖÑ Ð Ú Ö Ø ÓÒ Û Ø Ø ÓÕ ÔÖÓÓ Ø ÒØ Ó Ñ ÑÓÖÝ
B:=0; C:=0; B:=B+2; C:= 0; B>0 -> B:= B-2; B>0 -> B:= B-2;
ËÝÑ ÓÐ Ò ÐÝ Ó ÌÖ Ò Ø ÓÒ ËÝ Ø Ñ ÁÒÚ Ø Ô Ô Ö Ø Ø Ëž¼¼¼ ÏÓÖ ÓÔ Æ Ø Ö Ò Ë Ò Ö ÓÑÔÙØ Ö Ë Ò Ä ÓÖ ØÓÖÝ ËÊÁ ÁÒØ ÖÒ Ø ÓÒ Ð Å ÒÐÓ È Ö ¼¾ ÍË Ò Ö ÓÛÖ Ðº Ö ºÓÑ ÍÊÄ ØØÔ»»ÛÛÛº к Ö ºÓÑ» Ò Ö» È ÓÒ ½ ¼µ ¹ ¾ ¾ Ü ½ ¼µ ¹¾
ÁÒ Ò Ö Ñ Ø Ñ Ø ÁÁ Ö Ð Ò Ò Ñ Ø Ö Ð ÑÑ Ò ØÐÐØ Ú ÌÓÑ Ö Ñ Ò ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ Ö ÙÔÔÐ Ò ¾¼½
ÁÒ Ò Ö Ñ Ø Ñ Ø ÁÁ Ö Ð Ò Ò Ñ Ø Ö Ð ÑÑ Ò ØÐÐØ Ú ÌÓÑ Ö Ñ Ò ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ Ö ÙÔÔÐ Ò ¾¼½ Ö Ð Ò Ò ÒØ Ò Ò Ö Ö Ú Ö ÙÖ Ò ÁÒ Ò Ö Ñ Ø Ñ Ø ÁÁ Ôº Ì˵ Ö Ö Ø Ö Ø ØÙ Ö Ò Ú ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ
ÁÑÔÐ Ñ ÒØ Ö Ò Ó Ö Ø Ö Ö Ò Ú ÔÙÒ Ø Ö ÔØÓÖ Ö Ö Ö ÐØ Ò Ð Ò Ú ÓØÓ Ø Ö Ñ Ö Ø ØÖ Ø Ò Ú Ö Ò ÂÇÀ Æ ÃÊÁËÌ ÆË Æ Ü Ñ Ò Ö Ø ËØÓ ÓÐÑ ËÚ Ö Å ¾¼½¾ ʹ ¹Ë ¾¼½¾ ¼¼
ÁÑÔÐ Ñ ÒØ Ö Ò Ó Ö Ø Ö Ö Ò Ú ÔÙÒ Ø Ö ÔØÓÖ Ö Ö Ö ÐØ Ò Ð Ò Ú ÓØÓ Ø Ö Ñ Ö Ø ØÖ Ø Ò Ú Ö Ò ÂÇÀ Æ ÃÊÁËÌ ÆË Æ Ü Ñ Ò Ö Ø ËØÓ ÓÐÑ ËÚ Ö Å ¾¼½¾ ʹ ¹Ë ¾¼½¾ ¼¼ Ë ÑÑ Ò ØØÒ Ò Î ØÙ Ö Ö Ò Ñ ØÓ Ö ØÑÑ Ò Ú ÔÙÒ Ø Ú Ö Ò ØÑÑ
S(c 1 w 1 + c 2 w 2 ) = c 1 S(w 1 ) + c 2 S(w 2 ) S(c 1 w 1 + c 2 w 2 ) (c 1 S(w 1 ) + c 2 S(w 2 )).
