Uppgift 1 Andrej och Harald roar sig med en standardkortlek med 52 kort uppdelade på fyra färger (spader, klöver, hjärter och ruter).

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Uppgift 1 Andrej och Harald roar sig med en standardkortlek med 52 kort uppdelade på fyra färger (spader, klöver, hjärter och ruter)."

Transkript

1 Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 13:E MARS 2015 KL Kursledare för F och E: Timo Koski, tel: Kursledare för D och Medieteknik: Jimmy Olsson, tel: Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik, Mathematics Handbook (Beta), Hjälpreda för miniräknare, räknare. Införda beteckningar skall förklaras och definieras. Resonemang och uträkningar skall vara så utförliga och väl motiverade att de är lätta att följa. Numeriska svar skall anges med minst två siffrors noggrannhet. Tentamen består av 6 uppgifter. Varje korrekt lösning ger 10 poäng. Gränsen för godkänt är preliminärt 24 poäng. Möjlighet att komplettera ges för tentander med, preliminärt, poäng. Tid och plats för komplettering kommer att anges på kursens hemsida. Det ankommer på dig själv att ta reda på om du har rätt att komplettera. Poäng från kontrollskrivning och laborationer under kursomgång period 3 VT 2015 tillgodoräknas. Tentamen kommer att vara rättad inom tre arbetsveckor från skrivningstillfället och kommer att finnas tillgänglig på studentexpeditionen minst sju veckor efter skrivningstillfället. Uppgift 1 Andrej och Harald roar sig med en standardkortlek med 52 kort uppdelade på fyra färger (spader, klöver, hjärter och ruter). (a) Andrej låter Harald dra ett kort slumpvis ur kortleken. Låt A beteckna händelsen att kortet är en dam och låt B beteckna händelsen att kortet är hjärter. Är A och B oberoende? (4 p) (b) Harald drar nu slumpvis två kort ur leken utan återläggning. Proceduren upprepas och efter varje dragning läggs de två korten tillbaka i leken, varpå denna blandas. Bestäm det förväntade antalet dragningar Harald måste göra tills dess att de båda korten för första gången är två ess. Räkna även med den sista, lyckade dragningen. (6 p) Uppgift 2 Låt X beteckna det antal vinstnummer en deltagare prickar in i Keno-3. Sannolikhetsfunktionen för X ges då av följande tabell: k p X (k) Två vinstnummer ger vinsten 5 kr och tre vinstnummer ger vinsten 90 kr. Färre än två vinstnummer ger ingen vinst. Antag att 2000 personer deltar i lotteriet oberoende av varandra; bestäm den approximativa sannolikheten att deras sammanlagda vinst överstiger 6000 kr. (10 p)

2 forts tentamen i SF Uppgift 3 Ett läkemedelsföretag eftersträvar att utveckla en nytt läkemedel mot högt blodtryck. Ett steg i denna långa och mycket kostnadskrävande process, som sällan resulterar i en produkt på apoteksdisken, är de s.k. kliniska fas-ii studierna. I en sådan studie behandlas ett litet antal patienter med högt blodtryck med det nya läkemedlet. Studien vill undersöka om läkemedlet har en positiv eller negativ effekt, d.v.s. om sjuka patienter har ett ändrat blodtryck. I tabellen nedan har blodtrycket (övertryck i mm Hg) hos åtta patienter uppmätts före behandlingen, x i, och efter densamma, y i, i = 1,2,...,8. Person Blodtrycket före x Blodtrycket efter y Formulera nu en lämplig statistisk modell (Du får anta normalfördelade data) och testa hypotesen att det inte är någon ändring i blodtrycket mot hypotesen att blodtrycket har ändrats. Signifikansnivån har av den europeiska läkemedelsmyndigheten (EMA) bestämts som 5%. Din slutsats bör framgå tydligt. (10 p) Uppgift 4 Kontrollen av givarsignaler inom processindustrin går ut på att man studerar signalnivå och mätbrus hos givare i drift utan att givaren påverkas. Signalnivån representerar mätstorheten. För en viss givare misstänks mätbruset vara normalfördelat N(0, 1.5). 200 kontrollmätningar genomfördes, där mätbrusets nivå x observerades. Resultaten ges i tabellen nedan med en gruppering av brusets nivåer i fyra delområden. Nivå Antal mätningar x < x < x < x 47 Testa med ett lämpligt statistiskt test hypotesen att mätbruset har normalfördelning N(0, 1.5). Motivera Ditt val av test. Signifikansnivån är 5%. Din slutsats bör framgå tydligt. (10 p) Uppgift 5 En konsult noterar att större IT-projekt i en viss bransch ofta har problem med förseningar. Det gäller emellertid för de försenade projekten att kompletteringsgraden vid projektets planerade slutdatum är rätt så hög. Konsulten har följande värden på kompletteringsgraden hos fem försenade projekt: x 1 = 0.77,x 2 = 0.82,x 3 = 0.92,x 4 = 0.94,x 5 = Konsulten modellerar dessa mätvärden som oberoende utfall av en stokastisk variabel X med täthetsfunktionen, { θx θ 1 om 0 x 1, f X (x) = 0 för övrigt, där θ > 0.

