Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9

Storlek: px
Starta visningen från sidan:

Download "Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9"

Transkript

1 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. Prov c a b 8+ d / 8 + / d / 5 5 ( d π sin d π sin d u( s s' π / cos U( s π cos cos ( ( ln ln e d e d u( s s' ln / e e e ( e e 9, ln 7 e Svar a b 7 c d 9, 5

2 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. a ( sin d cos + C F ( 7 8 d b cos d cos sin d + C u( s U( s s c Vi får ekvationen sin tan d d ( sin d cos cos u( s s C 7 + C F 7 + C ln cos + C U( s ln( cos + C π π < <, vilket ger cos > Dvs. F 7. C Svar F 7 lncos + C Svar a cos + C b sin + C c ln cos + C

3 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. Arean är Skärningspunkterna mellan kurvorna y och y + : y y Vi ritar en figur. + + ± ( ± eller A da y y d y y, när ( + d + d + / Svar Arean är 6.

4 Ellips Integralkalkyl lösningar till övningsproven uppdaterad Rotationskroppens volym är Skärningspunkterna mellan parabeln y 6 och linjen y : 6 ( eller eller Vi ritar en figur. V dv πr d π 6 d π d π/ r y ( 6 r y 9 π π 5 9 π, 5 Svar 9 π, 5

5 Ellips Integralkalkyl lösningar till övningsproven uppdaterad så får vi ekvationen Eftersom funktionen f är kontinuerlig så har den en + C + D primitiv funktion. D 9 + C Funktionen f kan inte integreras direkt, utan vi måste först skriva om den som en styckvis definierad funktion., när f (,när < +, när, när > De primitiva funktionerna till funktionen f kan skrivas på formen + + C, F + D, > Eftersom den primitiva funktionen F är kontinuerlig, får vi speciellt att den är kontinuerlig för. Detta ger att lim F lim F. + Eftersom lim F lim + + C + C lim F lim + D + D + + De primitiva funktionerna till funktionen f är + + C, F C, > Eftersom F får vi ekvationen + + C C Dvs. Svar F F, + + > 5,, + + > 5,

6 Ellips Integralkalkyl lösningar till övningsproven uppdaterad a Skärningspunkterna mellan kurvorna y, och y, y, dvs. mellan kurvorna y, och y, : y n:te rotens definition ( eller Volymen av rotationskroppen får vi som differensen av två rotationskroppar. Vi ritar en figur. ( ( π π V dv y y d π d π d y y

7 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. π/ 5 5 Rotationskroppens volym är differensen mellan två rotationskroppar. 5 π 5 5 π 5 π (,9 b Vi bestämmer y-koordinaterna för skärningspunkterna mellan kurvorna y, och y, y, dvs. mellan, kurvorna y y och y, y. Enligt a-fallet är dessa y-koordinater y och y ( π π V dv dy π y y dy π y y dy π/ y y 5 π 5 5 y y π (,9 Svar a b π,9 π,9

8 Ellips Integralkalkyl lösningar till övningsproven uppdaterad Vi bestämmer först hur grafen till funktionen i förhållande till -aeln. Funktionen intervallet e ln ( ln f 6 e eftersom ln f är strängt avtagande i ligger f ln ln ln ln 6 När e e, så är ln ( ln >, ln lne lne > och ln <. Arean av ett ytelement är da yd, vilket ger att arean är e e e ln A da yd d e e e 6 <, när e e Dessutom är (lne 9 f (e e e > 6 6 (lne 6 f (e > 6 6 e e vilket ger att grafen till funktionen f ligger ovanför -aeln i 6 intervallet e,e. Vi ritar en figur. e 6 ( ln e u( s 6 ( ln / e ( e U s s d s ln och u s och U

