Uppgift 1 Andrej och Harald roar sig med en standardkortlek med 52 kort uppdelade på fyra färger (spader, klöver, hjärter och ruter).

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Uppgift 1 Andrej och Harald roar sig med en standardkortlek med 52 kort uppdelade på fyra färger (spader, klöver, hjärter och ruter)."

Transkript

1 Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 13:E MARS 2015 KL Kursledare för F och E: Timo Koski, tel: Kursledare för D och Medieteknik: Jimmy Olsson, tel: Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik, Mathematics Handbook (Beta), Hjälpreda för miniräknare, räknare. Införda beteckningar skall förklaras och definieras. Resonemang och uträkningar skall vara så utförliga och väl motiverade att de är lätta att följa. Numeriska svar skall anges med minst två siffrors noggrannhet. Tentamen består av 6 uppgifter. Varje korrekt lösning ger 10 poäng. Gränsen för godkänt är preliminärt 24 poäng. Möjlighet att komplettera ges för tentander med, preliminärt, poäng. Tid och plats för komplettering kommer att anges på kursens hemsida. Det ankommer på dig själv att ta reda på om du har rätt att komplettera. Poäng från kontrollskrivning och laborationer under kursomgång period 3 VT 2015 tillgodoräknas. Tentamen kommer att vara rättad inom tre arbetsveckor från skrivningstillfället och kommer att finnas tillgänglig på studentexpeditionen minst sju veckor efter skrivningstillfället. Uppgift 1 Andrej och Harald roar sig med en standardkortlek med 52 kort uppdelade på fyra färger (spader, klöver, hjärter och ruter). (a) Andrej låter Harald dra ett kort slumpvis ur kortleken. Låt A beteckna händelsen att kortet är en dam och låt B beteckna händelsen att kortet är hjärter. Är A och B oberoende? (4 p) (b) Harald drar nu slumpvis två kort ur leken utan återläggning. Proceduren upprepas och efter varje dragning läggs de två korten tillbaka i leken, varpå denna blandas. Bestäm det förväntade antalet dragningar Harald måste göra tills dess att de båda korten för första gången är två ess. Räkna även med den sista, lyckade dragningen. (6 p) Uppgift 2 Låt X beteckna det antal vinstnummer en deltagare prickar in i Keno-3. Sannolikhetsfunktionen för X ges då av följande tabell: k p X (k) Två vinstnummer ger vinsten 5 kr och tre vinstnummer ger vinsten 90 kr. Färre än två vinstnummer ger ingen vinst. Antag att 2000 personer deltar i lotteriet oberoende av varandra; bestäm den approximativa sannolikheten att deras sammanlagda vinst överstiger 6000 kr. (10 p)

2 forts tentamen i SF Uppgift 3 Ett läkemedelsföretag eftersträvar att utveckla en nytt läkemedel mot högt blodtryck. Ett steg i denna långa och mycket kostnadskrävande process, som sällan resulterar i en produkt på apoteksdisken, är de s.k. kliniska fas-ii studierna. I en sådan studie behandlas ett litet antal patienter med högt blodtryck med det nya läkemedlet. Studien vill undersöka om läkemedlet har en positiv eller negativ effekt, d.v.s. om sjuka patienter har ett ändrat blodtryck. I tabellen nedan har blodtrycket (övertryck i mm Hg) hos åtta patienter uppmätts före behandlingen, x i, och efter densamma, y i, i = 1,2,...,8. Person Blodtrycket före x Blodtrycket efter y Formulera nu en lämplig statistisk modell (Du får anta normalfördelade data) och testa hypotesen att det inte är någon ändring i blodtrycket mot hypotesen att blodtrycket har ändrats. Signifikansnivån har av den europeiska läkemedelsmyndigheten (EMA) bestämts som 5%. Din slutsats bör framgå tydligt. (10 p) Uppgift 4 Kontrollen av givarsignaler inom processindustrin går ut på att man studerar signalnivå och mätbrus hos givare i drift utan att givaren påverkas. Signalnivån representerar mätstorheten. För en viss givare misstänks mätbruset vara normalfördelat N(0, 1.5). 200 kontrollmätningar genomfördes, där mätbrusets nivå x observerades. Resultaten ges i tabellen nedan med en gruppering av brusets nivåer i fyra delområden. Nivå Antal mätningar x < x < x < x 47 Testa med ett lämpligt statistiskt test hypotesen att mätbruset har normalfördelning N(0, 1.5). Motivera Ditt val av test. Signifikansnivån är 5%. Din slutsats bör framgå tydligt. (10 p) Uppgift 5 En konsult noterar att större IT-projekt i en viss bransch ofta har problem med förseningar. Det gäller emellertid för de försenade projekten att kompletteringsgraden vid projektets planerade slutdatum är rätt så hög. Konsulten har följande värden på kompletteringsgraden hos fem försenade projekt: x 1 = 0.77,x 2 = 0.82,x 3 = 0.92,x 4 = 0.94,x 5 = Konsulten modellerar dessa mätvärden som oberoende utfall av en stokastisk variabel X med täthetsfunktionen, { θx θ 1 om 0 x 1, f X (x) = 0 för övrigt, där θ > 0.