3 forts tentamen i SF a) Härled Maximum Likelihood-skattningen (ML-skattningen) av θ och beräkna den numeriskt för de givna mätvärdena. (4 p) b) I figuren nedan har konsulten plottat för dessa mätvärden den naturliga logaritmen av likelihoodfunktionen (=loglikelihoodfunktionen) som funktion av θ i ett visst intervall. Redogör för vad som kan utläsas ur loglikelihoodfunktionen i denna figur och ta fram loglikelihoodfunktionens maximum (=största värde) i detta intervall med en numerisk beräkning. (1 p) c) Härled Minsta-Kvadrat-skattningen(MK) av θ och beräkna den numeriskt för de givna mätvärdena. (5 p)

4 forts tentamen i SF Uppgift 6 Två radioaktiva källor, A och B, emitterar varje minut, oberoende av varandra, ett Po(2)- resp. Po(4)-fördelat antal α-partiklar. De från A och B utsända partiklarna registreras av en och samma detektor. Under en viss minut registrerar detektorn totalt 3 partiklar. Vad är sannolikheten att minst en av dessa kommer från källa A? (10 p) Lycka till!

5 Avd. Matematisk statistik LÖSNINGAR TILL TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK I FREDAGEN DEN 13 MARS 2015 KL Uppgift 1 (a) Då det föreligger likformig fördelning ger den klassiska sannolikhetsdefinitionen P (A)P (B) = = = Då det endast finns en hjärter dam gäller dessutom att P (A B) = 1/52, vilket följaktligen betyder att P (A)P (B) = P (A B). Alltså är A och B oberoende. (b) Det finns ( ( 52 2) sätt att dra två kort ur 52 kort. Bland alla dessa 52 2) kombinationer av två kort finns ( 4 2) kombinationer av två ess. Sannolikheten att Harald vid en dragning lyckas att dra två ess är följaktligen, enligt den klassiska sannolikhetsdefinitionen, ( 4 p = P (Harald drar två ess) = 2) ) = = Här skulle man alternativt kunna använda att antalet erhållna ess vid dragning av två kort har hypergeometrisk fördelning med parametrar N = 52, Np = 4 och n = 2. Ännu ett alternativt sätt att bestämma sannolikheten ovan är med hjälp av betingad sannolikhet: låt E 1 och E 2 beteckna händelsen att det första resp. andra kortet är ett ess och räkna enligt P (Harald drar två ess) = P (E 1 E 2 ) = P (E 2 E 1 )P (E 1 ) = 3 51 ( = = Då utfallet av varje ny tvåkortsdragning är oberoende av de tidigare(leken blandas ju mellan varje dragning) kommer antalet försök X som Harald måste göra innan han lyckas att dra två ess att vara ffg-fördelat med parameter p. Enligt formelsamlingen har denna fördelning väntevärde vilket är svaret på (b). E(X) = 1 p = 221, Uppgift 2 Vi bestämmer först väntevärde och varians för vinsten Y i för deltagare i (där i = 1,...,2000). Vinsten kan anta tre värden, nämligen 0, 5 eller 90, och enligt definitionen av väntevärde gäller E(Y i ) = 0 P (Y i = 0)+5 P (Y i = 5)+90 P (Y i = 90) = 5 P (X i = 2)+90 P (X i = 3) = = 2.65,

