och/eller låga temperaturer bildar de vätskor, nåt som inte händer för Dieterici-modellen, och virialexpansionen.

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "och/eller låga temperaturer bildar de vätskor, nåt som inte händer för Dieterici-modellen, och virialexpansionen."

Transkript

1 9. Realgaser ermodynamiska potentialer (ermo 2): Krister Henriksson Introduktion Realgaser uppvisar beteende som idealgasen saknar. Speciellt vid höga tryck och/eller låga temperaturer bildar de vätskor, nåt som inte händer för idealgaser. I vätskorna är växelverkan mellan gasmolekyler väsentlig, och kan inte ignoreras. i ser på tre sätt att behandla realgaser: van der Waals modellen, Dieterici-modellen, och virialexpansionen. ermodynamiska potentialer (ermo 2): Krister Henriksson 9.2

2 9.2. an der Waals-modellen an der Waals tillståndsekvation för en realgas (873) är eller alternativt (p + an2 )(/N b) k (9.) 2 p Nk Nb an2 2 p rep + p att (9.2) i kan också använda specifika volymen v /N eller tätheten c N/. Här är a ett mått på växelverkan mellan molekylerna. Konstanten b säger nåt om molekylernas volym. Antalet närmsta grannar N ng till en viss molekyl är proportionell mot tätheten N/. Attraktionen mellan en molekyl och dess närmsta grannar ger upphov till ermodynamiska potentialer (ermo 2): Krister Henriksson 9.3 en potentialenergi. Denna är proportionell mot antalet grannar N ng, så U N/. För hela gasen bestående av N molekyler har vi då U N NU NN/ (9.3) vilket vi skriver som U N an 2 / (9.4) Differentialen är du N an 2 / 2 d (9.5) Attraktionen ger upphov till ett tryck p du N d an2 2 (9.6) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.4

3 otala trycket är summan Idealgaslagen för punktlika partiklar är p p ideal + p (9.7) p ideal ideal N k (9.8) För partiklar med en volym b så har vi endast volymen ideal Nb kvar som partiklarna kan ockupera. i får då ( ) (p p ) N b k (9.9) i får (p + a v2)(v b) k (9.0) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.5 (pv 2 + a)(v b) v 2 k (9.) och pv 3 (bp + k)v 2 + av ab 0 (9.2) eller p kv2 av + ab v 3 bv 2 (9.3) i kan nu rita isotermer för p p(v): ermodynamiska potentialer (ermo 2): Krister Henriksson 9.6

4 Kurvorna med lokala minimer och maximer visar sig skapa en hel del problem. Partialderivatan ( ) p ( ) / p /(κ ) (9.4) kommer att vara positiv kring de lokala minimerna. Detta betyder att ökning ermodynamiska potentialer (ermo 2): Krister Henriksson 9.7 av trycket kommer att öka volymen. Om det förekommer en tillfällig ) yttre tryckökning på gasen kommer den att öka sin volym p.g.a. > 0. Fastän den tillfälliga tryckökningen ( p sedan försvinner har den ökade volymen lett till en inre tryckökning. Detta sker eftersom gasen gått från punkten (p,) till (p + dp, + d) i fasdiagrammet där isotermerna finns utritade. Men en tryckökning borde leda till ytterligare volymökning, o.s.v.. Situationen är instabil. Dessa problem förekommer bara för isotermer som har en punkt där p/ 0 är ett lokalt extremum. På den kritiska isotermen är punkten p/ 0 en sadelpunkt d.v.s. 2 p/ 2 0 och kallas för den kritiska punkten. Alla problematiska isotermer ligger under den kritiska isotermen. i bestämmer nu det kritiska trycket, den kritiska volymen, och den kritiska temperaturen för en van der Waals gas. an der Waals ekvationen blir (p + an2 )(/N b) k (9.5) 2 ermodynamiska potentialer (ermo 2): Krister Henriksson 9.8

5 Första derivatan: Detta ger ( ) p p Nk Nb an2 2 (9.6) Nk ( Nb) 2 + 2aN2 3 0 (9.7) Nk 2aN2 3 ( Nb)2 (9.8) Andra derivatan: ( 2 p 2 ) Nk 2 ( Nb) 6aN2 0 (9.9) 3 4 Detta ger Nk 3aN2 4 ( Nb)3 (9.20) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.9 illsammans ger första och andra derivatan alltså 2 3 ( Nb) (9.2) d.v.s. c 3Nb (9.22) där vi nu infört indexet c för att klargöra att detta är volymen vid den kritiska punkten. Från första derivatans uttryck får vi nu kritiska temperaturen efter insättning: c 8a 27bk (9.23) Kritiska trycket: ermodynamiska potentialer (ermo 2): Krister Henriksson 9.0

6 Man får nu t.ex. p c Nk c c Nb an2 c 2 (9.24) 4a 27b 2 a 9b 2 a 27b 2 (9.25) p c c 3 0,375 (9.26) Nk c 8 Låt oss nu bestämma Gibbs funktion, som är den relevanta potentialen då vi har en situation med konstant tryck och temperatur. Gibbs funktion är G(,p) U S + p F(,)+p (9.27) Helmholtz funktion är relaterad till trycket: ermodynamiska potentialer (ermo 2): Krister Henriksson 9. ( ) F p (9.28) Detta betyder att F(,) f() f() f() ( d p (9.29) d ( ) Nk Nb an2 2 Nk ln( Nb) + an2 ) (9.30) (9.3) så G(,p) U S + p F(,)+p (9.32) f() Nk ln( Nb) an2 + p (9.33) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.2

7 Notera att övre figurdelen är en variation på den tidigare figuren med isotermer. I tryckområdet mellan X och Y kan Gibbs funktion ha två värden för ett givet tryck och en given temperatur. Men eftersom ett system beskrivet av fixerat,p i jämvikt minimerar Gibbs funktion kommer den övre slingan BXYB ignoreras då man går från A till B till C, d.v.s. då trycket sänks! ermodynamiska potentialer (ermo 2): Krister Henriksson 9.3 I p -diagrammet har vi B och B 2 som motsvarar B i p G-diagrammet. rycken och temperaturerna är samma för B och B 2, men volymerna är olika. Gibbs funktion G(,p) har samma värde i båda punkterna. I B har vi alltså två faser i jämvikt:. vätska som är stabila fasen på AB-kurvan (högre tryck) 2. gas, som är stabila fasen på BC-kurvan (lägre tryck). Allt detta betyder att mellan B och B 2 måste vi ha en fasövergång mellan vätska och gas! Men: i vet att vid en fasövergång är trycket konstant. an der Waals ekvationen förutsäger inte detta: i ser att trycket minskar, ökar, och sedan minskar igen vid fasövergången från vätska till gas! ermodynamiska potentialer (ermo 2): Krister Henriksson 9.4