3 forts tentamen i SF a) Härled Maximum Likelihood-skattningen (ML-skattningen) av θ och beräkna den numeriskt för de givna mätvärdena. (4 p) b) I figuren nedan har konsulten plottat för dessa mätvärden den naturliga logaritmen av likelihoodfunktionen (=loglikelihoodfunktionen) som funktion av θ i ett visst intervall. Redogör för vad som kan utläsas ur loglikelihoodfunktionen i denna figur och ta fram loglikelihoodfunktionens maximum (=största värde) i detta intervall med en numerisk beräkning. (1 p) c) Härled Minsta-Kvadrat-skattningen(MK) av θ och beräkna den numeriskt för de givna mätvärdena. (5 p)

4 forts tentamen i SF Uppgift 6 Två radioaktiva källor, A och B, emitterar varje minut, oberoende av varandra, ett Po(2)- resp. Po(4)-fördelat antal α-partiklar. De från A och B utsända partiklarna registreras av en och samma detektor. Under en viss minut registrerar detektorn totalt 3 partiklar. Vad är sannolikheten att minst en av dessa kommer från källa A? (10 p) Lycka till!

5 Avd. Matematisk statistik LÖSNINGAR TILL TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK I FREDAGEN DEN 13 MARS 2015 KL Uppgift 1 (a) Då det föreligger likformig fördelning ger den klassiska sannolikhetsdefinitionen P (A)P (B) = = = Då det endast finns en hjärter dam gäller dessutom att P (A B) = 1/52, vilket följaktligen betyder att P (A)P (B) = P (A B). Alltså är A och B oberoende. (b) Det finns ( ( 52 2) sätt att dra två kort ur 52 kort. Bland alla dessa 52 2) kombinationer av två kort finns ( 4 2) kombinationer av två ess. Sannolikheten att Harald vid en dragning lyckas att dra två ess är följaktligen, enligt den klassiska sannolikhetsdefinitionen, ( 4 p = P (Harald drar två ess) = 2) ) = = Här skulle man alternativt kunna använda att antalet erhållna ess vid dragning av två kort har hypergeometrisk fördelning med parametrar N = 52, Np = 4 och n = 2. Ännu ett alternativt sätt att bestämma sannolikheten ovan är med hjälp av betingad sannolikhet: låt E 1 och E 2 beteckna händelsen att det första resp. andra kortet är ett ess och räkna enligt P (Harald drar två ess) = P (E 1 E 2 ) = P (E 2 E 1 )P (E 1 ) = 3 51 ( = = Då utfallet av varje ny tvåkortsdragning är oberoende av de tidigare(leken blandas ju mellan varje dragning) kommer antalet försök X som Harald måste göra innan han lyckas att dra två ess att vara ffg-fördelat med parameter p. Enligt formelsamlingen har denna fördelning väntevärde vilket är svaret på (b). E(X) = 1 p = 221, Uppgift 2 Vi bestämmer först väntevärde och varians för vinsten Y i för deltagare i (där i = 1,...,2000). Vinsten kan anta tre värden, nämligen 0, 5 eller 90, och enligt definitionen av väntevärde gäller E(Y i ) = 0 P (Y i = 0)+5 P (Y i = 5)+90 P (Y i = 90) = 5 P (X i = 2)+90 P (X i = 3) = = 2.65,

