Appendix B LED - Funktion

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Appendix B LED - Funktion"

Transkript

1 1 Appendix B LED - Funktion

2 2

3 3 Följande information har erhållits via personlig kommuniktion med representanter från Philips. Härmed riktas ett varmt tack till dessa och Philips LED Funktion Injection luminescence Den ljusgenererande processen i ett LEDchip benäms injection luminiscence. I denna process genereras ljuset genom rekombination av laddningsbärare (elektroner och positiva hål) som injiseras i en halvledare. Föreliggande bilaga beskriver denna process på ett övergripande sätt. Energiband och laddningsbärare Elektronerna i gaser och tunna media är placerade i små diskreta energinivåer i atomerna. I kristallina halvledare däremot formar de närliggande elektronerna i gittret olika breda nivåer så kallade band. I figuren visas hur banden ( energinivåerna) är relaterade till energiuppbyggnaden i ämnet. Gapen mellan banden innehåller i normala fall inga elektroner. I en kvantmekanisk modell uppkommer dessa band och gap när fria elektroner samreagerar med en en periodisk potential.. Energinivåer i gapen kan skapas när kristallstrukturen bryts av t ex andra ämnen. Dessa andra ämnen kan tillföras med avsikt att skapa mellanliggande nivåer. Figur1 Exempel på energinivådiagram för olika materialstrukturer; de nivåer som elektronerna kan befinna sig i (som funktion av energin). Till vänster atomer i en gas med att antal diskreta nivåer. I mitten ett perfekt kristallgitter med energiband och gap. Till höger ett kristallgitter med impurity atomer som medför att tillåtna nivåer uppstår i bandgapet. Enligt Pauliprincipen (kvantmekaniken) kan två elektroner inte hamna på samma energinivå. Alltså fyller elektronerna i ett fast ämne upp alla nivåer nerifrån och uppåt (energimässigt betraktat). När alla elektronerna i ett fast ämne har fyllt energinivåerna nerifrån uppkommer en energinivå som avgränsar fyllda nivåer från ofyllda; benäms Ferminivån. Vid absoluta nollpunkten går det en skarp gräns mellan ofyllda och fyllda nivåer. Vid alla andra temperturer uppstår en gradvis fyllnad av energinivåerna. Vid temperaturer ovan nollpunkten är Ferminivån den energinivå där 50% av alla nivåer är fyllda. Ferminivåns läge i relation till band och bandgap avgör ledningsegenskaperna hos ämnet. När en elektron

4 4 förflyttar sig i ämnet måste den glida över från nivå till nivå. För att detta skall kunna ske inom samma energiområde måste det finnas tomma nivåer som kan besättas av rörliga elektroner. I en ledare är Ferminivån lokaliserad mitt i ledningsbandet. Elektronerna strax under och strax över Ferminåvån kan besätta tomma nivåer och vandra fritt i ämnet. Om Ferminivån finns mellan två band i ämnet är det fråga om halvledare eller isolatorer. Bandet över Ferminivån benäms ledningsband och bandet under benäms valensband. I en isolator är valensbandet helt fyllt av elektroner och ledningsbandet helt fritt från elektroner. Förutsättningen för att ämnet skall kunna leda elektroner är: det finns elektroner i ledningsbandet som kan flyta mellan många lediga nivåer det finns lediga nivåer i valensbandet vilka möjliggör för elektroner att fylla hål och då samtidigt skapa ett nytt hål. Detta kan uppfattas så att hålen förflyttas längs ledningsbandet. I allmänhet är hål mindre rörliga än elektroner. Elektroner och hål har benämnigen laddningsbärare. Förmågan att förflytta laddningsbärare avgör skillnaden mellan halvledare och isolatorer; beror på energiavståndet mellan valens- och ledningsbandet. En ev (elektron volt) utgör det energitillskott en elektron erhåller när den passera ett energigap på 1 V; den total energi är då * J. Halvledare har vanligen ett bandgap ( mellan valens- och ledningsband ) på 1-3 ev. Isolatorer har betydligt större bandgap. Figur 2. Figuren visar energibandstrukturen i en ledare, halvledare och isolator. Laddningsbärare kan skapas genom ett flertal olika processer. De viktigaste ät följande tre processer. Fotoexcitation En elektron i valensbandet absorberar en foton med tillräckligt hög energi för att flyttas upp i ledningsbandet. I de flest halvledare är det tillräcklig hög energi för processen om fotonen är i det infraröda eller närliggande våglängdsområdet. Processen skapar två laddningsbärare samtidigt; elektronen i ledningsbandet och det positiva hålet i valensbandet. Doping Atomer med en annan elektronkonfiguration tillförs halvledaren. Impurities är den avsiktligt valda benämningen. Jämfört med grundstruktursatomerna kan dessa impurities antingen ha en elektron extra