8 Låt oss granska beteendet hos Gibbs funktion närmare i det här fallet. i har helt allmänt För punkterna B,B 2 får vi G(,p ) G(,p 0 ) + G(,p 0 ) + p dp p 0 p ( ) G p (9.34) p 0 dp (9.35) G(,p B2 ) G(,p B ) + G(,p B2 ) + B2 B dp (9.36) B2 B dp (9.37) så B2 B dp 0 (9.38) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.5 Denna integral motsvarar det svärtade området i figuren. Den anger att de två svärtade delområdena i figuren har samma area. Den kraftigt streckade kurvan kallas Maxwells konstruktion. Maxwells konstruktion ersätter och korrigerar van der Waals ekvationens felaktiga kurva i fasövergångsområdet. Poängen med korrektionen är att få van der Waals ekvationen att korrekt beskriva fasövergångar. Den svagare streckade kurvan visar samexistenskurvan för vätska och gas. ermodynamiska potentialer (ermo 2): Krister Henriksson 9.6

9 Ett p -diagram för en van der Waals gas: För > c finns det inga fasövergångar mellan vätska och gas, eftersom lokala extremer saknas i p -diagrammet. Gas kan transformeras till vätska utan fasövergång på följande sätt:. Gå via en isoterm med > c genom att höja trycket till p > p c. 2. Gå via en isobar till < c. 3. Sänk trycket men håll temperaturen konstant. ermodynamiska potentialer (ermo 2): Krister Henriksson Andra modeller an der Waals ekvationen var ju p Nk Nb an2 2 p rep + p att (9.39) Berthelot-ekvationen fås genom att skriva p att an2 2 (9.40) a här är inte samma som för de andra modellerna. En annan är Dieterici-ekvationen, med p p (vdw) rep e an/(k) Nk Nb e an/(k) (9.4) a här är inte samma som för de andra modellerna. ermodynamiska potentialer (ermo 2): Krister Henriksson 9.8

10 Man kan visa att ermodynamiska potentialer (ermo 2): Krister Henriksson 9.9 p c c 2 0,27 (9.42) Nk c e2 Detta stämmer bättre än för van der Waals ekvationen för ädelgaserna: ermodynamiska potentialer (ermo 2): Krister Henriksson 9.20

11 [Blundell,Mandl] 9.4. irialexpansion Ett sätt modellera realgaser är att ta idealgasekvationen och expandera den i N/: p Nk + N ( ) N 2 B() + C() +... (9.43) + N ( ) N 2 B () + B 2 () +... (9.44) B i () kallas virialkoefficient nummer i. i har alltid B 0 (). För van der Waals gasen har vi ermodynamiska potentialer (ermo 2): Krister Henriksson 9.2 p Nk Nb an2 2 Nk ( Nb/) an2 2 Nk Nk Nk Nb/ an2 2 ( ( ) ( ) Nb Nb ) an2 2 ( ( ) ( ) N N 2 ) + b + b 2 an2 (9.45) 2 så att p Nk ( N + + ) b + ( b a k ( ) N 2 b 2 a N ) N + k ( ) N 2 b 2 (9.46) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.22

12 och B () b a k (9.47) B 2 () b 2 (9.48) Utan växelverkan mellan gasmolekyler återfår vi idealgaslagen där B i () δ i0. Man definierar Boyle-temperaturen B via villkoret B ( B ) 0. För van der Waals gasen blir den B a bk 27 8 c (9.49) irialkoefficienterna kan bestämmas på följande sätt. i vet att ermodynamiska potentialer (ermo 2): Krister Henriksson 9.23 ( ) F p (9.50) F k ln Z (9.5) i behöver alltså partitionsfunktionen för ett växelverkande system. Under antagande att potentialenergin kan skrivas som summering över atompar har vi E E kin + E pot (9.52) i p 2 i 2m + 2 N N i j,j i u ij ( r i r j ) (9.53) Moderna potentialer för t.ex. metaller och kovalenta molekyler innehåller flerkropps-termer som beaktar konfigurationer av tre eller flera atomer. Partitionsfunktionen för en gasmolekyl är ermodynamiska potentialer (ermo 2): Krister Henriksson 9.24

13 Z dpg(p)e βe dpp 2 8π 3 3 8π 3 3 2π 2 3 e βe dp4πp 2 e βe 8π π 3 3 (2π ) 3 dp4πp 2 e βe d 3 pe βe d 3 r d 3 pe βe d 3 r d 3 pe βe (9.54) Det sista uttrycket är den fullständiga formen för (den kanoniska) partitionsfunktionen för en partikel. idigare hade vi inte nån integration över rummet, så vi skrev bara d 3 r, men för växelverkan mellan partiklar måste vi ta tillbaka den. ermodynamiska potentialer (ermo 2): Krister Henriksson 9.25 Partitionsfunktionen för hela systemet är Z ( ) N N! (2π ) 3 d 3N r d 3N pe βe tot (9.55) I klartext: Z (2π ) 3N N! (2π ) 3N N! N (2π ) 3N N! d 3 r...d 3 r N d 3 p...d 3 p N exp[ βe({r i },{p i })] d 3 r...d 3 r N d 3 p...d 3 p N e β(e kin +E pot ) d 3 p...d 3 p N e βe kin N d 3 r...d 3 r N e βe pot Z kin (,)Q N (,) (9.56) därz kin (,) Z N (,)föridealgasochmandefinierarkonfigurationpartitionfunktionen ermodynamiska potentialer (ermo 2): Krister Henriksson 9.26