6 forts tentamen i SF där X i betecknar antalet vinstnummer för samma deltagare. På samma sätt får vi E ( ) Yi 2 = Ur detta erhålls variansen V (Y i ) = E(Yi 2) E(Y i) Låt nu T = 2000 Y i vara den sammanlagda vinsten för de 2000 deltagarna. Då väntevärden är linjära får vi E(T) = E ( 2000 ) 2000 Y i = E(Y i ) = = 5300 samt, då de enskilda vinsterna Y 1,...,Y 2000 är oberoende, V (T) = V ( 2000 ) 2000 Y i = V (Y i ) = , vilket ger att D(T) 564. Då T är en summa av ett stort antal likafördelade och oberoende variabler gäller, enligt centrala gränsvärdessatsen, att T är approximativt N(5300, 564)-fördelad. En approximation av den sökta sannolikheten ges sålunda av ( T 5300 P (T > 6000) = 1 P (T 6000) = 1 P ) Φ(1.24) , där Φ betecknar den standardiserade normalfördelningens fördelningsfunktion och dess värde i punkten x = 1.24 erhålls ur tabell. Uppgift 3 Vi har här ett fall av stickprov i par (även kallat matchade par). Den statistiska analysen baserar sig på att bilda differenserna z i = y i x i, i = 1,2,...,8. Detta ger z 1 = 7,z 2 = 6,z 3 = 2,z 4 = 11,z 5 = 13,z 6 = 12,z 7 = 15,z 8 = 12. Modellen är att dessa z i :na är respektive utfall av oberoende Z i N(,σ), där σ är okänd. Vi har alltså nollhypotesen H 0 : = 0 (vi påstår att ingen genomsnittlig effekt finns) och mothypotesen H 1 : 0. Vi anv nder konfidensmetoden, d.v.s., vi konstruerar det tvåsidiga konfidensintervallet för med konfidensgraden = Detta fordrar att vi beräknar z = 1 8 z i = 7.5,s z = 1 8 (z i z) 2 =

7 forts tentamen i SF Det sökta konfidensintervallet för ges i formelbladet av t-metoden som z ± s z t (8 1). 8 Insättning av siffrorna ovan och av t (7) = 2.36 ger som är 7.5± I = [ 14.1, 0.87]. Eftersom = 0 INTE ingår i detta interval, förkastas nollhypotesen på signifikansnivån Uppgift 4 Vi har här en nollhypotes om värdena på sannolikheterna för de fyra områdena. Dessa sannolikheter ges enligt nollhypotesen av N(0, 1.5). Statistiskt sett kräver detta en jämförelse av de förväntade frekvenserna med de observerade frekvenserna. Vi talar anglicistiskt om testning av s.k. goodness-of-fit. Vi beräknar nu enligt nollhypotesen de förväntade frekvenserna för de fyra intervallen utifrån N(0,1.5). Vi vet att om X N(0,1.5), så är X/1.5 N(0,1), och med denna standardisering av värden använder vi fördelningsfunktionen för N(0, 1), Φ(x), i de härvid erforderliga sannolikhetskalkylerna. Vi har för x 1 ( ) 1 a = 200 Φ = 50.5, 1.5 för 1 < x 0 för 0 < x 1 och för 1 < x b = 200 c = 200 d = 200 ( ( )) 1 Φ(0) Φ = 49.5, 1.5 ( ( ) ) 1 Φ Φ(0) = ( ( )) 1 1 Φ = Dessa är alla 5, och vi kan använda oss av χ 2 -testet. Vi bildar testvariabeln Q = ((41 a) 2 )/a+((53 b) 2 )/b+((59 c) 2 )/c+((47 d) 2 )/d = Enligt den statistiska teorin gäller asymptotiskt att Q χ 2 (3). Vi bör således jämföra det observerade värdet 4.1 med fraktalen χ (3) = Vi ser att Q < 7.81, d.v.s. Q hamnar inte i det kritiska området och således kommer nollhypotesen om att mätbruset är normalfördelat N(0, 1.5) inte att förkastas på signifikansnivån 5%. Uppgift 5 a) Likelihoodfunktionen är för oberoende utfall given som L(θ) = f X (x 1 )f X (x 2 )... f X (x n )