5 5 eller en elektron mindre än dessa. När den tillförda atomen har en elektron extra kan denna mycket lätt komma upp i ledningsbandet; benämning n-type doping. När atomen har en elektron mindre än värdstrukturens kan en elektron från de närliggande atomerna lätt fylla det uppkomna hålet och på så sätt skapa en positiv laddningsbärare i valensbandet; benäms p-type-doping. Injection Halvledaren utgör en del av en lagerstruktur som också innehåller andra halvledare eller metaller. Laddningsbärare genererade på andra ställen i kompositionen kan injiseras in den fotonskapande delen genom ett elektriskt fält. Fotonskapande eller fotonlös rekombination Den grundläggande fotonalstringsprocessen i en LED Laddningsbärare kan elimineras genom rekombination av ett hål och en elektron. I denna process glider en elektron ner från ledningsbandet till valensbandet. Då utsänds antingen en foton med en energi lika stor som energiavståndet mellan lednings- och valensband eller försvinner energin till omgivningen i form av värme. Luminiscensprocessen i en LEDkomposition inträffar i en junction; interfacelagret mellan två halvledarlager med olika dopingtyp (p och n). Om rätt basspänning kopplas till halvledarkompositionen injiseras elektroner från n-dopade lager till p-dopade lager och/eller hål från p-dopade lager injiseras i omvänd riktning. Vid junctionstället rekombinerar laddningsbärarna och ger upphov till en foton. Strålningslös rekombination I en halvledarkomposition (LED) kan rekombinationen av ett hål och en elektron ge upphov till en fotonlös förening. Energi avges då till omgivningen i form av värme. Detta är naturligtvis ingen önskvärd process och som dessutom skapar värme vilket i sin helhet höjer temperaturen och sänker den totala effektiviteten. Balansen mellan foton och fotonlös rekombination beskrivs med termen internal quantum efficiency och definieras enligt följande uppställning. Internal quantum efficiency = Number of fotons created / number of charge carriers injected För att åstadkomma en högeffektiv LED är det nödvändigt med ett halvledarmaterial med mycket effektiv fotonrekombination och med en mycket låg sannolikhet för fotonlös rekombination. Kan detta åstadkommas i en LED blir resultatet ett högt internal quantum efficiency. Halvledare kan ha antingen ett direkt eller indirekt bandgap. Halvledare med ett direkt bandgap har i allmänhet ett mycket högre internal quantum efficiency än halvledare med ett indirekt bandgap. Skillnaden mellan direkt och indirekt bandgap är avhängigt det momentum de nivåer har vilka är inblandade i rekombinationsprocessen. Den vågfunktion som beskriver laddningsbärarens funktion har en speciell våglängd l. Denna våglängd bestämmer elektronens momentum. När elektronen befinner sig i en nivå med en kort våglängd har den ett högt momentum och vice versa. Elektronens momentum kan beskrivas med vågvektorn k = 2 p/l. Energierna hos valensband respektive ledningsband beskrivs bl a av k-vektorn. I direkta bandgap är k-vektorn i ledningsbandet lika stor som den i valensbandet. I indirekta bandgap är k-vektorn hos valens- och ledningsband inte lika stora. En förändring av momentum hos elektronen måste då ske för att denna skall kunna hoppa ner i valensbandet t ex genom interaktion med halvledarens kristallgitterlager. Denna process är i allmänhet betydligt mindre effektiv vilket gör att de mest effektiva LEDmaterialen har direkta bandgap.