6 forts tentamen i SF där X i betecknar antalet vinstnummer för samma deltagare. På samma sätt får vi E ( ) Yi 2 = Ur detta erhålls variansen V (Y i ) = E(Yi 2) E(Y i) Låt nu T = 2000 Y i vara den sammanlagda vinsten för de 2000 deltagarna. Då väntevärden är linjära får vi E(T) = E ( 2000 ) 2000 Y i = E(Y i ) = = 5300 samt, då de enskilda vinsterna Y 1,...,Y 2000 är oberoende, V (T) = V ( 2000 ) 2000 Y i = V (Y i ) = , vilket ger att D(T) 564. Då T är en summa av ett stort antal likafördelade och oberoende variabler gäller, enligt centrala gränsvärdessatsen, att T är approximativt N(5300, 564)-fördelad. En approximation av den sökta sannolikheten ges sålunda av ( T 5300 P (T > 6000) = 1 P (T 6000) = 1 P ) Φ(1.24) , där Φ betecknar den standardiserade normalfördelningens fördelningsfunktion och dess värde i punkten x = 1.24 erhålls ur tabell. Uppgift 3 Vi har här ett fall av stickprov i par (även kallat matchade par). Den statistiska analysen baserar sig på att bilda differenserna z i = y i x i, i = 1,2,...,8. Detta ger z 1 = 7,z 2 = 6,z 3 = 2,z 4 = 11,z 5 = 13,z 6 = 12,z 7 = 15,z 8 = 12. Modellen är att dessa z i :na är respektive utfall av oberoende Z i N(,σ), där σ är okänd. Vi har alltså nollhypotesen H 0 : = 0 (vi påstår att ingen genomsnittlig effekt finns) och mothypotesen H 1 : 0. Vi anv nder konfidensmetoden, d.v.s., vi konstruerar det tvåsidiga konfidensintervallet för med konfidensgraden = Detta fordrar att vi beräknar z = 1 8 z i = 7.5,s z = 1 8 (z i z) 2 =

7 forts tentamen i SF Det sökta konfidensintervallet för ges i formelbladet av t-metoden som z ± s z t (8 1). 8 Insättning av siffrorna ovan och av t (7) = 2.36 ger som är 7.5± I = [ 14.1, 0.87]. Eftersom = 0 INTE ingår i detta interval, förkastas nollhypotesen på signifikansnivån Uppgift 4 Vi har här en nollhypotes om värdena på sannolikheterna för de fyra områdena. Dessa sannolikheter ges enligt nollhypotesen av N(0, 1.5). Statistiskt sett kräver detta en jämförelse av de förväntade frekvenserna med de observerade frekvenserna. Vi talar anglicistiskt om testning av s.k. goodness-of-fit. Vi beräknar nu enligt nollhypotesen de förväntade frekvenserna för de fyra intervallen utifrån N(0,1.5). Vi vet att om X N(0,1.5), så är X/1.5 N(0,1), och med denna standardisering av värden använder vi fördelningsfunktionen för N(0, 1), Φ(x), i de härvid erforderliga sannolikhetskalkylerna. Vi har för x 1 ( ) 1 a = 200 Φ = 50.5, 1.5 för 1 < x 0 för 0 < x 1 och för 1 < x b = 200 c = 200 d = 200 ( ( )) 1 Φ(0) Φ = 49.5, 1.5 ( ( ) ) 1 Φ Φ(0) = ( ( )) 1 1 Φ = Dessa är alla 5, och vi kan använda oss av χ 2 -testet. Vi bildar testvariabeln Q = ((41 a) 2 )/a+((53 b) 2 )/b+((59 c) 2 )/c+((47 d) 2 )/d = Enligt den statistiska teorin gäller asymptotiskt att Q χ 2 (3). Vi bör således jämföra det observerade värdet 4.1 med fraktalen χ (3) = Vi ser att Q < 7.81, d.v.s. Q hamnar inte i det kritiska området och således kommer nollhypotesen om att mätbruset är normalfördelat N(0, 1.5) inte att förkastas på signifikansnivån 5%. Uppgift 5 a) Likelihoodfunktionen är för oberoende utfall given som L(θ) = f X (x 1 )f X (x 2 )... f X (x n )