8 forts tentamen i SF = θx θ 1 1 θx θ θx θ 1 n = θ n (x 1 x 2... x n ) θ 1 Vi vill hitta θ obs (=ML- skattningen) som maximerar L(θ). Detta är ekvivalent med att hitta θ obs som maximerar lnl(θ), ty ln är en strikt växande funktion. Vi får lnl(θ) = nlnθ+(θ 1) lnx i. Derivering ger d dθ lnl(θ) = n θ + lnx i. Vi sätter derivatan lika med noll och erhåller ekvationen Detta ger θ obs = n θ + lnx i = 0. n n lnx i = 1 1 n n lnx. i När vi insätter de fem givna värdena på kompletteringsgraden hos fem försenade projekt får vi θobs = (ln0.77+ln0.82+ln0.92+ln0.94+ln0.98) 5 b) Figuren indikerar att den naturliga logaritmen av likelihoodfunktionen (=loglikelihoodfunktionen) har maximum i θ = 8.0. Loglikelihoodfunktionens maximum (=största värde) är lnl(8.0) = 5 ln(8.0)+(8.0 1) (ln0.77+ln0.82+ln0.92+ln0.98) = 6.02 vilket även överenstämmer med vad som kan avläsas ur figuren. Vi ser även att loglikelihoodfunktionen är flat kring sitt maximum 8.0 och avtar rätt långsamt, när vi avlägsnar oss från värdet 8.0. ML-skattningen är således relativt osäker, det får minnas att vi har endast fem observationer. c) Minsta-Kvadrat-skattningen (MK) av θ definieras som värdet på θ som minimerar Q(θ) = (x i E[X i ]) 2. Vi behöver uppenbarligen att beräkna väntevärdet E[X i ] = = θ 1 0 x f X (x)dx = θ 1 0 x x θ 1 dx [ ] x x θ θ+1 1 dx = θ = θ θ+1 0 θ +1.

9 forts tentamen i SF där θ > 0. Väntevärdet är detsamma för alla i. Vi har alltså ( Q(θ) = x i θ ) 2. θ+1 Derivering m.a.p. θ ger d dθ Q(θ) = 2 Vi sätter d Q(θ) = 0 och får dθ ( x i θ ) θ +1 1 (θ+1) 2 = 2 (θ+1) 2 ( x i θ ) = 0 θ+1 ( x i θ ). θ +1 efter att ha dividerat bort konstanterna framför summatecknet. Detta ger enligt reglerna för hantering av summatecken x i n θ θ +1 = 0 d.v.s. d.v.s. (θ+1) x i nθ = 0 ( ) θ x i n = vilket med en viss algebraisk hyfsning ger vid handen x i, θ obsmk = n x i n ( 1 1 n n x i ) = x 1 x. där x = 1 n n x i. Insättning av de givna mätvärdena ger x = 1 ( ) = , 5 och därför θobsmk = = Uppgift 6 Låt X A Po(2) och X B Po(4) vara antalet från källa A resp. källa B utsända partiklar under minuten ifråga. Vi söker P (X A 1 X A +X B = 3) = 1 P (X A = 0 X A +X B = 3).