9 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. ( 6 ( lne lne loga a 6 89 ( Svar Arean är 6. 9 a Kurvan y 9 är den nedre halvcirkeln i en cirkel med medelpunkten i origo och radien, eftersom Vi får y 9 y y + y 9 9 π 9π 9, d d halvcirkelns area r är A π [ ] b Funktionen f :,, f 9 är udda eftersom f ( 9( ( (9 (9 f Eftersom integrationsintervallet [, ] avseende på origo, så är Svar a b (9 f d 9π är symmetrisk med

10 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. e g f d ur tabellbok: f gd fg g f d e e d f g g f e + e + e + C e e + C 9 e d Svar e e + C 9

11 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. Prov 5 5 a e e a ( d b C C b c d d d + 5 6ln + C > + 5 6ln+ C e d + C 5 d 5 5 e 5 e 5 d + C 5 u( s s U( s 5 5 d d + C 5 ln5 u( s s U( s C 5ln C ln5 s 5 och u e s 5 och U e s 5 och u 5 5 s 5 och U ln5 5 Svaret kan också ges på denna form. Svaret kan också ges på denna form.

12 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. a b d d ln + C < ln ( + C + + d d ( + ( d u s s s och u s och U ln d 6 c d d d d ln + C > 6 7 ln + C 6 Alternativt lösningssätt: d d d d d d d 6 ln ln ln + C > ln + C >, vilket ger > ln ln 6ln ln ln 6ln + C + C U( s ln 7 ln( + C + C ln + C 6 6

13 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. Svaret kan också ges på en annan form: F sin( + π d s + π och u sin s och U cos sin( π [ cos ( π ] + d + + C u( s s U( s cos ( + π + C Eftersom F π får vi ekvationen cos( π+ π + C cosπ + C + C C cosinus för F cos( + π supplementvinkeln: cosα cos( π α Svar cos( π ( + π cosinus för den motsatta vinkeln: cos ( cos( α cosα cos F cos( + π F cos Dvs. F cos( + π.

14 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. 5 y + + y + är kontinuerliga, vilket ger att kurvorna kan byta Vi bestämmer tangentens ekvation för funktionen f + + i : Derivatan är f +. De funktioner som svarar mot kurvorna och ordning endast i skärningspunkterna. Vi bestämmer kurvornas ordning i intervallet med hjälp av några testpunkter. 8 y + + y + kommentar y y, när Tangentens riktningskoefficient i är k f. Eftersom f så går tangenten genom punkten (,. t Vi ritar en figur. Tangentens ekvation är y y y k y + Skärningspunkterna för kurvorna y + + och y + : y y ( eller o

15 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. Arean är 6 A da y y d y y, när ( d + d / Skärningspunkterna mellan kurvorna y och y + : y y + Vi ritar en figur. + Svar Arean är.

16 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. Arean är 7 A da y y d y y, kun ( + d En pärla i pärlbandet uppstår när kurvan y sin, π roterar kring -aeln. / ( + d ( Volymen av en pärla är Svar Arean är. V π π y d π π(sin d ur tabellbok: sin cos

17 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. π π cos d π π π cos d d π π π / cos d π π π / sin π π π π ( sinπ sin π π Svar Pärlans volym är. 8 a d u s ( ( d u( s s' U s' b / ( (( ( 6 (( 6 ( 7 6 d d u( s s' / ( U( s ( ( Svar a b

18 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. 9 Volymen är a Vi bestämmer nollställena för funktionen f : ± Vi ritar en figur. V dv f är en jämn funktion. dv πy d ( π ( π + d d 5 π/ + 5 π + 5 Svar 6 π (,5 5 6 π,5 5

19 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. b Nollställena för funktionen f är ±. Toppens y- koordinat i parabeln är f. Vi ritar en figur. V dv π dy ( y π + dy y y + π / y + y π + π (,57 Volymen är c Området roterar kring linjen y, som går genom parabelns topp. Vi får volymen för den kropp som uppstår genom att från en rak cirkulär cylinder (basradien, höjden subtrahera volymen av det ihåliga innandömet (se figur.