ËÝ ØÑ Ó ØÖÒ ÓÖÑÖ ØÓÖÐÓÖØÓÒ ¾ Ú ËÚÒ ËÔÒÒ ÊÚÖ Ø ¾¼¼ Ú ÂÒ Ù ØÚ ÓÒ ÁÒÐÒÒ ÈÖÓÖÑÑØ Ö ÒÒ ØÓÖÚÒÒ Ö ØÙÙÑ Ú Ò ÒÐ¹ÙØ ÒÐÖÐØÓÒÖ Ð Ø ÓÑÖØ Ð ÖÚÒ ÓÑÖØ ÑØ Ò ÓÖØ ÒØÖÓÙØÓÒ ØÐÐ ÓÙÖÖØÖÒ ¹ ÓÖÑÖÒ Ñ ÅÔк À ÐÖÓÓÒ Ó ÚÒÒ ØØ ØÐÐÒк
G(h r k r l r ) = h r A + k r B + l r C (1)
ËÌÇ ÃÀÇÄÅË ÍÆÁÎ ÊËÁÌ Ì ËÁÃÍÅ ÎÆÁÆ ËÄ ÇÊ ÌÇÊÁ Ì Ê ËÈÊÁ ÆÁÆ ¹ Á Á Ê ÃÌÁÇÆËÅ ÆËÌ Ê ÎÁ Ê ÆÌ Æ Á Ê ÃÌÁÇÆ ÆÄÁ Ì ¹Ë À ÊÊ ÊË Å ÌÇ ½ºÁÒÐ Ò Ò º ÃÓÖØ ÑÑ Ò ØØÒ Ò Ú ÖÙÒ Ð Ò Ø ÓÖ ºµ Ç º ÒÒ ÒÐ Ò Ò Ö ÒØ Ú ØØ ÙØ ÖÐ Ø Ö
Svenska Matematikersamfundet MEDLEMSUTSKICKET
Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 maj 2011 Redaktör: Ulf Persson Ansvarig utgivare: Tobias Ekholm Intervjuer: Raghunathan, Björner, Laptev Popular Mathematics: Ulf Persson John Milnor -
1 = 2π 360 = π ( 57.3 ) 2π = = 60 1 = 60. 7π π = 210
ÁÒØÖÓ Ù Ø ÓÒ ÙÖ Ñ Ø Ñ Ø Å»Ì Æ Ð Ö ÓÒ ¾¼½¾¹¼ ¹¾ ½ Á Ñ» ܺ ÐÙÐÙ ÓÑÔÐ Ø ÓÙÖ º Ì ÌÖ ÓÒÓÑ ØÖ ÙÒØ ÓÒ È. Î Ò ÐÑØØ Ø Ö Ò Ö Ë ÒÙ Ó ÒÙ Ó Ø Ò Ò º Ò Ø ÓÒ Öº ÌÖ ÓÒÓÑ ØÖ ÙÒ Ø ÓÒ Ö Ó Ö Ö Ö ÌÖ ÓÒÓÑ ØÖ ÒØ Ø Ø Ö ÌÖ Ò Ð
S(c 1 w 1 +c 2 w 2 ) (c 1 S(w 1 )+c 2 S(w 2 )).
ËÝ ØÑ Ó ØÖÒ ÓÖÑÖ ØÓÖÐÓÖØÓÒ ¾ Ú ËÚÒ ËÔÒÒ ÊÚÖ Ø ¾¼½¾ Ú ÂÒ Ù ØÚ ÓÒ Ó ÌÓÑ ÖÒ ØÑ ÁÒÐÒÒ ÈÖÓÖÑÑØ Ö ÒÒ ØÓÖÚÒÒ Ö ØÙÙÑ Ú Ò ÒÐ¹ÙØ ÒÐÖÐØÓÒÖ Ð Ø ÓÑÖØ Ð ÖÚÒ ÓÑÖØº ÖØÖ ÐÖ Ò ÙÔÔØ ÑØ Ò ÓÖØ Ò¹ ØÖÓÙØÓÒ ØÐÐ ÓÙÖÖØÖÒ ÓÖÑÖÒ
ÖÓÖ ØØ ÓÑÔ Ò ÙÑ Ö ÙØÚ Ð Ø ÙÒ Ö ¾¼¼ ¹¾¼½ Ó Ö Ú ØØ ÓÑ Ò Ð Ú ÙÖ Ñ Ø Ö Ð Ø Ø ÐÐ ÙÖ Ò ÅÓ ÐÐ Ö Ò Ú ÝÒ Ñ Ý Ø Ñ ÓÑ Ô ËÌ˹ Ó Á̹ÔÖÓ Ö ÑÑ Ø Ô Ö Ó ¾ µº Ò Ð Ð Ú Ñ
ÅÓ ÐÐ Ö Ò Ú ÝÒ Ñ Ý Ø Ñ ¹ ¾¼½ Ò Ø ÖÐ ÓÒ Ó ÈÖ Ë ÑÙ Ð ÓÒ + Ú º º Ý Ø ÑØ Ò ÁÒ Øº º ÁÒ ÓÖÑ Ø ÓÒ Ø ÒÓÐÓ ÍÔÔ Ð ÙÒ Ú Ö Ø Ø + ÈÓÛ Ö ËÝ Ø Ñ ÀÎ ÄÙ Ú ½ Ñ Ö ¾¼½ ÖÓÖ ØØ ÓÑÔ Ò ÙÑ Ö ÙØÚ Ð Ø ÙÒ Ö ¾¼¼ ¹¾¼½ Ó Ö Ú ØØ ÓÑ Ò
Svenska Matematikersamfundet MEDLEMSUTSKICKET