6 6 Figur 3. Figuren )visar energin för lednings-och valensband som en funktion av k-vektorn. I (a) ett direkt bandgap och i (b) ett indirekt bandgap. I (a) kan en elektron och ett hål rekombinera utan momentumändring. I (b) måste rekombinationen ske med hjälp av en tredje partikel som kan utjämna skillnaden i momentum. I (c) visas en situation där det finns två lokala minima i ledningsbandet; en från vilket en övergång är möjlig och en, i en högre energinivå, från vilken det krävs ytterligare en händelse för att göra en övergång möjlig. I vissa halvledare finns det mer än ett lokalt minimum i ledningsbandet och både en direkt och en indirekt övergång är möjlig. I dessa material är effektiviteten högre om nivån för den direkta övergången har en lägre energi än nivån för den indirekta övergången och om dessutom energiskillnaden DE mellan nivåerna är stor. När energiskillnaden blir mindre ökar andelen laddningsbärare som rekombinerar genom fotonlös övergång och processen ger upphov till ett mindre internal quantum efficiency. Många av de fotonfria övergångarna inträffar i speciella lägen benämda fotonfria rekombinationscenter. Dessa centra kan bestå av en impurity atom eller ett defekt kristalgitter som bryter kristallgittrets symmetri. Extra energinivåer i bandgapet kan uppstå på grund av detta och kan leda till att ett sådant center fungerar som en fälla för laddningsbärarna. Fotonfri rekombination uppkommer när fällan skapar en stege mellan lednings- och valensband. Längs denna stege kan elektronerna glida ner till valensbandet genom att energin frigörs som vibrationer och hela energimängden som var lagrad i elektronen övergår till värme istället för ljus. Detta innebär att inte enbart en foton förloras utan också att värme skapas vilket ställer till problem för den ljusalstrande processen. Att kunna tillverka rena högkvalitativa kristalllager av LED-material är en nödvändig förutsättning för att få högeffektiva LEDs. Detta är inte enbart avhängigt materialet i sig utan det krävs också att materialet på vilket LED växer och att de extra kristalllager som är en del av hela lagerstrukturen är högkvalitativa. En avgörande egenskap är också att kristalllagrets minsta enhet, kristallgitterkonstanten, är lika stor i närliggande gitterlager. Denna egenskap benäms gitter matching. När det föreligger stora skillnader mellan gitterkonstanten hos olika närliggande gitterlager blir lagren skeva och defekter kan lätt uppstå.

7 7 Figur 4. Konfigurationsdiagram för en fotonfri rekombination. C och V är lednings- och valensbanden. T är en lokal trappstege i rekombinationscentret, vilket vanligen är en impurity atom eller en defekt i kristallen, där elektronen kan glida ner längs en räcka energinivåer vilka inte finns i den rena kristallstruckturen hos halvledaren. Bågarna visar nergången för laddningsbäraren och här överförs all lagrad energi i form av värme till omgivningen. Sannolikheten för en laddningsbärare att stöta på ett rekombinationscenter som ger en fotonfri övergång minskas påtagligt när laddningsbärarnas rörlighet reduceras. Sådana tillstånd uppstår ofta naturligt när laddningsbärarna parvis kombineras till att forma så kallade excitions; löst ihopknutna förbindelser mellan en elektron och ett hål (bindningsenergi av storleken 10-3 ev). Excitons har en mycket begränsad rörlighet jämfört med obundna laddningsbärare. De är elektriskt neutrala och de bringas inte i rörelse genom det elektriska fältet så länge de förblir bundna. Excitons rörelse kan bli ytterligare reducerad genom kontrollerad infångning av antingen elektronen eller hålet eller båda. Detta kan effektueras genom: * oregelbundenhet hos halvledarföreningen vilket skapar fluktuationer hos bandgapenergin; excitionen är då infångad i ett område där bandgapenergin har ett minimun. * doping (n- eller p-type, eller båda samtidigt). Detta skapar en infångningssitution för laddningsbärarna vid dopingatomerna. Hos många halvledare är fotonskapande upplösning av bundna excitons, infångade på ett kontrollerat sätt den process som skapa flest fotoner. Figur 5. Rekombination av bundna excitons, skapade av (a) lokala inhomogeniteter i halvledaren och (b) dopad atom i det här fallet en n-type.