8 forts tentamen i SF = θx θ 1 1 θx θ θx θ 1 n = θ n (x 1 x 2... x n ) θ 1 Vi vill hitta θ obs (=ML- skattningen) som maximerar L(θ). Detta är ekvivalent med att hitta θ obs som maximerar lnl(θ), ty ln är en strikt växande funktion. Vi får lnl(θ) = nlnθ+(θ 1) lnx i. Derivering ger d dθ lnl(θ) = n θ + lnx i. Vi sätter derivatan lika med noll och erhåller ekvationen Detta ger θ obs = n θ + lnx i = 0. n n lnx i = 1 1 n n lnx. i När vi insätter de fem givna värdena på kompletteringsgraden hos fem försenade projekt får vi θobs = (ln0.77+ln0.82+ln0.92+ln0.94+ln0.98) 5 b) Figuren indikerar att den naturliga logaritmen av likelihoodfunktionen (=loglikelihoodfunktionen) har maximum i θ = 8.0. Loglikelihoodfunktionens maximum (=största värde) är lnl(8.0) = 5 ln(8.0)+(8.0 1) (ln0.77+ln0.82+ln0.92+ln0.98) = 6.02 vilket även överenstämmer med vad som kan avläsas ur figuren. Vi ser även att loglikelihoodfunktionen är flat kring sitt maximum 8.0 och avtar rätt långsamt, när vi avlägsnar oss från värdet 8.0. ML-skattningen är således relativt osäker, det får minnas att vi har endast fem observationer. c) Minsta-Kvadrat-skattningen (MK) av θ definieras som värdet på θ som minimerar Q(θ) = (x i E[X i ]) 2. Vi behöver uppenbarligen att beräkna väntevärdet E[X i ] = = θ 1 0 x f X (x)dx = θ 1 0 x x θ 1 dx [ ] x x θ θ+1 1 dx = θ = θ θ+1 0 θ +1.

9 forts tentamen i SF där θ > 0. Väntevärdet är detsamma för alla i. Vi har alltså ( Q(θ) = x i θ ) 2. θ+1 Derivering m.a.p. θ ger d dθ Q(θ) = 2 Vi sätter d Q(θ) = 0 och får dθ ( x i θ ) θ +1 1 (θ+1) 2 = 2 (θ+1) 2 ( x i θ ) = 0 θ+1 ( x i θ ). θ +1 efter att ha dividerat bort konstanterna framför summatecknet. Detta ger enligt reglerna för hantering av summatecken x i n θ θ +1 = 0 d.v.s. d.v.s. (θ+1) x i nθ = 0 ( ) θ x i n = vilket med en viss algebraisk hyfsning ger vid handen x i, θ obsmk = n x i n ( 1 1 n n x i ) = x 1 x. där x = 1 n n x i. Insättning av de givna mätvärdena ger x = 1 ( ) = , 5 och därför θobsmk = = Uppgift 6 Låt X A Po(2) och X B Po(4) vara antalet från källa A resp. källa B utsända partiklar under minuten ifråga. Vi söker P (X A 1 X A +X B = 3) = 1 P (X A = 0 X A +X B = 3).