20 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. πr d r y ( + π ( d π d / π 5 5 Volymen av det ihåliga innandömet är 5 π 5 π 5 V dv dv symmetri Rotationskroppens volym är 8 V Vcylinder V π V π π π 5, 5 5 Svar a 6 π,5 5 π 8 b,57 π 5, c 5

21 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. t + Vi betecknar f( t 5t. Funktionen f är kontinuerlig när t >, vilket gör att den har en primitiv funktion som vi 5 t + betecknar Ft ( dt, t>. 5t 5 Integralkalkylens huvudsats ger att + f ( tdt F( + F(, och då är d d + d f( t dt F( + F( d d d F + F d d ( 5( + ( d F'( + ( + F ( t f( t d t + f( + f( t 5t Svar

22 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. Prov b a ( + ( + u( s s 5 ( + + C 5 U( s 5 ( + + C d d s + och u s och U d ( 6 d ( 6 d u( s s ( 6 + C U( s ( 6 ( 6 + C ( C Svar a ( C b ( C s 6 och u s och U

23 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. Funktionen F( sin + cos + 8 är en primitiv funktion 5 till funktionen f ( cos sin om F f för 5 alla. Påstående: F f för alla Bevis: F D sin + cos Dsin + Dcos + 5 cos + sin 5 5 cos sin 5 f för alla Parabeln y öppnar sig till höger och parabeln öppnar sig till vänster. Vi bestämmer y-koordinaterna för skärningspunkterna mellan kurvorna y och y +. y + y Insättning i ekvation (. y + y y ± Vi ritar en figur. y y +

24 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. Ytelementets area är A da dy, vilket ger att arean är ( ( ( y / y + y da dy y + y dy Svar Arean är. dy Anmärkning Man skulle också ha kunnat beräkna arean genom att först spegla kurvorna med avseende på linjen y, eftersom arean som begränsas av kurvorna bevaras vid spegling. Då är ytelementet da ( y y d och kurvorna är och y +. y a d + + u( s d + s u( s ln C + + ( d ln + + C s + och u s och U ln >, vilket ger + >

25 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. b c + d d + d ( + ( + d + + d d d + ( d d d + d + + d + u( s s + och u s och U ln d + u( s s d s + och u s och U ln + d + u s s + ln + + C >, vilket ger + > + ln( + + C ln + + C <, vilket ger + < ln( + C ( Svar a ln + + C b ln C c ln( + C

26 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. 5 a Rotation kring -aeln. Vi ritar en figur. Vi ger kurvan y i styckvis definierad form: Nollställen: y > +, när,när > +, när,när < > +,när, när eller y Volymen är ± V π r d symmetri π y d y π d

27 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. ( π ( π d d 5 8 π/ π π ( 7 5 b Rotation kring y-aeln. Integrationsgränserna är y och y y Vi ritar en figur. Volymen är V dv y, π dy y + π y dy π/ y y π 8π 5, y Svar a 5 π ( 7 5 8π 5, b

28 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. 6 Ytelementets area är da yd, vilket ger att arean är Parabeln y a a öppnar sig uppåt, eftersom a >. Grafen till parabeln ligger under -aeln mellan nollställena. Parabelns nollställen: a Vi ritar en figur. a a a : a ( > a ± a a a ± a> a ± a Svar a a a a a A da y d a a ( a + a d + a a a a a a a + + a a a a a a + a a + + Arean är. Anmärkning I uppgiften skulle vi också ha kunnat utnyttja att funktionen är jämn och att integrationsintervallet är symmetrisk med avseende på origo. a a A a + a d a + a d... ( (. a /