8 8 Injection, heterojunctions och kvantbrunnar Laddningsbärarna förs tillsammans genom injectionsmekanismer. Två halvledarlager, en med överflöd av elektroner och en med överflöd av hål ( detta kan åstadkommas genom atomdoping) är i direkt kontakt med varandra. Genom att lägga på ett elektriskt fält kan laddningsbärarna lätt strömma över mellan de två lagren och rekombinera. Det enklaste fallet illustreras i figur 6. Där visas bandstrukturen vid ett interface mellan ett n-dopat lager och ett p-dopat lager hos samma halvledarmaterial (benäms homojunction). Bandgapet är lika stort på varje sida av junction men dopingen har förändrat läget hos energibanden. Vid frånvaro av rätt framspänning är energibarriären så hög att knappast någon energibärare kan passera genom junction. När rätt framspänning är pålagd förändras energinivåernas lägen och barriären utgör inte längre något hinder för laddningsbärarna att passera junction. De kan flyta mellan lagren enbart medelst termisk energi. Processen benäms injection: laddningsbärarnas förbättrade rörelsebenägenhet genom ett pålagt elektriskt fält. Figur 6. Injectionsprocessen vid en homojunction hos ett p-dopat och ett n-dopat lager av samma halvledarmaterial i övrigt. Till vänster: illustration av processen när en elektron från n-lagret injiseras in i p-lagret och rekombinerar med ett hål och avger en foton. Till höger: (a) situationen vid frånvaro av framspänning och (b) situationen med pålagd framspänning som sänker barriären och möjliggör för laddningsbärarna att flyta över till det andra lagret. Processen vid en homojunction är enklast att beskriva men är förknippad med sådana nackdelar att den normalt inte används i LEDs. Den huvudsakliga anledningen är att bandgapen är lika stora i båda lagren: detta möjliggör återabsorbtion av fotonerna på båda sidor av junction. En annan nackdel framkommer när en optimering av internal quantum efficiency skall åstadkommas. Ofta eftersträvas ett läge där quantum efficiency är olika på båda sidor om junction och då möjliggörs en process där tillförseln av laddningsbärare är mest frekvent på den sida om junction där quantum efficiency är störst ( vanligen på p-type sidan). Beroende på detta eftersträvas en LEDkomposition som benäms heterojunction: en p-n junction där de två halvledskikten är baserade på olika material. En heterojunction visar i figur 7 att n- lagrets bandgap är konstruerat så att det är större än p-lagrets bandgap. På detta sätt kan fotoner genererade i p-lagret passera n-lagret utan absorbtion; beroende på att dess energi inte är stor nog att åstadkomma en fotonexcitation. Junction här uppvisar också en asymmetri. Barriären för elektronerna att flyta över till p-lagret är lägre än barriären för hål att flyta över till n-lagret.