10 forts tentamen i SF Genom användning av definitionen av betingad sannolikhet och det faktum att X A och X B är oberoende s.v. kan sannolikheten i högerledet skrivas som P (X A = 0 X A +X B = 3) = P (X A = 0,X A +X B = 3) P (X A +X B = 3) = P (X A = 0,X B = 3) P (X A +X B = 3) = P (X A = 0)P (X B = 3). P (X A +X B = 3) Med hjälp av Poissonfördelningens sannolikhetsfunktion erhålls P (X A = 0)P (X B = 3) = e 220 0! e 443 3! = e 643 3!. Vidare, genom användning av Poissonfördelningens additionsegenskap kan vi dessutom sluta oss till att X A +X B Po(2+4) = Po(6), vilket ger P (X A +X B = 3) = e 663 3!. Genom att kombinera de tre sista ekvationerna erhålls vilket ger oss den sökta sannolikheten P (X A = 0 X A +X B = 3) = e /3! e /3! = P (X A 1 X A +X B = 3) = 1 ( ) 3 2, 3 ( ) Vi konstaterar slutligen att man istället för att använda additionsegenskapen kan alternativt bestämma sannolikheten P (X A +X B = 3) enligt den direkta beräkningen P (X A +X B = 3) =P (X A = 0,X B = 3)+P (X A = 1,X B = 2) +P (X A = 2,X B = 1)+P (X A = 3,X B = 0) =P (X A = 0)P (X B = 3)+P (X A = 1)P (X B = 2) +P (X A = 2)P (X B = 1)+P (X A = 3)P (X B = 0) ( ) 4 =e 6 3 3! ! ! 3! =e 663 3!.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

f(x) = 2 x2, 1 < x < 2.

f(x) = 2 x2, 1 < x < 2. Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p)

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p) Avd. Matematisk statistik TENTAMEN I SF90 OCH SF905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 4:E MARS 204 KL 4.00 9.00. Kursledare: För D och Media: Gunnar Englund, 073 32 37 45 Kursledare: För F:

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p) Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1907, SF1908 samt SF1913 SANNOLIKHETSTEORI OCH STATISTIK, ONS- DAGEN DEN 9:E JANUARI 2013 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:

Läs mer

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p) Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 14:E AUGUSTI 2017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

b) Förekommer A- och B-fel oberoende av varandra? (Motivering krävs naturligtvis!) (5 p)

b) Förekommer A- och B-fel oberoende av varandra? (Motivering krävs naturligtvis!) (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK FREDAGEN DEN 8 MAJ 010 KL 14.00 19.00. Eaminator: Gunnar Englund, tel. 79074 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2 Avd. Matematisk statistik TENTAMEN I B14 MATEMATISK STATISTIK GRUNDKURS FÖR E gamlingar TISDAGEN DEN 14 DECEMBER 4 KL 8. 13. Examinator: Gunnar Englund, 79 7416 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1910 TILLÄMPAD STATISTIK, MÅNDAGEN DEN 9:E JANUARI 2017 KL 14.00 19.00. Examinator: Camilla Landén, 08 790 61 97. Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I 5B1504 MATEMATISK STATISTIK GRUNDKURS FÖR E3 LÖRDAGEN DEN 30 AUGUSTI 2003 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 7416. Tillåtna hjälpmedel : Formel- och

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 12 oktober 2015 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametsriska metoder. (Kap. 13.10) Det grundläggande

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 13 oktober 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 14 13 december 2016 1 / 20 Idag χ 2 -metoden Test av given fördelning Homogenitetstest 2 / 20 Idag χ 2 -metoden Test av given fördelning

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅNDAGEN DEN 9 DECEMBER 2016 KL 14.00 19.00. Examinator: Timo Koski FACIT FINNS I DOKUMENTET sf1911valdatalfacit.pdf i katalogen https://www.math.kth.se/matstat/gru/sf1911/extraovningar/.

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund

Läs mer

Tentamen i Sannolikhetslära och statistik, TNK069, , kl 8 13.