29 Ellips Integralkalkyl lösningar till övningsproven uppdaterad ,89t cm Insulinet avges med hastigheten vt (,5e. dygn Mängden avgivet insulin under de första dagarna är då [,] Vi delar in intervallet i fyra lika långa delintervall. Varje delintervall har då längden. Vi ritar en figur. Svar:,58 cm It ( vtdt (,5e,89t,5,89t e (,89,89 dt,5,89 u( s s' /,89t e U( s,5 e e,89,5 ( e 6,7,89 (,89,89,58 cm dt [, ], vilket ger att Funktionen f är strängt väande i intervallet den i varje delintervall antar sitt största värde i intervallets högra ändpunkt och sitt minsta värde i intervallets vänstra ändpunkt. Funktionen är strängt avtagande i intervallet [, ], vilket ger att den i varje delintervall antar sitt största värde i intervallets vänstra ändpunkt och sitt minsta värde i intervallets högra ändpunkt. Vi uppskattar arean med under- och översummorna s och S.

30 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. Ytelementets area är är A da yd ( d / da yd, vilket ger att areans eakta värde Undersumman är s f + f + f + f och översumman är S f + f + f + f Vi bestämmer vilketdera värdet som är noggrannare. A s 6 och A S vilket ger att översumman är noggrannare. vilket ger att 6< A < Svar s 6 och S. Översumman är noggrannare eftersom arean är.

31 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. 9 Vi ritar en figur. π π h ( h h / π d d π h h π Skärningsstället är s : Paraboloidens volym är V s dv s π V h dv h π y d y

32 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. Vi får ekvationen s h π π s h h s > s ± h > h s f a F a d a + C a + C Eftersom F så får vi ekvationen Delarnas höjder är h h s och h s h h a + C 8a + C Svar h och h Dvs. C 8a F a + 8a. Minsta värdet för funktionen F är. Vi gör ett teckenschema för derivatan av funktionen F. F a

33 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. Derivatans nollställen: a ( a eller a a Eftersom funktionen F är kontinuerlig antar funktionen F, enligt teckenschemat, sitt minsta värde i. Vi får ekvationen F + 8 a a 8a ± a a ± a a ± a Dvs. a duger. Om a så har derivatan endast ett nollställe. Teckenschema: Om a >, så har derivatan till funktionen F nollställena och ± a. + Teckenschema: F + a + + a F F + + F a a globalt minimiställe a

34 Ellips Integralkalkyl lösningar till övningsproven uppdaterad.5. Eftersom funktionen F är kontinuerlig så antar funktionen F, Om a < så har derivatan till funktionen F nollställena enligt teckenschemat, sitt minsta värde i a eller i a. och ± a. Teckenschema: + + Eftersom a + + F( a ( a a ( a + 8a a a F + + a 8a + 8a F a + 8a a a F a a a a + 8a Eftersom funktionen F är kontinuerlig, så antar funktionen F, enligt teckenschemat, sitt minsta värde i a eller i a + 8a a. så antar funktionen F sitt minsta värde i ± a. Eftersom det minsta värdet är noll, får vi ekvationen F ± a Eftersom F a a + 8a F a a + 8a a + 8a ( a a + a eller a + a eller a a eller a± a> så antar funktionen F sitt minsta värde i ± a. Eftersom det minsta värdet är noll, får vi ekvationen F ± a Se punkt. a eller a± a< a Punkterna, och ger att a eller a ±. a Svar a eller a ±

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

Lösningar kapitel 10

Lösningar kapitel 10 Lösningar kapitel 0 Endimensionell analys Fabian Ågren, π Lösta uppgifter 0............................................... 0............................................... 0.6..............................................