14 Q N (,) N d 3 r...d 3 r N e βe pot (9.57) Det behövs speciella metoder för att försöka utföra integralen (metoder utvecklades först av Ursell och Mayer). i tar här bara reda på den lättaste approximationen. i har E pot 2 N N u ij i j,j i 2 (u 2 + u u 2 + u u N,N ) u σ (9.58) 2 σ u ij u ij (r ij ) (9.59) r ij r ij r i r j (9.60) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.27 Här betecknar σ ett par ij där i,...,n,j,...,n,i j. Insättning ger Q N (,) N N d 3 r...d 3 r N e (β/2) σ u σ d 3 r...d 3 r N σ e (β/2)u σ (9.6) eftersom e k a k e a +a 2 +a e a e a 2 e a3... k e a k (9.62) Definiera nu λ σ e (β/2)uσ (9.63) i får ermodynamiska potentialer (ermo 2): Krister Henriksson 9.28

15 Notera: Q N (,) N ( + λ σ ) ( + λ 2 )( + λ 3 )... σ d 3 r...d 3 r N ( + λ σ ) (9.64)... ( + λ 2 )( + λ 23 ) ( + λ N,N ) (9.65) σ + σ λ σ +λ 2 (λ λ λ N,N ) +... (9.66) + λ σ + ij λ kl +... σ ij,klλ (9.67) så vi har ermodynamiska potentialer (ermo 2): Krister Henriksson 9.29 Q N (,) N d 3 r...d 3 r N + σ λ σ + ij λ kl +... (9.68) ij,klλ som kallas för en klusterexpansion. De enskilda integralerna kallas klusterintegraler. Orsaken till namnet klarnar nedan. ermodynamiska potentialer (ermo 2): Krister Henriksson 9.30

16 Antag att vi har en så pass närsynt potential u(r) att den ger ett väsentligt bidrag bara då två molekyler är mycket nära varandra: ermodynamiska potentialer (ermo 2): Krister Henriksson 9.3 Med detta i bakfickan kan vi nu tolka de olika termerna som klustrar grupper av växelverkande molekyler: λ ij : Kollision mellan molekylerna i och j. λ ij λ kl : Kollision mellan molekylerna i och j samtidigt som man har kollision mellan molekylerna k och l.... ermodynamiska potentialer (ermo 2): Krister Henriksson 9.32

17 Då alla andra termer förutom de två första ignoreras får vi Q N (,) N + N d 3 r...d 3 r N [ σ + N σ + σ d 3 r...d 3 r N λ σ + N(N ) N 2 N 2 N(N ) + 2 λ σ ] ) d 3 r...d 3 r N (e (β/2)uσ ) d 3 r d 3 r 2 (e (β/2)(u 2 +u 2 ) ( ) d 3 r d 3 r 2 e βu(t) 2 (9.69) Här beror endast u (t) 2 på r,r 2, men endast som u (t) 2 u(t) 2 (r 2) med r 2 r r 2. För att lätt utföra integralen måste vi byta variabler: r r r 2 (9.70) R 2 (r + r 2 ) (9.7) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.33 d.v.s. r 2 r + R (9.72) r 2 2 r + R (9.73) ariabelbyte i integranden betyder du du 2... det(j(u,u 2,...;v,v 2,...))dv dv 2...(9.74) u i u i (v,v 2,...),i,2,... (9.75) där J är jakobianen för transformationen. ariablerna {u i } motsvarar r,r 2 och {v i } motsvarar r,r. I detta fall har vi att r x,r 2x beror på x r x,x R x, och motsvarande för y och z. i har inget beroende av r x på t.ex. y. i får ermodynamiska potentialer (ermo 2): Krister Henriksson 9.34

18 dr x dr 2x och motsvarande för de andra. [ ] rx r x x X r 2x r 2x (9.76) x X [ ] 2 (9.77) (9.78) Faktorn d 3 R dr x dry drz i integralen ger genast en faktor. Resten blir N(N ) Q N (,) N2 d 3 r 2 d 3 r ( ) e βu(t) (r) ( ) e βu(t) (r) + N2 2 I 2 (9.79) för stora värden på N då N(N ) N 2. ermodynamiska potentialer (ermo 2): Krister Henriksson 9.35 Helmholtz funktion blir F k lnz kin k lnq N (9.80) F ideal k lnq N (9.8) F ideal k N2 2 I 2 (9.82) då ln( + x) x för små x. rycket blir ( ) F p (9.83) p ideal k N2 2 2I 2 (9.84) Nk Nk Nk k N2 2 2I 2 (9.85) [ N ] 2 I 2 (9.86) [ + N B() ] (9.87) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.36

19 så B() 2 I 2 ( ) d 3 r e βu(t) (r) (9.88) 2 d 3 rλ(r) (9.89) 2 ermodynamiska potentialer (ermo 2): Krister Henriksson 9.37 Låt oss nu beräkna B() för en enkel potential. älj hård-sfärs-potentialen med attraktiv del: Låt det minsta möjliga värdet för u(r) vara u 0. Denna potentialenergi fås då avståndet mellan partiklarna är r 2r 0. Här är r 0 de sfäriska partiklarnas radie. Antag att vi har sådana temperaturer att k u 0 (9.90) d.v.s. den kinetiska energin dominerar över potentialenergin. ermodynamiska potentialer (ermo 2): Krister Henriksson 9.38

20 i har i får nu λ(r) e βu(t) (r) {, 0 < r < 2r0 βu (t) (9.9) (r), r > 2r 0 B() 2 2π 0 d 3 r ( ) e βu(t) (r) ( ) drr 2 e βu(t) (r) ( 2r0 2π drr 2 + β 2π 0 ( 8r k b a() k 2r 0 drr 2 u (t) (r) 2r 0 drr 2 u (t) (r) ) ) (9.92) (9.93) (9.94) (9.95) (9.96) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.39 som är B()-uttrycket för van der Waals gas. i får b 4 4π 3 r3 0 4v 0 (9.97) a() 2π 2r 0 drr 2 u (t) (r) (9.98) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.40