Tentamen i Sannolikhetslära och statistik, TNK069, , kl 8 13. LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Tentamen i Sannolikhetslära och statistik, TNK69, 26--7, kl 8 3. Hjälpmedel är räknare med tömda minnen samt formelsamling utgiven

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Föreläsning 11, Matematisk statistik Π + E

Föreläsning 11, Matematisk statistik Π + E Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, Matematisk statistik Π + E Johan Lindström 27 Januari, 2015 Johan Lindström - johanl@maths.lth.se FMS012 F11 1/19 Repetition

Läs mer

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

Tenta i Statistisk analys, 15 december 2004

Tenta i Statistisk analys, 15 december 2004 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar STOCKHOLMS UNIVERSITET MT712 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, GA 8 januari 215 Lösningar Tentamen i Livförsäkringsmatematik I, 8 januari 215 Uppgift 1 a) Först konstaterar

Läs mer

Några extra övningsuppgifter i Statistisk teori

Några extra övningsuppgifter i Statistisk teori Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

F22, Icke-parametriska metoder.

F22, Icke-parametriska metoder. Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

TENTAMEN. Matematik och matematisk statistik 6H3000/6L3000

TENTAMEN. Matematik och matematisk statistik 6H3000/6L3000 Namn: ersonnummer: Klass: Kurs: Kursnummer: Moment: rogram: Åk: Examinator: Rättande lärare: Datum: Tid: Hjälpmedel: Omfattning och betygsgränser: TENTMEN Matematik och matematisk statistik H/L TEN DD/DE/D/MT

Läs mer

TAMS65 - Föreläsning 6 Hypotesprövning

TAMS65 - Föreläsning 6 Hypotesprövning TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning P-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/33

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A0 och STA A3 (9 poäng) 6 januari 004, kl. 4.00-9.00 Tillåtna hjälpmedel: Bifogade formel-

Läs mer

TMS136: Dataanalys och statistik Tentamen

TMS136: Dataanalys och statistik Tentamen TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:

Läs mer

Uppgift 2 Betrakta vädret under en följd av dagar som en Markovkedja med de enda möjliga tillstånden. 0 = solig dag och 1 = regnig dag

Uppgift 2 Betrakta vädret under en följd av dagar som en Markovkedja med de enda möjliga tillstånden. 0 = solig dag och 1 = regnig dag Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER MÅNDAGEN DEN 26 AUGUSTI 203 KL 08.00 3.00. Examinator: Gunnar Englund tel. 073 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

dvs. Trots att arbetslaget arbetar tillsammans antages skadorna hos de olika medlemmarna

dvs. Trots att arbetslaget arbetar tillsammans antages skadorna hos de olika medlemmarna Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK I Uppgift 1 I en byggnad sitter ett brandlarm monterat. Under en tidsperiod är sannolikheten att larmet går 3%. Man vet att 98%

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II G. Gripenberg Aalto-universitetet 13 februari 2015 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl och

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning

Läs mer

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2 Lösningsförslag TMSB18 Matematisk statistik IL 101015 Tid: 12.00-17.00 Telefon: 101620, Examinator: F Abrahamsson 1. Varje dag levereras en last med 100 maskindetaljer till ett företag. Man tar då ett

Läs mer

Syfte: o statistiska test om parametrar för en fördelning o. förkasta eller acceptera hypotesen

Syfte: o statistiska test om parametrar för en fördelning o. förkasta eller acceptera hypotesen Uwe Menzel, 2017 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Syfte: o statistiska test om parametrar för en fördelning o förkasta eller acceptera hypotesen hypotes: = 20 (väntevärdet är 20)

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 20 FACIT: Tentamen L9MA0, LGMA0 Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 20-0-2

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2016-01-15 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 15.00 20.00 Lärare: A Jonsson, J Martinsson,

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Niklas

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta

Läs mer

Problemdel 1: Uppgift 1

Problemdel 1: Uppgift 1 STOCKHOLMS UNIVERSITET MT 00 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, CH 8 februari 0 LÖSNINGAR 8 februari 0 Problemdel : Uppgift Rätt svar är: a) X och X är oberoende och Y och Y

Läs mer

Lösningar till tentamen i Matematisk Statistik, 5p

Lösningar till tentamen i Matematisk Statistik, 5p Lösningar till tentamen i Matematisk Statistik, 5p LGR00 6 juni, 200 kl. 9.00 1.00 Kursansvarig: Eric Järpe Maxpoäng: 0 Betygsgränser: 12p: G, 21p: VG Hjälpmedel: Miniräknare samt tabell- och formelsamling

Läs mer