10 forts tentamen i SF Genom användning av definitionen av betingad sannolikhet och det faktum att X A och X B är oberoende s.v. kan sannolikheten i högerledet skrivas som P (X A = 0 X A +X B = 3) = P (X A = 0,X A +X B = 3) P (X A +X B = 3) = P (X A = 0,X B = 3) P (X A +X B = 3) = P (X A = 0)P (X B = 3). P (X A +X B = 3) Med hjälp av Poissonfördelningens sannolikhetsfunktion erhålls P (X A = 0)P (X B = 3) = e 220 0! e 443 3! = e 643 3!. Vidare, genom användning av Poissonfördelningens additionsegenskap kan vi dessutom sluta oss till att X A +X B Po(2+4) = Po(6), vilket ger P (X A +X B = 3) = e 663 3!. Genom att kombinera de tre sista ekvationerna erhålls vilket ger oss den sökta sannolikheten P (X A = 0 X A +X B = 3) = e /3! e /3! = P (X A 1 X A +X B = 3) = 1 ( ) 3 2, 3 ( ) Vi konstaterar slutligen att man istället för att använda additionsegenskapen kan alternativt bestämma sannolikheten P (X A +X B = 3) enligt den direkta beräkningen P (X A +X B = 3) =P (X A = 0,X B = 3)+P (X A = 1,X B = 2) +P (X A = 2,X B = 1)+P (X A = 3,X B = 0) =P (X A = 0)P (X B = 3)+P (X A = 1)P (X B = 2) +P (X A = 2)P (X B = 1)+P (X A = 3)P (X B = 0) ( ) 4 =e 6 3 3! ! ! 3! =e 663 3!.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

f(x) = 2 x2, 1 < x < 2.

f(x) = 2 x2, 1 < x < 2. Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 28:E OKTOBER 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn Olof Skytt 08-790 86 49. Tillåtna

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

b) Om vi antar att eleven är aktiv i en eller flera studentföreningar vad är sannolikheten att det är en kille? (5 p)

b) Om vi antar att eleven är aktiv i en eller flera studentföreningar vad är sannolikheten att det är en kille? (5 p) Avd. Matematisk statistik TENTAMEN I SF1920 och SF1921 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 8:E JUNI 2018 KL 14.00 19.00. Examinator: Björn-Olof Skytt, 08 790 86 49. Tillåtna hjälpmedel: Formel-

Läs mer

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p)

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p) Avd. Matematisk statistik TENTAMEN I SF90 OCH SF905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 4:E MARS 204 KL 4.00 9.00. Kursledare: För D och Media: Gunnar Englund, 073 32 37 45 Kursledare: För F:

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p) Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-

Läs mer

(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat.

(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat. Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSLÄRA OCH STATISTIK I, MÅNDAGEN DEN 15 AUGUSTI 2016 KL 08.00 13.00. Examinator: Tatjana Pavlenko, 08 790 84 66. Kursledare: Thomas Önskog, 08 790

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF90 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 26:E OKTOBER 206 KL 8.00 3.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 5:E APRIL 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p) Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och

Läs mer

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 14:E MARS 017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

b) Beräkna sannolikheten för att en person med språkcentrum i vänster hjärnhalva är vänsterhänt. (5 p)

b) Beräkna sannolikheten för att en person med språkcentrum i vänster hjärnhalva är vänsterhänt. (5 p) Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 13:E AUGUSTI 2018 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlenko, 08-790 84 66 Examinator

Läs mer

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

1 e (λx)β, för x 0, F X (x) = 0, annars.

1 e (λx)β, för x 0, F X (x) = 0, annars. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 30:E MAJ 2017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1907, SF1908 samt SF1913 SANNOLIKHETSTEORI OCH STATISTIK, ONS- DAGEN DEN 9:E JANUARI 2013 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1910 TILLÄMPAD STATISTIK, MÅNDAGEN DEN 9:E JANUARI 2017 KL 14.00 19.00. Examinator: Camilla Landén, 08 790 61 97. Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

Uppgift 1. f(x) = 2x om 0 x 1

Uppgift 1. f(x) = 2x om 0 x 1 Avd. Matematisk statistik TENTAMEN I Matematisk statistik SF1907, SF1908 OCH SF1913 TORSDAGEN DEN 30 MAJ 2013 KL 14.00 19.00. Examinator: Gunnar Englund, 073 321 3745 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p) Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna

Läs mer

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:... Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 14:E AUGUSTI 2017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 14:E AUGUSTI 2017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski FACIT för Förberedelseuppgifter: SF9 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 206 KL 4.00 9.00. Examinator: Timo Koski - - - - - - - - - - - - - - - - - - - - - - - - 0. FACIT Problem

Läs mer

Uppgift 1 P (A B) + P (B A) = 2 3. b) X är en diskret stokastisk variabel, som har de positiva hela talen som värden. Vi har. k s

Uppgift 1 P (A B) + P (B A) = 2 3. b) X är en diskret stokastisk variabel, som har de positiva hela talen som värden. Vi har. k s Avd. Matematisk statistik TENTAMEN I SF90 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 8:E MARS 06 KL 08.00 3.00. Kursledare: Timo Koski, tel 070 370047 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF11/SF114/SF115/SF116 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 0:E DECEMBER 018 KL 8.00 13.00. Examinator för SF114/SF116: Tatjana Pavlenko, 08-70 84 66 Examinator

Läs mer

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:... Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för

Läs mer

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:

Läs mer

cx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4

cx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4 Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK ONSDAGEN DEN 1:A JUNI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel: miniräknare,

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2 Avd. Matematisk statistik TENTAMEN I B14 MATEMATISK STATISTIK GRUNDKURS FÖR E gamlingar TISDAGEN DEN 14 DECEMBER 4 KL 8. 13. Examinator: Gunnar Englund, 79 7416 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

b) Förekommer A- och B-fel oberoende av varandra? (Motivering krävs naturligtvis!) (5 p)

b) Förekommer A- och B-fel oberoende av varandra? (Motivering krävs naturligtvis!) (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK FREDAGEN DEN 8 MAJ 010 KL 14.00 19.00. Eaminator: Gunnar Englund, tel. 79074 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901,SF1905,SF1907 OCH SF1908 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 12:E JANUARI 2011 KL 14.00 19.00. Kursledare: Gunnar Englund för D och I, tel. 7907416.

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1910 TILLÄMPAD STATISTIK, MÅNDAGEN DEN 9:E JANUARI 2017 KL 14.00 19.00. Examinator: Camilla Landén, 08 790 61 97. Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

faderns blodgrupp sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

faderns blodgrupp sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 2015 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016

Läs mer

e x/1000 för x 0 0 annars

e x/1000 för x 0 0 annars VK Matematiska institutionen avd matematisk statistik TENTAMEN I 5B506 MATEMATISK STATISTIK GRUNDKURRS FÖR D OCH F, 5B504 MATEMATISK STATISTIK GRUNDKURS FÖR ÄLDRE OCH 5B50 MARKOVPROCESSER ONSDAGEN DEN

Läs mer

Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I 5B1504 MATEMATISK STATISTIK GRUNDKURS FÖR E3 LÖRDAGEN DEN 30 AUGUSTI 2003 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 7416. Tillåtna hjälpmedel : Formel- och

Läs mer

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL 8.00 13.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Sju dagar före viral exponering med echinacea därefter Efter viral exponering med echinacea därefter Placebo (ingen echinacea) 58 30

Sju dagar före viral exponering med echinacea därefter Efter viral exponering med echinacea därefter Placebo (ingen echinacea) 58 30 Avd Matematisk statistik TENTAMEN I SF1911, STATISTIK FÖR BIOTEKNIK Torsdag den femte april 18 14:00-19:00 Examinator: Timo Koski, 072 14861 Kursledare: Timo Koski, 072 14861 Tillåtna hjälpmedel: Formel-

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 14:E AUGUSTI 2017 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 12 oktober 2015 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametsriska metoder. (Kap. 13.10) Det grundläggande

Läs mer

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL TENTAMEN I SF950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 010 KL 14.00 19.00 Examinator : Gunnar Englund, tel. 790 7416, epost: gunnare@math.kth.se Tillåtna hjälpmedel: Formel-