21 9.5. Jouleexpansion Beakta den fria expansionen av gas i figuren. Systemet är värmeisolerat och det finns ingen pistong/kolv som gasen kan utföra arbete på för att ge energi åt t.ex. en annan gas. i har då du d Q + d W ds pd (9.99) så att interna energin bevaras. För idealgas gäller du d( 3 Nk) (9.00) 2 3 Nkd (9.0) 2 så temperaturen har inte förändrats då du 0. Hur går det för en realgas? ermodynamiska potentialer (ermo 2): Krister Henriksson 9.4 Definiera Joule-koefficienten µ J ( ) U (9.02) Manipulation: ( ) U ( ) U ( ) U C ( ) U (9.03) Första lagen du ds pd, med U U(,) och S S(,) ger ( ) U ( ) S p (9.04) Efter användning av en av Maxwells relationer fås ( ) U ( ) p p (9.05) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.42

22 Joulekoefficienten blir µ J För idealgas fås µ J 0. ( ) C U ( ( p C ) ( ) U ) p (9.06) (9.07) För en realgas borde man få kylning: Gasmolekylerna kommer längre ifrån varandra i den större volymen, så attraktionen mellan dem har minskat. Eftersom potentialenergin är negativ betyder det att den ökat blivit mindre negativ. Då U är konstant måste energin har tillförts från den kinetiska delen, så temperaturen har sjunkit. Detta ger ( U/ ) > 0 och µ J < 0. Med µ J ( ) U (9.08) får vi i största allmänhet efter integrering att ermodynamiska potentialer (ermo 2): Krister Henriksson d µ J ( ) + f(u) (9.09) där 0, 0 är värden vid nån referenspunkt och f(u) är nån funktion i U, som försvinner vid partialderiveringen med avseende på. emperaturförändringen är 2 (9.0) 2 0 d µ J ( ) + f(u 2 ) 2 0 d µ J ( ) f(u ) (9.) d µ J ( ) (9.2) då U är konstant. För van der Waals gas: ermodynamiska potentialer (ermo 2): Krister Henriksson 9.44

23 så p ( ) p µ J C Nk Nb an2 2 (9.3) ( ( p ) Nk Nb (9.4) ) p an2 (9.5) C 2 2 ( dµ J an2 ) (9.6) C 2 ( an2 ) < 0 (9.7) C 2 emperaturen sjunker alltså vid fri expansion av van der Waals gas. ermodynamiska potentialer (ermo 2): Krister Henriksson Isotermisk expansion Förändring i intern energi under en isotermisk fri expansion då gasen är kopplad till ett värmebad fås från ekv. (9.05) som U 2 ( ) U d 2 d ( ( p ) ) p (9.8) För idealgas fås U 0. För van der Waals gas fås 2 ( ) U U d ( an 2 ) 2 2 d an2 2 (9.9) (9.20) an 2 ( 2 ) > 0 (9.2) Detta beror på a som är relaterat till växelverkan mellan gasmolekylerna. Gasmolekylerna kommer längre ifrån varandra i den större volymen, så attraktionen mellan dem har minskat. Eftersom potentialenergin är negativ ermodynamiska potentialer (ermo 2): Krister Henriksson 9.46

24 betyder det att den ökat blivit mindre negativ. Energitillskottet behöver inte tas från den kinetiska energin som då U var konstant, utan det kan tas från värmebadet. På det stora hela har interna energin alltså ökat. i kan använda första lagen, S S(,), och en Maxwell-relation för att på samma gång ta reda på entropin för van der Waals gasen: ( ) S ds d + C ( p d + C ( ) S ) d (9.22) d (9.23) Nk d + d (9.24) Nb så S S 0 + C ln 0 + Nkln Nb 0 Nb (9.25) C ln + Nkln( Nb) + S (9.26) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.47 där S 0,S är konstanter. Detta beror på Nb som är relaterat till den tillgängliga volymen för gasmolekylerna. Ju mera utrymme desto flera mikrotillstånd och högre entropi. ermodynamiska potentialer (ermo 2): Krister Henriksson 9.48

25 [Blundell,Mandl] 9.7. Joule-Kelvin-expansion Man har ingen direkt praktisk nytta av en Joule-expanderad gas. Man skulle hellre vilja ha en process där varm gas matas in i en maskin och kall gas eller vätska kommer ut. En dylik process upptäcktes av Joule och homson (lord Kelvin). ermodynamiska potentialer (ermo 2): Krister Henriksson 9.49 En idealiserad modell som möjliggör termodynamiska beräkningar: Pistongen till vänster utövar ett tryck p på inmatningsgasen och utför ett arbete d p på den. Utloppsgasen utövar ett tryck p 2 på pistongen till höger och utför ett arbete på den d 2 p 2. rycken är konstanta, med p > p 2 och < 2, och hela gasen matas i sin helhet från vänstra sidan till högre sidan. Första lagen ger ermodynamiska potentialer (ermo 2): Krister Henriksson 9.50

26 2 du dp d p då vi antar att hela systemet är värmeisolerat. Integrerat får vi d.v.s. d 2 p 2 (9.27) U 2 U (0 )p ( 2 0)p 2 p p 2 2 (9.28) U + p U 2 + p 2 2 (9.29) så H H 2 och entalpin bevaras. Man definierar Joule-Kelvin-koefficienten µ JK ( ) p H (9.30) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.5 Manipulation: ( ) µ JK p H ( ) ( ) H H p p (9.3) (9.32) Men dh d(u + p) du + pd + dp (9.33) ds pd + pd + dp (9.34) ds + dp (9.35) Med S S(,p) fås ermodynamiska potentialer (ermo 2): Krister Henriksson 9.52

27 ärmekapacitet: dh ds + dp (9.36) [ ( S ) ( ) ] S dp + d + dp (9.37) p p [ ( ) ] ( ) S S + dp + d (9.38) p p ( ) ( ) H H dp + d (9.39) p p C p ( ) δq d ( ) dh d p p ( ) ds d ( ) H p p (9.40) (9.4) i får: ermodynamiska potentialer (ermo 2): Krister Henriksson 9.53 µ JK ( ) H C p p ( ) ] S [ + C p p ( ) ] [ + C p p ( ) ] [ C p p (9.42) (9.43) (9.44) (9.45) efter användning av en av Maxwells relationer. I sammandrag: µ JK ( ) p H ( ) ] [ C p p (9.46) emperaturförändringen är nu 2 dp ( ) ] [ C p p (9.47) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.54