Svenska Matematikersamfundet MEDLEMSUTSKICKET 1 maj 2007 Redaktör: Ulf Persson Ansvarig utgivare: Olle Häggström En brevväxling: Olle Häggström och Anders Hallberg Uppsala Gästabud: Ulf Persson Uppsalas
Tentamen i Beräkningsvetenskap I, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, 5.0 hp, 2008-03-25 OBS! Denna tentamen avser nya versionen av kursen Beräkningsvetenskap
Från det imaginära till normala familjer
Från det imaginära till normala familjer Analytiska konvergenser Linnea Widman Vt 2010 Examensarbete 1, 15 hp Kandidatexamen i matematik, 180 hp Institutionen för matematik och matematisk statistik ÖÒ
arxiv: v1 [physics.gen-ph] 3 Sep 2008
Ê Ä ÌÁÎÁËÌÁËÃ Ê ÈËÇ Á arxiv:0809.0708v1 [physics.gen-ph] 3 Sep 2008 Ë ÑÑ Ò ØØÒ Ò º Ö Ð Ò Ò Ð Ö Ò ËÔ ÐÐ Ê Ð Ø Ú Ø Ø Ø ¹ ÓÖ Ò Ñ ØÓÖ ÓÑÑ ÒØ Ö Ö ÑØ Ú Ö Ö ØØ ÑÓ Ö Ø ÓÖ Òº ÌÖÓØ Ñ Ö Ò ÙÒ Ö Ö Ô Ò Ò ÒÒ Ø Ò Ø ÓÑ
Imperativ programering
Imperativ programering Inlämningsuppgift 1 sommaren 2007 Jesper Wilhelmsson 12 juni 2007 1 Deluppgift A Nedan finns fem program skrivna i fem olika språk. Er uppgift är att skriva alla fem programmen i
Svenska Matematikersamfundet MEDLEMSUTSKICKET
Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 februari 2010 Redaktör: Ulf Persson Ansvarig utgivare: Tobias Ekholm What should a Mathematician Know?: Davis & Mumford Två klassiska läroböcker i analys:
ÁÒÐÒÒ Ú ØÖØÖ Ú Ò Ø ÒÒ ÐÐ ÖÚØ ÓÑ ÒÖ Ú ØØ Ò ÚĐÖÔÔÔÖ ÒĐÑÐÒ Ò Øº ØÒ ÔÖ Ú ØÒ Ø ØÒ Ñ Ë Øµº ÄØ ÒÙ Ì ÚÖ ØØ ÚØ ÖÑØ ØÙÑ Ó ÒØ ØØ ØØ Ú Ø ÖÚØ ØÒ Ò ÒÐĐÓ Ú ØÒ Ì Ó ÙØ
½º ÓÑÒÒ ÔÖÒÔÒ ØØ ÚĐÖÔÔÔÖ ÓÑ ÒÖ ØÖÑÖ Ú ÒÖ ÚĐÖÔÔÔÖ ÐÐ ØØ ¹ ÒÒ ÐÐØ ÖÚØº ÊĐØØØÒ ÑÒ ÝÐØÒ ØØ ĐÓÔ ØØ ÚØ ÚĐÖÔÔÔÖ ØØ ÖÑØ ØÙÑ ØÐÐ ØØ ĐÓÖÚĐ ÙÔÔÓÖØ ÔÖ ÐÐ Ò ĐÓÔÓÔØÓÒº ¹ ØÖ Ó ÓÔØÓÒ ÓÒØÖØ ĐÖ ÑÝØ ÑÐ ĐÓÖØÐ Öº ØÖ Ö ÚÖØ
ÖÙÒ ÙÖ Ë Ò Ð Ò Ð Ò Ö Ð Ò Ò Ñ Ø Ö Ð À ÒÒÙ ÌÓ ÚÓÒ Ò Ö Ö Ø Ú ÌÓÑ Ö Ñ Ò ÙÐØ Ø Ò Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ ¾¼½