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Tentamensuppgifter, Matematik 1 α

Tentamensuppgifter, Matematik 1 α Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,

Läs mer

d) cos ( v) = a Se facit. Se facit. b) Se facit. sin x har maxvärdet 1 och minvärdet 1. c) ymax ymin

d) cos ( v) = a Se facit. Se facit. b) Se facit. sin x har maxvärdet 1 och minvärdet 1. c) ymax ymin d) cos ( v) a Kapitel 7 Rita t.e. figur enligt s 9 fel. Rita t.e. figur enligt s 9 rätt. c) Huvudräkning: 8 6 Tredje kvadranten fel. d) tan v tan (v + n 8 ) rätt 8 Pythagoras: motstående katet sin v /,6

Läs mer

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

3. Hur snabbt förändras diametern av en cirkel med avseende på cirkelns area?

3. Hur snabbt förändras diametern av en cirkel med avseende på cirkelns area? Dagens 30 aug: a, 2, 3, 5, 6.. Låt Q vara antalet producerade enheter. Bestäm a. Marginalvinsten för vinstfunktionen π(q) = 3Q + Q + 2. Marginalintäkten för intäktsfunktionen R(Q) = ( + 2Q) 3/2. c. Marginalkostnaden

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN3 Lösningsförslag 0.03.30 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Matematik E (MA1205)

Matematik E (MA1205) Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x).

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x). Konveitet En funktionsgraf, som inte är en rät linje, böjer ofta av åt ett bestämt håll i ett visst intervall. För en funktion som är deriverbar två gånger kan man med hjälp av andraderivatan ta reda på

Läs mer

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

Repetitionsuppgifter. Geometri

Repetitionsuppgifter. Geometri Endimensionell anals, Geometri delkurs B1 1. Fra punkter A, B, C och D ligger pa en cirkel med radien 1 dm. Se guren! Strackorna AD och BD ar lika langa. Vidare ar vinkeln BAC och vinkeln ABC 100. D Berakna

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen Institutionen för matematik, KTH Mattias Dahl 5B, Dierential- och integralkalkyl I, del, för TIMEH2 Tentamen, tisdag 29 mars 25 kl.9.. Svara med motivering och mellanräkningar. Tillåtet hjälpmedel är formelsamlingen

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

Funktioner: lösningar

Funktioner: lösningar Funktioner: lösningar 6. Sätt 1 = t 7. Också strängt väande: f (t) = 1 (1 t) = = 1 1+t t = = t t 8. Återigen strängt väande: T.e. a < b g (a) < g(b) f (g (a)) < f (g (b)) a < b g (a) > g(b) f (g (a))

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24, 24-25 och 25-26 26-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C =

Läs mer

SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x

SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x Institutionen för matematik, KTH Serguei Shimorin SF6, Differential- och integralkalkyl I, del Tentamen, den 9 mars 9 Lösningsförslag Funktionen y = fx definieras för x >, x som x + x fx = x a Definiera

Läs mer

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIKPROV KORT LÄROKURS..0 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat

2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat 2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat A Punkten P har koordinaterna x och y P = (x, y) i enhetscirkeln gäller att { x = cos x y = sin x P = (cos x, sin x) För vinkeln

Läs mer

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVÄXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVÄXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER Stationära och infleionspunkter VÄXANDE OCH AVTAGANDE FUNKTIONER STATIONÄRA(KRITISKA) PUNKTER KONVÄXA OCH KONKAVA FUNKTIONER INFLEXIONSPUNKTER 3 VÄXANDE och AVTAGANDE FUNKTIONER i) Om funktionen y f ()

Läs mer

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 8..05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

) 2 = 1, där a 1. x + b 2. y + c 2

) 2 = 1, där a 1. x + b 2. y + c 2 ap 7 Användningar av multipelintegraler Arean av ett plant område 0 Beräkna arean av det område som begränsas av följande kurvor: A a (x y) 2 + x 2 = a 2 A b xy =, xy = 8, y = x och y = 2x (x > ) A c y

Läs mer

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

1. Förklara, utifrån definitioner, trigonometriska samband samt det faktum att π 12 = 1 2 π6, varför följande likhet måste gälla exakt : p 2+ arccos

1. Förklara, utifrån definitioner, trigonometriska samband samt det faktum att π 12 = 1 2 π6, varför följande likhet måste gälla exakt : p 2+ arccos HiH / Georgi Tchilikov ENVARIABELANALYS 5p för LGr&LGy 8 augusti, 9.-. Hjälpmedel: Bifogat formelblad. Miniräknare, dock endast för test och kontroll av resultat. Betygsgränser: p. för Godkänd, 8p. för

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

Upphämtningskurs i matematik

Upphämtningskurs i matematik Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

Kap Dubbelintegraler.