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Individ nr Första testet Sista testet

Individ nr Första testet Sista testet Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK ONSDAGEN DEN 7:E JUNI 2017 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel: miniräknare,

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 7.5 hp TVJ22A DTEIN15 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal poäng

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 18 AUGUSTI 2017 KL Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER FREDAGEN DEN 8 AUGUSTI 207 KL 08.00 3.00. Examinator: Boualem Djehiche tel. 790 78 75 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

TENTAMEN I SF1904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 2018 KL

TENTAMEN I SF1904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 2018 KL Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 29 MAJ 208 KL 4.00 9.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna hjälpmedel:

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 13 oktober 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 14 13 december 2016 1 / 20 Idag χ 2 -metoden Test av given fördelning Homogenitetstest 2 / 20 Idag χ 2 -metoden Test av given fördelning

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1911, STATISTIK FÖR BIOTEKNIK Torsdag den 1 april 08:00-1:00. Examinator: Timo Koski, 70 7 00 47. Kursledare: Timo Koski, 790 71 4. Tillåtna hjälpmedel: Formel- och

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

Matematisk statistik TMS063 Tentamen

Matematisk statistik TMS063 Tentamen Matematisk statistik TMS63 Tentamen 8-8- Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof Elias,

Läs mer

R(t) = e c(t/a)c för t 0

R(t) = e c(t/a)c för t 0 1 Weibullanalys Jan Enger Matematisk statistik KTH Weibull-fördelningen är en mycket viktig fördelning inom tillförlitlighetsanalysen. Den används ofta för att modellera mekaniska komponenters livslängder.

Läs mer

Tentamen MVE300 Sannolikhet, statistik och risk

Tentamen MVE300 Sannolikhet, statistik och risk Tentamen MVE300 Sannolikhet, statistik och risk 205-08-8 kl. 8.30-3.30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Johan Jonasson, telefon: 0706-985223 03-7723546 Hjälpmedel:

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning

Läs mer

Tentamen i Sannolikhetslära och statistik, TNK069, , kl 8 13.

Tentamen i Sannolikhetslära och statistik, TNK069, , kl 8 13. LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Tentamen i Sannolikhetslära och statistik, TNK69, 26--7, kl 8 3. Hjälpmedel är räknare med tömda minnen samt formelsamling utgiven

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund

Läs mer

Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅNDAGEN DEN 9 DECEMBER 2016 KL 14.00 19.00. Examinator: Timo Koski FACIT FINNS I DOKUMENTET sf1911valdatalfacit.pdf i katalogen https://www.math.kth.se/matstat/gru/sf1911/extraovningar/.

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

Weibullanalys. Maximum-likelihoodskattning

Weibullanalys. Maximum-likelihoodskattning 1 Weibullanalys Jan Enger Matematisk statistik KTH Weibull-fördelningen är en mycket viktig fördelning inom tillförlitlighetsanalysen. Den används ofta för att modellera mekaniska komponenters livslängder.

Läs mer

SF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018

SF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018 SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14-15 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 14 maj 2018 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametriska metoder. (Kap. 13.10) Det

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

F3 Introduktion Stickprov

F3 Introduktion Stickprov Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever

Läs mer

Uppgift 1. ii) r xy = 0.5. iii) r xy = 1. iv) r xy = 1. v) Denna fråga kan inte besvaras utan att kolla data.

Uppgift 1. ii) r xy = 0.5. iii) r xy = 1. iv) r xy = 1. v) Denna fråga kan inte besvaras utan att kolla data. Avd. Matematisk statistik TENTAMEN I SF9, STATISTIK FÖR BIOTEKNIK Måndag den åttonde januari 08 4:00-9:00. Examinator: Timo Koski, 70 37 00 47. Kursledare: Timo Koski, 790 7 34. Tillåtna hjälpmedel: Formel-

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 22 augusti

Tentamen för kursen. Linjära statistiska modeller. 22 augusti STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk

Läs mer