ÖÙÒ ÙÖ Ë Ò Ð Ò Ð Ò Ö Ð Ò Ò Ñ Ø Ö Ð À ÒÒÙ ÌÓ ÚÓÒ Ò Ö Ö Ø Ú ÌÓÑ Ö Ñ Ò ÙÐØ Ø Ò Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ ¾¼½ Ö Ð Ò Ò ÒØ Ò Ò Ö Ö Ú Ö ÙÖ Ò ÖÙÒ ÙÖ Ë Ò Ð ¹ Ò Ð Ò Ôº Ì˵ Ö ØÙ Ö Ò Ú ÙÐØ Ø Ò Ö Æ ØÙÖÚ Ø Ò Ô Ö Ó
¾¼ Ë Ò ÓÐ ÖØ Ö Ò ÓÒÒ Ö ËØÓ ¹ ÓÐÑ ½ ¼ º ½½ º Í ÍÍ Ë ÄÍÅ ÆÍ Å Ú Ò ØØ Ö Ú Ë Ö ØÖ Ѻ ÀÒÚ ÖÒ ¾½ ¾¾ ¾ ¾¾ ¾ ½¼½ ¾ ¾ ¾ ½¾ ½ ½ ¾ ¾º ¾½ Ö À Ò ËÚ Ò Ú Ö º ÍÖ ÇÖ Ó
Ë ÙÖ Ö ÐÐ Ð ØØ Ö ØÙÖ Ò Ö Ö ÐÐ ¾¼ ÒÙ Ö ¾¼¼ Á Ë Ð Ò ½ ½ Ë Ð Ð Ø ÐÓ Ð³ Ô ÖÓ Ì ÐÐ ÓÔÔ Ø Ø Ö¹ Ò µº ÍÖ Ä Ò ÚÓ ÁÒØ ÖÒ ÒÖ ½ º Ø Ô Ô Ö ÒØÓº Ë ÑÑ ÔÙ Ð Ø ÓÒ ÓÑ ½ ¼º ¾ Ë Ô Ö ÑÓ Ô Ö Ñµº ÍÖ Ä Ò ÚÓ ÁÒØ ÖÒ ¹ ÒÖ ½ º ÃÓÖØ
Å Þ Ö Î Ö Ø ÓÒ Ó Ò Ö Ð Ö Ð ÓÖ Ø Ñ ÖØ Ø ÓÒ Ö ÙÐØĐ Ø ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ö Ö ¹Ã ÖÐ ¹ÍÒ Ú Ö ØĐ Ø ÌĐÙ Ò Ò ÞÙÖ ÖÐ Ò ÙÒ Ö Ò Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò ÚÓÖ Ð Ø ÚÓÒ Ö ØÓ
Å Þ Ö Î Ö Ø ÓÒ Ó Ò Ö Ð Ö Ð ÓÖ Ø Ñ ÖØ Ø ÓÒ Ö ÙÐØĐ Ø ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ö Ö ¹Ã ÖÐ ¹ÍÒ Ú Ö ØĐ Ø ÌĐÙ Ò ÞÙÖ ÖÐ Ò ÙÒ Ö Ò Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò ÚÓÖ Ð Ø ÚÓÒ Ö ØÓÔ Ë Û ÖÞÛ ÐÐ Ö ÌĐÙ Ò ½ Ì Ö ÑĐÙÒ Ð Ò ÉÙ Ð Ø ÓÒ ½ º½¾º½
ÄÓ Ð Ö Ò Ú ÖÓÚ ÙÖ Ñ ÐÔ Ú È˹ Ó ÈÊË¹Ø Ò Ö Ö Ð Ò Æ Ð Ò Ö Ò Â ÑÑÝ ÖÐ Ò Å ØØ Ö Ä Ö ÂÓ Ò ÓÒ ÃÖ ØÓ Ö Æ Ð ÓÒ Ö Ö Ð Ò Æ Ð Ò Ö Ò Â ÑÑÝ ÖÐ Ò Å ØØ Ö Ä Ö ÂÓ Ò ÓÒ
ÄÓ Ð Ö Ò Ú ÖÓÚ ÙÖ Ñ ÐÔ Ú È˹ Ó ÈÊË¹Ø Ò Ã Ò Ø Ö Ø Ú Ð Ò Ò Ö ÔÖÓ Ö ÑÑ Ø Ö Ø Ø Ò Ö Ö Ð Ò Æ Ð Ò Ö Ò Â ÑÑÝ ÖÐ Ò Å ØØ Ö Ä Ö ÂÓ Ò ÓÒ ÃÖ ØÓ Ö Æ Ð ÓÒ ÁÒ Ø ØÙØ ÓÒ Ò Ö Ø ¹ Ó Ò ÓÖÑ Ø ÓÒ Ø Ò Ú ÐÒ Ò Ò Ö ØÓÖØ Ò À ÄÅ
u(t) = u o sin(ωt) y(t) = y o sin(ωt + φ) Y (iω) = G(iω)U(iω)
Ã Ô Ø Ð ÑÔ Ö ÑÓ ÐÐ Ö Ò ØØ Ö Ã Ô Ø Ð Ø ÐÐ ÓÑÔ Ò Ø ÅÓ ÐÐ Ö Ò Ú ÝÒ Ñ Ý Ø Ñ Ó Ö Ø Ñ Ô Ø ÒØ Òº Á Ô Ø Ð ¾ ÙØ Ö Ý Ð ÑÓ ÐÐ Ö Ò Ú ÙÖ Ñ Ò ÖÒ Ú Ø ÓÒ Ö Ò Ø Ö Ñ ÝÒ Ñ ÑÓ ÐÐ Öº Î Ö Ó ÒØ Ø ØØ ÑÓ ÐÐÔ Ö Ñ ØÖ ÖÒ ÝÒ Ñ ÑÓ