9 9 Figur 7. (a) enkel heterojunction och (b) dubbel heterojunction. Bandgapets energi Eg2 hos det aktiva lagret är mindre än energin Eg1 hos det andra lagret. Det andra lagret är därför transparent för de skapade fotonerna. Den dubbla heterojunction är ännu mera fördelaktig. Det aktiva lagret där fotonerna skapas utgör ett tunt sandwichlager mellan två andra lager med större bandgap än i sandwichlagret. Fotonerna kan då passera dessa lager utan att absorberas. Vissa LEDs har mycket tunna lager med ett reducerat bandgap. När dessa lager har en tjocklek som är mindre än våglängden hos laddningsbärarna uppstår en så kallad kvantbrunn. I så tunna lager kan valensbandet reduceras till ett antal diskreta nivåer. Nivåernas lägen kan modifieras genom att lagrens tjocklek förändras. I kvantbrunnarna är det möjligt att låta laddningsbärarnas vågfunktioner överlappa bättre vilket ökar sannolikheten för fotonskapande rekombinationer. Den precisa lagerstruckturen hos en LED kan göras ganska komplicerad omfattande enkla eller dubbla heterostructurer och enkla eller flera kvantbrunnar med olika dopingstrukturer och odopade lager instoppade emellan. Ibland finns extra barriärlager insatta så att laddningsbärarna inte kan passera bortom det aktiva lagret. Inte bara den elektriska strukturen utan även mekaniska kristallstrukturen är betydelsefull. Gitterfel i kristallstrukturen kan medföra kristalldefekter som fungerar som fotonfria rekombinationscentra. Välskapade buffertlager kan ibland överbrygga den felaktiga kristallstrukturen. Figur 8.Figuren visar två exempel på lagerstrukturer för AlInGaP LEDs. Till vänster en dubbel heterostruktur. Till höger en multipel kvantbrunnstruktur med ett barriärhindrande lager ( benämt TSBC, tensile strain barrier cladding ) som stoppar rörelsen av elektroner från de aktiva lagren till p-type lagret.

10 10 De lagerstrukturer som utnyttjas idag utgör resultatet av mycket och omfattande arbete innebärande teoretiska beräkningar och övervägningar så väl som mycket trial-and-error. Några exempel visas i figuren. Utformningen av den exakta strukturen i en LED är ofta avgörande för funktion och prestanda och hemlighålls för det mesta av tillverkarna.

11 11 Verkningsgrad En av de mest avgörande funktionskriterierna är verkningsgraden. Verkningsgraden definieras som ljuskällans förmåga att förvandla den elektriska energin till ljus; mäts i lumen/watt (lm/w). Vid bedömning av denna parameter måste den ses också i relation till andra ljuskällekriterier som färgåtergiv- ningsförmåga(cri), ljusnedgång kontra livslängd, livslängd mm. När verkningsgraden (lm/w) ee skall beräknas delas den upp I följande faktorer ee = helectrical * h internal * hextraction * eo helectrical är den del av den totala elektriska energin (produkten spänning * ström) som passerar genom halvledaren. h internal är den del av den genomströmmande energin som förvandlas till fotoner hextraction är den del av den skapade strålningsenergin som kommer ut ur halvledaren till omgivningen eo är ljusomvandlingsfaktorn för respektive strålningmängd lm/w (beror av våglängden) De tre första faktorerna betecknar de olika processer som är nödvändiga för att skapa ljus (sända ut fotoner). Laddningsbärare måste injiceras och detta sker med effektiviteten helectrical. Laddningsbärare måste omvandlas till fotoner och detta sker med effektiviteten h internal. Slutligen lämnar fotonerna halvledaren och detta med effektiviteten hextraction. Den sista faktorn eo anger ögats känslighetsfaktor för respektive fotonvåglängd. Beroende på att LEDspektrum ofta är mycket smalbandigt kan eo anges påföljande sätt; 683 lm/w * V(l), där V(l) är ögats känslighetsfunktion för respektive våglängd. En annan ofta använd term är (W.P.E = strålningsenergi ut / elektrisk energi in) vilket är lika med den ovan angivna ee utan den fotometriska omvandlingsfaktorn till ljus: W.P.E = helectrical * h internal * hextraction. Lämpligen bör detta uttryck nyttjas vid gränsen för V(l) mot den infraröda eller blå delen av spektrum. När LEDs används i andra sammanhang än belysningblir det också ett mer adekvat begrepp. Begreppet external quantum efficiency beskriver effektiviteten vid alstring av fotoner och förmågan få dessa att lämna LEDmaterialet och erhålls genom följande uttryck h internal * hextraction; se figur 9. Den elektriska effektiviteten helectrical är I de flesta fall omkring eller over 90%. Internal quantum efficiency helectrical är direct avhängig optimeringen av halvledarmaterialets egenskaper och förbättras hela tiden som ett resultat av forskning och utveckling. I det infraröda området har effektiviteter upp till 100% erhållits med AlGaAs och ca 90% med AlIGaP. Den hitills uppnådda effektiviteten minskar mot kortare våglängder ner till ca 10% omkring 555 nm, ökar igen mot ännu kortare våglängder och uppgår till ca 60% i det blå området när InGaN utnyttjas; se figur. External quantum efficiency beror av halvledarmaterialets brytningsindex som normalt är ganska högt för de material som är lämpliga. Ofta kan inte mer än ca 20% av antalet genererade fotoner lämna materialet. Genom att förändra konstruktion och andra parametrar har det varit möjligt att få ut ca 50% av antalet genererade fotoner.