28 För idealgas är 0. Med dh ds + dp 0 fås ds dp så För idealgas har vi S 2 dp (9.48) 2 dp S N k p Nkln p > 0 (9.49) p 2 I allmänhet kan µ JK vara positivt eller negativt. i kan granska teckenbytet genom att titta på när µ JK 0. Detta inträffar då ( ) p (9.50) Detta ger den så kallade inversionskurvan i ett p -diagram. Det är alltså alla punkter (p, ) som uppfyller villkoret i ekvationen. ermodynamiska potentialer (ermo 2): Krister Henriksson 9.55 Inversionskurva för van der Waals gas: Före Joule-Kelvin-processen påbörjas har vi gasen vid en viss temperatur och ett visst tryck p, så vi sitter i nån punkt i p-diagrammet ovan. Då JK-processen påbörjas kommer vi att åka längs en isentalp kurva med konstant H. Gasen kommer ut genom den porösa tappen och in ett område med trycket p 2. Då all volym pressats igenom är processen klar. i sitter nu i en viss punkt ( 2,p 2 ) i p-diagrammet, en punkt som ligger på samma isentalp som vi började med. Det är bara att avläsa temperaturerna, så framgår det om gasen kylts ner, 2 < eller värmts upp, 2 >. ermodynamiska potentialer (ermo 2): Krister Henriksson 9.56

29 Då temperaturen är lägre än den maximala inversionstemperaturen inv,max kan en gas kylas ner via en Joule-Kelvin-process om starttrycket p är tillräckligt lågt. Ovanför denna temperatur måste gasen kylas ner via nån annan process. Maximala inversionstemperaturer för några gaser:.ex. kvävgas och koldioxid kan kylas via JK-processen vid rumstemperatur, bara de yttre trycken väljs lämpligt låga. ermodynamiska potentialer (ermo 2): Krister Henriksson illämpning av JK-processen: Förvätskning [Blundell,Mandl] ermodynamiska potentialer (ermo 2): Krister Henriksson 9.58

30 Motströmsvärmeutväxlaren tillåter den svala gasen att kyla ner inmatningsgasen, så att förvätskningen ska gå bättre. Denna modell av förvätskning är baserad på en maskin framtagen av Karl von Linde, och hela processen kallades då för Lindeprocessen. Linde kommersialiserade förvätskning av gaser 895. James Dewar var först med att förvätska vätgas 898 via Lindeprocessen. Heike Kamerlingh Onnes var först med att producera heliumvätska 908 med hjälp av förkylning med vätgas. Han upptäckte heliums supraledning 9 (Nobelpris 93). Schematisk Lindemaskin: ermodynamiska potentialer (ermo 2): Krister Henriksson 9.59 Låt gas med massan m matas in. JK-processen ger ut svalare gas med massan ( y)m och vätska med massan ym. Entalpin bevaras, så H H 2 + H v (9.5) Med H mh där h är entalpi per kg fås mh ( y)mh 2 + ymh v (9.52) i vill maximera y, som är y h h 2 h v h 2 (9.53) Om utloppsgasen släpps ut i atmosfären har vi p 2 atm. Eftersom vi har vätska och utloppsgas i jämvikt sitter vi på ångtryckskurvan i p -fasdiagrammet. Med p 2 bestämt är temperaturen då bestämd, beteckna den 2, och vi har v 2. ermodynamiska potentialer (ermo 2): Krister Henriksson 9.60

31 Entalpin är H H(p,) H(p,())) så är h 2 h 2 (p 2, 2 ) för utloppsgasen och h v h v (p 2, v ) för vätskan bestämda. Nämnaren i uttrycket för y är då fixerad, likaså h 2 i täljaren. Den enda fria parametern är h, som vi vill minimera för att kunna maximera y. h kommer att bero på t.ex. inmatningstrycket p. Sök punkten där Detta ger ( ) h p 0 (9.54) 0 ( ) ( ) h H p m p (9.55) m C pµ JK (9.56) d.v.s. µ JK 0 (9.57) ermodynamiska potentialer (ermo 2): Krister Henriksson 9.6 i måste alltså sitta på inversionskurvan för att förvätskningen ska vara så effektiv som möjligt. ermodynamiska potentialer (ermo 2): Krister Henriksson 9.62

32 9.9. Minnesvärt van der Waals gasens tillståndsekvation betydelsen av kritiska punkten (fasövergångar möjliga under c ) Maxwells konstruktion virialexpansion begreppet klusterexpansion Joule- och Joule-Kelvin-expansion tillämpning: förvätskning av realgaser ermodynamiska potentialer (ermo 2): Krister Henriksson 9.63

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

VI. Reella gaser. Viktiga målsättningar med detta kapitel. VI.1. Reella gaser

VI. Reella gaser. Viktiga målsättningar med detta kapitel. VI.1. Reella gaser I. Reella gaser iktiga målsättningar med detta kapitel eta vad virialutvecklingen och virialkoefficienterna är Kunna beräkna första termen i konfigurationsintegralen Känna till van der Waal s gasekvation

Läs mer

Kapitel III. Klassisk Termodynamik in action

Kapitel III. Klassisk Termodynamik in action Kapitel III Klassisk Termodynamik in action Termodynamikens andra grundlag Observation: värme flödar alltid från en varm kropp till en kall, och den motsatta processen sker aldrig spontant (kräver arbete!)

Läs mer

Kapitel V. Praktiska exempel: Historien om en droppe. Baserat på material (Pisaran tarina) av Hanna Vehkamäki

Kapitel V. Praktiska exempel: Historien om en droppe. Baserat på material (Pisaran tarina) av Hanna Vehkamäki Kapitel V Praktiska exempel: Historien om en droppe Baserat på material (Pisaran tarina) av Hanna Vehkamäki Kapitel V - Praktiska exempel: Historien om en droppe Partiklar i atmosfa ren Atmosfa rens sammansa

Läs mer

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens

Läs mer

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 UPPSALA UNIVERSITET Fysiska institutionen Sveinn Bjarman Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 Skrivtid: 9-14 Hjälpmedel: Räknedosa, Physics Handbook

Läs mer

Termodynamik Föreläsning 4

Termodynamik Föreläsning 4 Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner

Läs mer

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Termodynamik och inledande statistisk fysik

Termodynamik och inledande statistisk fysik Några grundbegrepp i kursen Termodynamik och inledande statistisk fysik I. INLEDNING Termodynamiken beskriver på en makroskopisk nivå processer där värme och/eller arbete tillförs eller extraheras från