Svenska Matematikersamfundet MEDLEMSUTSKICKET
Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 oktober 2008 Redaktör: Ulf Persson Ansvarig utgivare: Nils Dencker Brändén och Karlsson Wallenbergpristagare: Borcea och Benedicks Lund under luppen: Magnus
Svenska Matematikersamfundet MEDLEMSUTSKICKET
Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 november 2010 Redaktör: Ulf Persson Ansvarig utgivare: Tobias Ekholm ICM 2010 - Hyderabad: Ulf Persson The Good, the Bad and the Ugly: Bill Casselman Platons
Problembanken. Grundskola åk 7 9, modul: Problemlösning. Hillevi Gavel, Mälardalens högskola
Problembanken Grundskola åk 7 9, modul: Problemlösning Hillevi Gavel, Mälardalens högskola ÅÓÙÐ ÈÖÓÐÑÐ ÒÒ Ð ½ ÀÐÐÚ ÚÐ ÅÐÖÐÒ ÓÐ ÒÒ ÔÖÓÐÑÒ ÒÒÐÐÖ ½ ÔÖÓÐÑ Ñ ÚÖÖÒ ÒÒÐÐ Ó ÚÖØ Öº ÌÒÒ Ö ØØ Ò ÚÐÖ ÔÖÓÐÑ ØÖ Ú ÓÑ
Svenska Matematikersamfundet MEDLEMSUTSKICKET
Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 maj 2009 Redaktör: Ulf Persson Ansvarig utgivare: Nils Dencker Intervjuer: Lithner och du Sautoy: Ulf Persson From Sweden with Love: An Yajun Boij och Nyström
level days
ÌÓÑÑÝ ÆÓÖÖ ÅØÑØ ØØ Ø ÐÑÖ ² Í ½ ÑÖ ¾¼¼ ÈÓ ÓÒÔÖÓ Ò Ó ÜØÖÑ Ð ØÖ ÒÒ ÖÐ ÒÒ Ú ØÓÖØ Ö ÐØ ÖÒ Ô ØÑØ ÓÚÒÐ ÒÐ Öº Î ÖÖ Ñ ØØ ÒÖ ÈÓ ÓÒÔÖÓ Ò ÓÑ ÓØ Ö Ò Ö ÑÓÐÐ Ö ÒÖ ØÒ ÓÚÒÐ ÒÐ Ö ÒØÖÖº ËÒ Ú Ñ Ò ÈÇÌ¹ÑØÓÒ ØØ ØÓÖÐÒ ÐÐÖ ØÝÖÒ
Svenska Matematikersamfundet MEDLEMSUTSKICKET
Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 maj 2010 Redaktör: Ulf Persson Ansvarig utgivare: Tobias Ekholm 19P 10P 2P 11P 20P 29P 6P 15P 24P P 25P 16P 7P 30P 21P 12P 3P 26P 17P 8P John Tate - Abelprisvinnare:
Svenska Matematikersamfundet MEDLEMSUTSKICKET