12 12 Figur 9. Inre Quantum Efficiency, IQE, [%] som funktion av våglängd (PS Martin, Lumileds, feb 2003) Effekter beroende på hextraction Ljusutvinningsbegränsingar beroende på brytningslagar Ljusbrytningslagar och särskilt TIR (total inre reflektion) villkoret begränsar möjligheterna att få ut ljuset från LED-chippet. Effekterna begränsar särskilt ljusutvinningen från lysdioder på grund av de höga brytningsindex för halvledarmaterial som utnyttjas vid ljusalstringen. Beroende på att brytningsindex ändras mellan två lager av halvledarmaterial blir resultatet att ljus som skall passera detta interface, när brytningsindex i det material som ljuset lämnar är högt, återreflekeras. tillbaka i stor utsträckning Figur 10. Illustration av händelseförloppet när ljus passerar mellan LED-chippet och omgivningen som har ett lägre brytningsindex. Ljus med infallsvinkel mindre än den kritiska vinkeln passerar och ljus med infallsvinkel större än denna återreflekteras in i chippet. När ljuset går från ett optisk tätare material (högt brytningsindex) till ett optiskt tunnare återreflekteras allt ljus över som infaller över en viss vinkel mellan ljusriktningen och normalen mot gränsytan. Detta

13 13 benäms total återreflektion (TIR). Även för infallsvinklar mindre än den kritiska vinkeln återreflekteras en del av ljuset. Figur 10 illustrerar grafiskt händelseförloppet. Fotoner skapade i chippet har ingen dominerande riktning och de fotoner som lämnar materialet och passerar ut till omgivningen gör detta inom en så kallad utträdeskon(se Figur 11). Infallsvinklarna är mindre än den kritiska vinkeln. Beroende på att brytningsindex för halvledarmaterial är förhållandevis högt jämfört med motsvarande för glas, vatten och luft (= 1.0) blir utträdeskonerna ganska begränsade. AllnGaP har brytningsindex ungefär lika med 3.4 vilket motsvarar en utträdeskon med en vinkel ca 17 grader. InGaN med brytningsindex ca 2.4 har utträdeskon med vinkel ca 24 grader. Som funktion av chippgeometrin kan flera utträdeskoner förekomma (Figur 11). Utträdesmängden kan beräknas enligt följande formel. Första delen av funktionen beskriver vinkeln för utträdeskonen och andra delen den mängd ljus som passerar ut för varje kon. Här endast angivet för normalt ljusinfall. I annat fall blir funktionen avsevärt mer komplicerad. För AllnGaP passerar endast 1.4 % ljus ut genom uträdeskonen. För InGaN lämnar 4% av ljuset materialet genom en kon och 19 % genom 6 koner( Figur 11). Genom att tillämpa speciella knep kan mängden utträdande ljus öka avsevärt. Figur 11.Ljusuträdeskoner a) en kon endast från ett tunt halvledarlager och ett absorberande substrat b) uträdeskoner på över och undersidan genom ett tunt halvledarlager och ett transparent substrat/spegel c) övre fönsterlager möjliggör 4 x ½ sidoutträdeskoner d) som i c men dessutom ett fönsterlager på botten e) över- och undersidafönsterlager möjliggör utträdeskoner på alla sidor f) som i e) men tillägg av transparent substrat möjliggör ytterligare en utträdeskon på undersidan.