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

14. Sambandet mellan C V och C P

14. Sambandet mellan C V och C P 14. Sambandet mellan C V och C P Vi skriver tillståndsekvationen i de alternativa formerna V = V (P, T ) och S = S(T, V ) (1) och beräknar ds och dv genom att dela upp dem i partiella derivator ds = (

Läs mer

Kapitel IV. Partikeltalet som termodynamisk variabel & faser

Kapitel IV. Partikeltalet som termodynamisk variabel & faser Kapitel IV Partikeltalet som termodynamisk variabel & faser Kemiska potentialen Kemiska potentialen I många system kan inte partikelantalet antas vara konstant så som vi hittills antagit Ett exempel är

Läs mer

Repetition. Termodynamik handlar om energiomvandlingar

Repetition. Termodynamik handlar om energiomvandlingar Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens

Läs mer

Repetition F9. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F9. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F9 Process (reversibel, irreversibel) Entropi o statistisk termodynamik: S = k ln W o klassisk termodynamik: S = q rev / T o låg S: ordning, få mikrotillstånd o hög S: oordning, många mikrotillstånd

Läs mer

Arbetet beror på vägen

Arbetet beror på vägen VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

7. Inre energi, termodynamikens huvudsatser

7. Inre energi, termodynamikens huvudsatser 7. Inre energi, termodynamikens huvudsatser Sedan 1800 talet har man forskat i hur energi kan överföras och omvandlas så effektivt som möjligt. Denna forskning har resulterat i ett antal begrepp som bör

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

Exempel på statistisk fysik Svagt växelverkande partiklar

Exempel på statistisk fysik Svagt växelverkande partiklar Exempel på statistisk fysik Svagt växelverkande partiklar I kapitlet om kinetisk gasteori behandlades en s k ideal gas där man antog att partiklarna inte växelverkade med varandra och dessutom var punktformiga.

Läs mer

10. Kinetisk gasteori

10. Kinetisk gasteori 10. Kinetisk gasteori Alla gaser beter sig på liknande sätt. I slutet av 1800 talet utvecklades matematiska sätt att beskriva gaserna, den så kallade kinetiska gasteorin. Den grundar sig på en modell för

Läs mer

Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl. 14.00-19.00

Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl. 14.00-19.00 EOREISK FYSIK KH Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den juni 1 kl. 14. - 19. Examinator: Olle Edholm, tel. 5537 8168, epost oed(a)kth.se. Komplettering:

Läs mer

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw Kemi och biokemi för K, Kf och Bt 2012 N molekyler V Repetition Fö2.2 Entropi är ett mått på sannolikhet W i = 1 N S = k lnw Föreläsning 2.3 Fysikaliska reaktioner 2V DS = S f S i = Nkln2 Björn Åkerman

Läs mer

Termodynamik Föreläsning 7 Entropi

Termodynamik Föreläsning 7 Entropi ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

Tentamen, Termodynamik och ytkemi, KFKA01,

Tentamen, Termodynamik och ytkemi, KFKA01, Tentamen, Termodynamik och ytkemi, KFKA01, 2016-10-26 Lösningar 1. a Mängden vatten är n m M 1000 55,5 mol 18,02 Förångningen utförs vid konstant tryck ex 2 bar och konstant temeratur T 394 K. Vi har alltså

Läs mer

Räkneövning 2 hösten 2014

Räkneövning 2 hösten 2014 Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund 22.9.2014 1 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor

Läs mer

Innehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation

Innehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation Innehållsförteckning Notera: denna förteckning uppdateras under kursens lopp, men stora förändringar är inte att vänta. I. Introduktion och första grundlagen I.1. Överblick och motivation I.1.1. Vad behandlar

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 2012-05-23 1. a Molekylerna i en ideal gas påverkar ej varandra, medan vi har ungefär samma växelverkningar mellan de olika molekylerna i en ideal blandning.

Läs mer

X. Repetitia mater studiorum

X. Repetitia mater studiorum X. Repetitia mater studiorum Termofysik, Kai Nordlund 2012 1 X.1. Termofysikens roll Den statistiska fysikens eller mekanikens uppgift är att härleda de fysikaliska egenskaperna hos makroskopiska system

Läs mer

Repetition F4. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F4. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F4 VSEPR-modellen elektronarrangemang och geometrisk form Polära (dipoler) och opolära molekyler Valensbindningsteori σ-binding och π-bindning hybridisering Molekylorbitalteori F6 Gaser Materien

Läs mer

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna:

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna: Allmän kemi Kap 17 Termodynamik Läromålen Studenten skall efter att ha genomfört delkurs 1 kunna: n - använda de termodynamiska begreppen entalpi, entropi och Gibbs fria energi samt redogöra för energiomvandlingar

Läs mer

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM Termodynamik FL4 VÄRMEKAPACITET IDEALA GASER 1:a HS ENERGIBALANS ENERGIBALANS FÖR SLUTNA SYSTEM Energibalans när teckenkonventionen används: d.v.s. värme in och arbete ut är positiva; värme ut och arbete

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

14. Sambandet mellan C V och C P

14. Sambandet mellan C V och C P 14. Sambandet mellan C V och C P Vi skriver tillståndsekvationen i de alternativa formerna V = V (P, T ) och S = S(T, V ) (1) och beräknar ds och dv genom att dela upp dem i partiella derivator ds = (

Läs mer

Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F12 Kolligativa egenskaper lösning av icke-flyktiga ämnen beror främst på mängd upplöst ämne (ej ämnet självt) o Ångtryckssänkning o Kokpunktsförhöjning o Fryspunktssänkning o Osmotiskt tryck

Läs mer

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Kapitel I Introduktion och första grundlagen Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal

Läs mer

@

@ Kinetisk gasteori F = area tryck Newtons 2:a lag på impulsformen: dp/dt = F, där p=mv Impulsöverföringen till kolven när en molekyl reflekteras i kolvytan A är p=2mv x. De molekyler som når fram till ytan

Läs mer

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar elativitetsteorins grunder, våren 2016 äkneövning 6 Lösningar 1. Gör en Newtonsk beräkning av den kritiska densiteten i vårt universum. Tänk dig en stor sfär som innehåller många galaxer med den sammanlagda