Kap Dubbelintegraler. Kap 4. 4.. ubbelintegraler. A. Beräkna följande dubbelintegraler a. d. (x + y) dxdy, över kvadraten x 3, y. (sin y + y cos x) dxdy, då ges av x π, y π. x cos xy dxdy, då ges av x π, y. xy cos (x + y )

Läs mer

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson , MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8

Läs mer

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Areaberäkningar En av huvudtillämpningar av integraler är areaberäkning. Nedan följer ett

Läs mer

Matematik och modeller Övningsuppgifter

Matematik och modeller Övningsuppgifter Matematik och modeller Övningsuppgifter Beräkna a) d) + 6 b) 7 (+) + ( 9 + ) + 9 e) 8 c) ( + (5 6)) f) + Förenkla följande uttryck så långt som möjligt a) ( ) 5 b) 5 y 6 5y c) y 5 y + y y d) +y y e) (

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag 0.0.05 08.0 0.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen till och med utgången av april 999. NATIONELLT KURSPROV

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Instuderingsfrågor för Endimensionell analys kurs B1 2011 Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp

Läs mer

Kapitel 1. y 4. Pythagoras: Se facit. b 2, 4 (3,2; 2, 4) bh A = 2 Q =? Samma metod som i a). Se facit. Sök höjden: h = sin 41 8,2. Se facit.

Kapitel 1. y 4. Pythagoras: Se facit. b 2, 4 (3,2; 2, 4) bh A = 2 Q =? Samma metod som i a). Se facit. Sök höjden: h = sin 41 8,2. Se facit. Kapitel 8 9 b A Sök öjden: sin 8,, cm (,7968),, A cm cm Se viktigruta i eempel s. >. Den undre vinkeln u är tan, 8 u + v är tan v,8 9, v 9 y sin7 y sin7, Pytagoras:, P (,;, ) Q? Samma metod som i. Kalla

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp, 2013-08-12

MA2003 Tillämpad Matematik I, 7.5hp, 2013-08-12 MA003 Tillämpad Matematik I, 7.5hp, 03-08- Hjälpmedel: Räknedosa! Tänk på att dina lösningar ska utformas så att det blir lätt för läsaren att följa dina tankegångar. Ofullständiga lösningar, eller lösningar

Läs mer

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden PROVET I MATEMATIK, KORT LÄROKURS.9.013 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll som ges här är inte bindande för studentexamensnämndens

Läs mer

Växande och avtagande

Växande och avtagande Växande och avtagande Innehåll 1 Växande och avtagande 1 Andraderivatan.1 Andraderivatan och acceleration................... Andrederivatans tecken.........................1 Andraderivatans nollställen:

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

MATEMATIKPROV, KORT LÄROKURS 23.9.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 23.9.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 3.9.05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN uppgifter med miniräknare 3

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN uppgifter med miniräknare 3 freeleaks NpMaD ht000 för Ma (8) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 000 6 uppgifter med miniräknare 3 Förord Kom ihåg Matematik är att vara tdlig och logisk Använd tet och inte

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014 UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:

Läs mer

Lektion 1. Kurvor i planet och i rummet

Lektion 1. Kurvor i planet och i rummet Lektion 1 Kurvor i planet och i rummet Innehål Plankurvor Rymdkurvor Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation

Läs mer

cos( x ) I 1 = x 2 ln xdx I 2 = x + 1 (x 1)(x 2 2x + 2) dx

cos( x ) I 1 = x 2 ln xdx I 2 = x + 1 (x 1)(x 2 2x + 2) dx TM-Matematik Mikael Forsberg DistansAnalys Envariabelanalys Distans ma4a ot-nummer Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej

Läs mer

Om ellipsen och hyperbelns optiska egenskaper

Om ellipsen och hyperbelns optiska egenskaper Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller $ KTH Matematik 1 5B1134 Matematik och modeller 2 oktober 26 5 Femte veckan Integraler med tillämpningar Veckans begrepp Primitiva funktioner, integraler, area Trapetsmetoden för numerisk integration Partiell

Läs mer

en primitiv funktion till 3x + 1. Vi får Integralen blir

en primitiv funktion till 3x + 1. Vi får Integralen blir Avsnitt, Integraler 6b Beräkna integralen 4 + 3 Integranden är en rationell funktion som vi kan skriva som 4 + 3. 4 3 + 3 + 3. Vi delar upp integralen i två delar och integrerar delarna var för sig, 4

Läs mer

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av ATM-Matematik Mikael Forsberg 74-41 1 För ingenjörs- och distansstudenter Flervariabelanalys ma1b 15 1 14 Skrivtid: 9:-14:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja

Läs mer

FÖRBEREDANDE KURS I MATEMATIK 2. Till detta kursmaterial finns prov och lärare på Internet.

FÖRBEREDANDE KURS I MATEMATIK 2. Till detta kursmaterial finns prov och lärare på Internet. FÖRBEREDANDE KURS I MATEMATIK 2 Till detta kursmaterial finns prov och lärare på Internet. Detta material är en utskrift av det webbaserade innehållet i wiki.math.se/wikis/forberedandematte2 Studiematerialet

Läs mer

Matematik Ten 1:3 T-bas Nya kursen

Matematik Ten 1:3 T-bas Nya kursen Matematik Ten 1: T-bas 00-08-09 Nya kursen 1. Förenkla uttrycket 1 + 1 a b a b b a så långt som möjligt. (1p). Lös ekvationen + 1 = 0. (p). En rät linje går genom punkterna (1, 5) och (5, 7). Ange a så

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

M0043M Integralkalkyl och Linjär Algebra, H14,

M0043M Integralkalkyl och Linjär Algebra, H14, M0043M Integralkalkyl och Linjär Algebra, H14, Integralkalkyl, Föreläsning 10 Staffan Lundberg / Ove Edlund Luleå Tekniska Universitet Staffan Lundberg / Ove Edlund M0043M H14 1/ 24 Integralkalkyl, Föreläsning

Läs mer

Parabeln och vad man kan ha den till

Parabeln och vad man kan ha den till Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet diskuterar vi vad parabeln är för geometrisk konstruktion och varför den

Läs mer

Uppgift 1-6. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.

Uppgift 1-6. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

A-del. (Endast svar krävs)

A-del. (Endast svar krävs) Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009 KTH Matematik SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 9 1. a) Visa att sin(6 ) = /. () b) En triangel har sidor av längd 5 och 7, och en vinkel är 6 grader. Bestäm

Läs mer

Ekvationer & Funktioner Ekvationer

Ekvationer & Funktioner Ekvationer Ekvationer & Funktioner Ekvationer Ekvationstyp : Ekvationer av första graden När vi löser ekvationer av första graden använder vi oss av de fyra grundläggande räknesätten för att beräkna x. Vid minus

Läs mer

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Institutionen för beteendevetenskapliga mätningar PBMaE 5-5 Umeå universitet Provtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift -7 Anvisningar Totalt 4 minuter

Läs mer

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde)

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde) GRAFRITNING För att skissera (rita) grafen till en funktion y f () undersöker vi först några viktiga egenskaper: definitionsmängd, eventuella skärningspunkter med och y-aeln, gränsvärdena f ( ), f ( )