Svenska Matematikersamfundet MEDLEMSUTSKICKET 15 januari 2007 Redaktör: Ulf Persson Ansvarig utgivare: Olle Häggström Mittag-Lefflers testamente: Arild Stubhaug Reminiscenser av Mittag-Lefflerinstitutet:
t
ÝÒÑ ËÝ ØÑ À̼ ÃÓÑÔÐØØÖÒ ÖÒÚÒÒÖ ØÐÐ ÓÑÔÒØ ÊÒÚÒÒÖ ØÐÐ ÔØÐ ÓÑÔÒØ º Á Ø ÒÔÙØ ØÓ ÖØÒ Ý ØÑ ÙÒØ ØÔ ØÒ Ø ÓÙØÔÙØ ÛÐÐ ÓÖÒ ØÓ ÙÖ º Ý Øµ ¼ ¼ Ø ÙÖ ËØÔ Ö ÔÓÒ ÓÖ º ÙÑ ØØ Ø ÒÔÙØ Ò Ø Ò ÑÔÙÐ º ÏØ ÛÐÐ Ø ÓÙØÔÙØ Ø ØÑ Ø º ÂÙ
PLANERING MATEMATIK - ÅK 7. Bok: X (fjärde upplagan) Kapitel : 1 Tal och räkning Kapitel : 2 Stort, smått och enheter. Elevens namn: Datum för prov
PLANERING MATEMATIK - ÅK 7 HÄLLEBERGSSKOLAN Bok: X (fjärde upplagan) Kapitel : 1 Tal och räkning Kapitel : 2 Stort, smått och enheter Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor
ÍØÚÖ Ö Ò Ú ËË ¹ Ò Ð Ö Ò ÓÑ Ö Ö Ò Ò Ø Ð ÓÔ Ö Ø Ö ÓÔ Ö Ø Ú Ú Ö Ñ Ø Å ØØ Ë Ð Ò Ö Ñ ¾¼¼ Å Ø Ö³ Ì Ò ÓÑÔÙØ Ò Ë Ò ¾¼ Ö Ø ËÙÔ ÖÚ ÓÖ Ø Ë¹ÍÑÍ Â ÖÖÝ Ö ÓÒ Ü Ñ Ò Ö È Ö Ä Ò ØÖ Ñ ÍÑ ÍÒ Ú Ö ØÝ Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ò Ë Ò Ë
Vindkraft och försvarsintressen på Gotland
Dnr 421-2744-10 1(15) Vindkraft och försvarsintressen på Gotland Redovisning av ett samverkansprojekt mellan Länsstyrelsen, Region Gotland och Försvarsmakten 2011 Projektet har bekostats av Energimyndigheten,
T O C K H O L M S T E T I V E R S + U N
I T E T U N I V E R S + T O C K H O L M S S ËÁÃÍÅ ËØÓÓÐÑ ÙÒÚÖ ØØ Ý ÙÑ ¾ ÒÙÖ ¾¼¼ ÄÄ Đ Ê Ô ÄÇÊÌÁÇÆ ¾ ÅÆÌÁËà ĐÄÌ ¾¼½¼ þ ÎÖØÖÑÒÒ ¾¼¼ ÅÐ Á ÒÒ ÐÓÖØÓÒ ÐÐ Ù ØÙÖ ÑÒØ Ñй ÐÒ ¹ Ó À¹ĐÐØÒ Ò ØÓÖÓÓÖÑ ĐÖÒĐÖÒ Ñ ØÖĐÓÑ
Article available at or
Å Ø º ÅÓ Ðº Æ Øº È ÒÓѺ ÎÓк ÆÓº ¾ ¾¼¼ ÔÔº ¾ ¹ ÅÓ ÐÐ Ò ÚÓÐÙØ ÓÒ Ó Ê ÙÐ ØÓÖÝ Æ ØÛÓÖ Ò ÖØ Ð Ø Ö º Ë Ò Þ¹ a,c º È Ö ÓÒ a ºź È b Ò º ÐÓÒ ½,a,c a ÄÁÊÁË ÆÊË ÍÅÊ ¾¼ ÁÆË ¹ÄÝÓÒ ÍÒ Ú Ö Ø ÄÝÓÒ ¾½ Î ÐÐ ÙÖ ÒÒ Ö Ò