Läs mer

Tentamen KFKA05 för B, 2011-10-19 kl 14-19

Tentamen KFKA05 för B, 2011-10-19 kl 14-19 Tentamen KFKA05 för B, 2011-10-19 kl 14-19 Även för de som läste KFK080 för B hösten 2010 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall

Läs mer

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F7 Intermolekylär växelverkan kortväga repulsion elektrostatisk växelverkan (attraktion och repulsion): jon-jon (långväga), jon-dipol, dipol-dipol medelvärdad attraktion (van der Waals): roterande

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30 CHALMERS 1 (5) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

Läs mer

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik = läran om värmets natur och dess omvandling till andra energiformer (Nationalencyklopedin, band 18, Bra Böcker, Höganäs, 1995) 1

Läs mer

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum

Läs mer

Kapitel I. Introduktion och första grundlagen

Kapitel I. Introduktion och första grundlagen Kapitel I Introduktion och första grundlagen Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal partiklar (atomer, molekyler,...) i vilka temperaturen

Läs mer

Temperatur T 1K (Kelvin)

Temperatur T 1K (Kelvin) Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt

Läs mer

Kap 3 egenskaper hos rena ämnen

Kap 3 egenskaper hos rena ämnen Rena ämnen/substanser Kap 3 egenskaper hos rena ämnen Har fix kemisk sammansättning! Exempel: N 2, luft Även en fasblandning av ett rent ämne är ett rent ämne! Blandningar av flera substanser (t.ex. olja

Läs mer

III. Klassisk termodynamik. Termofysik, Kai Nordlund 2006 1

III. Klassisk termodynamik. Termofysik, Kai Nordlund 2006 1 III. Klassisk termodynamik Termofysik, Kai Nordlund 2006 1 III.1. Termodynamikens II grundlag i differentialform Termodynamikens II grundlag var ju Entropin i ett isolerat system kan endast öka och antar

Läs mer

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv?

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv? Entropi Entropi är ett mått på oordning En process går alltid mot samma eller ökande entropi. För energi gäller energins bevarande. För entropi gäller entropins ökande. Irreversibla processer innebär att

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00

Läs mer

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2) Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

Lite fakta om proteinmodeller, som deltar mycket i den här tentamen

Lite fakta om proteinmodeller, som deltar mycket i den här tentamen Skriftlig deltentamen, FYTA12 Statistisk fysik, 6hp, 28 Februari 2012, kl 10.15 15.15. Tillåtna hjälpmedel: Ett a4 anteckningsblad, skrivdon. Totalt 30 poäng. För godkänt: 15 poäng. För väl godkänt: 24

Läs mer

Kapitel II. Termodynamikens statistiska bas

Kapitel II. Termodynamikens statistiska bas Kapitel II Termodynamikens statistiska bas Introduktion Termodynamik vs. Statistik mekanik En gas består av ett stort antal atomer Termodynamiken beskriver gasens jämviktstillståndet med ett fåtal tillståndsvariabler

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

där vi introducerat Nu förändras även de övriga termodynamiska potentialernas derivator:

där vi introducerat Nu förändras även de övriga termodynamiska potentialernas derivator: IV. Faser Viktiga målsättningar med detta kapitel där vi introducerat µ ( E N ) S,V (2) = systemets kemiska potential = energiökningen per tillförd partikel Kunna behandla partikeltalet som termodynamisk

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2014-01-14 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2014-01-14 kl. 08.30-12.30 CHALMERS (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM09/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM09 och KVM090) 204-0-4 kl. 08.30-2.30

Läs mer

Termodynamiska potentialer Hösten Assistent: Frans Graeffe

Termodynamiska potentialer Hösten Assistent: Frans Graeffe Räkneövning 3 Termodynamiska potentialer Hösten 206 Assistent: Frans Graeffe (03-) Concepts in Thermal Physics 2.6 (6 poäng) Visa att enpartielpartitionsfunktionen Z för en gas av väteatomer är approximativt

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet

Läs mer

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln.

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Maj 7, 2013, KoK kap. 6 sid 171-176) och kap. 8 Centrala ekvationer i statistisk mekanik

Läs mer

Kinetisk Gasteori. Daniel Johansson January 17, 2016

Kinetisk Gasteori. Daniel Johansson January 17, 2016 Kinetisk Gasteori Daniel Johansson January 17, 2016 I kursen har vi under två lektioner diskuterat kinetisk gasteori. I princip allt som sades på dessa lektioner sammanfattas i texten nedan. 1 Lektion

Läs mer

Kapitel 3. Standardatmosfären

Kapitel 3. Standardatmosfären Kapitel 3. Standardatmosfären Omfattning: Allmänt om atmosfären Standardatmosfären Syfte med standardatmosfären Definition av höjd Lite fysik ISA-tabeller Tryck-, temp.- och densitetshöjd jonas.palo@bredband.net

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF14) Tid och plats: Tisdag 13/1 9, kl. 8.3-1.3 i V-huset. Examinator: Mats

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag CALMERS 1 (3) Kemi- och bioteknik/fysikalk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag jälpmedel: Kursböckerna

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,

Läs mer

Räkneövning i termodynamik, hösten 2000

Räkneövning i termodynamik, hösten 2000 October 3, 000 Räkneövning i termodynamik, hösten 000 Räkneövning 1: första huvudsatsen (kapitel 1) Jan Lagerwall E-post: jpf@fy.chalmers.se 1. (1.1) Visa att det för en kvasistatisk, adiabatisk process

Läs mer

Tentamen - Termodynamik 4p

Tentamen - Termodynamik 4p Tentamen - Termodynamik 4p Tid: 9.00-15.00, Torsdag 5 juni 003. Hjälpmedel: Physics Handbook, räknare 1. Betrakta en ideal gas. a) Använd kinetisk gasteori för att härleda ett samband mellan tryck, volym

Läs mer

Föreläsning 12: Ideal gas i klassiska gränsen med inre frihetsgrader, ekvipartitionsprincipen

Föreläsning 12: Ideal gas i klassiska gränsen med inre frihetsgrader, ekvipartitionsprincipen Föreläsning 12: Ideal gas i klassiska gränsen med frihetsgrader, ekvipartitionsprincipen April 26, 2013, KoK kap. 6 Centrala ekvationer i statistisk mekanik Mikrokanonisk ensemble (U,,N konst):p s = 1/g,