Läs mer

Undervisning och studier i matematik med hjälp av datorprogrammet Graphmatica

Undervisning och studier i matematik med hjälp av datorprogrammet Graphmatica Undervisning och studier i matematik med hjälp av datorprogrammet Graphmatica Thomas Lingefjärd Göteborg 9 Thomas Lingefjärd Introduktion till Graphmatica 1 Kort om Graphmatica Graphmatica har funnits

Läs mer

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1) ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna ATM-Matematik Mikael Forsberg 734-41 3 31 För studenter i Flervariabelanalys Flervariabelanalys mk1b 13 8 Skrivtid: 9:-14:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer

Tentamen Matematisk grundkurs, MAGA60

Tentamen Matematisk grundkurs, MAGA60 MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Förändringshastighet ma C

Förändringshastighet ma C DOP-matematik Copright Tord Persson Förändringshastighet ma C 2012-01-0 Uppgift nr 1 Givet funktionen f() 2 + 8 Beräkna f() Uppgift nr 2 Givet funktionen f() 9 + 1 Beräkna f(7) Uppgift nr 6 Uppgift nr

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 43, 1960 Första häftet 2244. Vilka värden kan a) tan A tanb + tan A tanc + tanb tanc, b) cos A cosb cosc anta i en triangel ABC? 2245. På en cirkel med centrum O väljes en båge AB, som är större

Läs mer

Checklista för funktionsundersökning

Checklista för funktionsundersökning Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara

Läs mer

Matematik 4 Kap 3 Derivator och integraler

Matematik 4 Kap 3 Derivator och integraler Matematik 4 Kap 3 Derivator och integraler Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

Funktionsstudier med derivata

Funktionsstudier med derivata Funktionsstudier med derivata Derivatan ett kraftfullt verktyg för att studera och tolka funktioner Det här avsnittet handlar om att man kan använda derivatan till att bestämma en funktions egenskaper

Läs mer

Matematik 5 Kap 3 Derivator och Integraler

Matematik 5 Kap 3 Derivator och Integraler Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning

Läs mer

Matematiska uppgifter

Matematiska uppgifter Årgång 54, 1971 Första häftet 8. Bestäm alla reella tal x sådana att x 1 3 x 1 + < 0 (Svar: {x R: 1 < x < 0} {x R: < x < 3}) 83. Visa att om x > y > 1 så är x y 1 > x y > ln(x/y). 84. Undersök om punkterna

Läs mer

Ledtrå dår till lektionsuppgifter

Ledtrå dår till lektionsuppgifter Ledtrå dår till lektionsuppgifter Allmänna råd vid lösning av lektionsuppgifter: Försök inledningsvis att lösa uppgiften på egen hand, genom att omsätta innehållet i den tillhörande föreläsningen samt

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag.8. 8.. Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna tentamen

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 6 BESKRIVNING AV GODA SVAR De beskrivningar av svarens inneåll oc poängsättningar som ges är är inte bindande för studentexamensnämndens bedömning Censorerna beslutar om de

Läs mer

6.2 Implicit derivering

6.2 Implicit derivering 6. Implicit derivering 6 ANALYS 6. Implicit derivering Gränsvärden, som vi just tittat på, är ju en fundamental del av begreppet derivata, och i mattekurserna i gymnasiet har vi roat oss med att hitta

Läs mer

Kapitel 8. Derivata. 8.1 Inledning till derivata

Kapitel 8. Derivata. 8.1 Inledning till derivata Kapitel 8 Derivata 8.1 Inledning till derivata Vi vill nu bestämma riktningskoefficienten för tangenten 1 till en given kurva i punkten x. För att få en approximation av tangenten ritas en linje genom

Läs mer

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.

Läs mer

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall

Läs mer

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner.

Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. Egentligen har vi ingen ny teori att presentera idag. Målet för den närmaste framtiden är att nöta in undersökandet av polynomfunktioner. 1 (Bokens nr 3204) Ett straffkast i basket följer ekvationen h(x)

Läs mer