Läs mer

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V CHLMERS 1 (3) TENTMEN I TERMODYNMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V Hjälpmedel: Kursböckerna Elliott-Lira: Introductory Chemical Engineering Thermodynamics och P. tkins, L. Jones:

Läs mer

Tentamen KFKA05 och nya KFK080,

Tentamen KFKA05 och nya KFK080, Tentamen KFKA05 och nya KFK080, 2013-10-24 Även för de B-studenter som läste KFK080 hösten 2010 Tillåtna hjälpmedel: Miniräknare med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser

Läs mer

Tentamen i teknisk termodynamik (1FA527)

Tentamen i teknisk termodynamik (1FA527) Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare

Läs mer

10 Beräkning av dubbelintegraler

10 Beräkning av dubbelintegraler Nr,7april-,Amelia Beräkning av dubbelintegraler. Bte av integrationsordning Eempel (96) Kasta om integrationsordningen i a) b) c) Z Z e Z 6 Z d d d Z ln Z f(, )d f(, )d f(, )d. Lösning: Med hjälp av figurer

Läs mer

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω) FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:

Läs mer

Tentamen i Kemisk termodynamik kl 14-19

Tentamen i Kemisk termodynamik kl 14-19 Tentamen i Kemisk termodynamik 2005-11-07 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) förmiddag

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) förmiddag CHALMERS 1 (3) Energi och Miljö/ärmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KM090/91) ENAMEN I ERMODYNAMIK för K2 och Kf2 (KM091 och KM090) 2009-10-20 förmiddag Hjälpmedel:

Läs mer

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck:

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck: Termodynamik FL3 FASEGENSKAPER hos ENHETLIGA ÄMNEN FASER hos ENHETLIGA ÄMNEN Enhetligt ämne: ämne med välbestämd och enhetlig kemisk sammansättning. (även luft och vätske-gasblandningar kan betraktas som

Läs mer

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas

Läs mer

FÖRELÄSNING 9. YTAKTIVA ÄMNEN OCH SJÄLVASSOCIERANDE SYSTEM.

FÖRELÄSNING 9. YTAKTIVA ÄMNEN OCH SJÄLVASSOCIERANDE SYSTEM. FÖRELÄSNING 9. YTAKTIVA ÄMNEN OCH SJÄLVASSOCIERANDE SYSTEM. Ytaktiva ämne (surfaktanter) Gibbs ytspänningsekvation (ytkoncentration av ett löst ämne) Bestämning av ytadsorptionsdensitet Bildning av miceller

Läs mer

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2)

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) GÖTEBORGS UNIVERSITET INSTITUTIONEN FÖR KEMI Fysikalisk kemi KEM040 Laboration i fysikalisk kemi Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) ifylls

Läs mer

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten

Läs mer

Termodynamik FL7 ENTROPI. Inequalities

Termodynamik FL7 ENTROPI. Inequalities Termodynamik FL7 ENTROPI Varför är den termiska verkningsgraden hos värmemaskiner begränsad? Varför uppstår den maximala verkningsgraden hos reversibla processer? Varför går en del av energin till spillvärme?

Läs mer

Termodynamik (repetition mm)

Termodynamik (repetition mm) 0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö

Läs mer

Materialfysik vt Fasta ämnens termodynamik 4.1 Fasdiagram

Materialfysik vt Fasta ämnens termodynamik 4.1 Fasdiagram 530117 Materialfysik vt 2007 4. Fasta ämnens termodynamik 4.1 Fasdiagram 4.1.4. Mer komplicerade tvåkomponentsfasdiagram: principer Vi såg alltså ovan hur det enklaste tänkbara två-komponentsystemet, den

Läs mer

Repetition F10. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F10. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F10 Gibbs fri energi o G = H TS (definition) o En naturlig funktion av P och T Konstant P och T (andra huvudsatsen) o G = H T S 0 G < 0: spontan process, irreversibel G = 0: jämvikt, reversibel

Läs mer

Kap 5 mass- och energianalys av kontrollvolymer

Kap 5 mass- och energianalys av kontrollvolymer Kapitel 4 handlade om slutna system! Nu: öppna system (): energi och massa kan röra sig över systemgränsen. Exempel: pumpar, munstycken, turbiner, kondensorer mm Konstantflödesmaskiner (steady-flow devices)

Läs mer

EGENSKAPER FÖR ENHETLIGA ÄMNEN

EGENSKAPER FÖR ENHETLIGA ÄMNEN EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

Jämviktsuppgifter. 2. Kolmonoxid och vattenånga bildar koldioxid och väte enligt följande reaktionsformel:

Jämviktsuppgifter. 2. Kolmonoxid och vattenånga bildar koldioxid och väte enligt följande reaktionsformel: Jämviktsuppgifter Litterarum radices amarae, fructus dulces 1. Vid upphettning sönderdelas etan till eten och väte. Vid en viss temperatur har följande jämvikt ställt in sig i ett slutet kärl. C 2 H 6

Läs mer

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall.

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall. Kretsrocesser Termodynamiken utvecklades i början för att förstå hur bra man kunde bygga olika värmemaskiner, hur man skulle kunna öka maskinernas verkningsgrad d v s hur mycket mekaniskt arbete som kunde

Läs mer

Kap 11 kylcykler. 2-fas. ånga

Kap 11 kylcykler. 2-fas. ånga Kap 11 kylcykler Verkliga kylcykler Den vanligaste kylcykeln i tillämpningar innehåller förångning och kompression, dvs kylmediet byter fas. Problem som uppstår liknar de som finns i ångcykler (med vatten

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning). EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

1. Entropin för ett system i ett jämviktstillstånd, karakteriserat av t.ex. tillståndsvariablerna T och V, kan enligt termodynamiken definieras som

1. Entropin för ett system i ett jämviktstillstånd, karakteriserat av t.ex. tillståndsvariablerna T och V, kan enligt termodynamiken definieras som CHALMERS EKISKA HÖGSKOLA OCH GÖEBORGS UIVERSIE eoretisk fysik och mekanik Göran iklasson entamen i ermodynamik och statistisk fysik för F (FF140) id och plats: Onsdagen den 18 december 00 kl. 8.45 1.45

Läs mer