14 14 Möjligheten att få utträdeskoner på enhetens sidor beror på tjockleken; för strukturer mindre än är ingen sidoutträdeskon möjlig. För enheter större än 60 kan en halv utträdeskon erhållas per kantsida. Den nödvändiga tjockleken beror av chipsytan och utträdeskonens största vinkel. För att minimera återabsorbtionen av ljuset görs det aktiva lagret tunt och så kallade fönsterskikt appliceras omkring det aktiva skiktet. Fönsterlager är strukturmatchade halvledarlager med större bandgap än det aktiva lagret. På sidorna av substratet utnyttjas transparenta substrat, effektiva speglar och braggreflektorer till att få mera ljus att utträda ur enheten. Braggreflektorer är konstruerade av flera lager av halvledarmaterial (strukturmatchade) med växlande högre och lägre brytningsindex. Med hjälp av sådana lager kan en hög reflektion erhållas för många olika våglängder och infallsvinklar. Interfacet LED omgivning; geometrisk utformning Olika geometriska utformningar av chipenhetens yttersidor kan utnyttjas för att erhålla en större ljusutträdesmängd. TIP (truncated inverted pyramid) är ett exempel på en sådan geometri som utnyttjas för AllnGaP-chips (Figur 12). Beroende på den listigt utformade geometrin ökar utträdesmängden av ljus med en faktor 1.5. Figur 12. Figuren visar principen för TIP (truncated inverted pyramid). Till vänster: schematisk skiss som visar ljus vilket inte hade kunnat komma ut ur enheten om en standardgeometri hade utnyttjats. Till höger: fotografisk bild av ett TIP chip. Encapsulent: reducerad brytningsmängddifferens och interfaceutformning Möjligheterna att modifiera chipformen är både kostnadskrävande och och i övrigt begränsade. En mera utnyttjad möjlighet är att omge det aktiva lagret med ett formbart material (med optisk kontakt med det ljusgivande lagret) vilket har ett brytningsindex mellan chippets och det för luft. Ett sådant material

15 15 Figur 13. Utträdeseffektivitens beroende av formen på gränsskiktet mot omgivningen; a) för en punktljuskälla i mitten av en sfär är utträdeseffektiviteten i det närmaste 100% b) pyramidformat gränsskikt mot omgivningen. benäms encapsulent. Ett typiskt sådant är kisel eller epoxygel.. Då förstoras utträdeskonen till gelen enligt. Om gelen ges en speciell form eller om en plastlins med optimerad form monteras i optisk kontakt med gelen blir denna nya utträdeskon lika med systemets utträdeskon exempelvis i fallet med en helsfärisk form (Figur 13). Figur 14. Figuren visar vinsten i utträdeseffektivitet hos en sfärformad encapsulant som funktion av brytningsindex för denna i relation till brytningsindex för två olika chips (AllGaP och InGaN). Antireflektionsskikt utgör en annan möjlighet att öka utträdeseffektiviteten. Ett SiO2 överdragsskikt resulterade i rapporterad ökning av utträdeseffektiviteten med 35%. Strukturerat gränsskikt Att modifiera ytstrukturen på skiktet på chippet utgör en annan möjlighet som uttnyttjas och är under utveckling. OSRAM föreslår användning av den så kallade ytstruktur- och tunnfilmsteknologin och här utnyttjas den inventerade pyramidformen (Figur 13) som då skalas ner till ett minimiformat på chipsytan. En mikrostrukturerad p-ganyta vilken innehåller metallcluster ger en förstärkningsfaktor ~1.7.

16 16 Metoderna att på olika sätt höja utträdeseffektiviteten är många och fler utvecklas. Förbättringar sker hela tiden och är kostnadskrävande men förhoppningsvis kommer det så småningom att leda till supereffektiva ljusalstringschips.

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar:

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar: Bandmodellen Som vi såg i föreläsningen om atommodeller lägger sig elektronerna runt en atom i ett gasformigt ämne i väldefinierade energinivåer. Dessa kan vara svåra att beräkna, men är i allmänhet experimentellt

Läs mer

Lecture 6 Atomer och Material

Lecture 6 Atomer och Material Lecture 6 Atomer och Material Bandstruktur Ledare Isolatorer Halvledare Påminnelse Elektronerna ordnas i skal (n) och subskal (l) En elektron specificeras med 4 kvanttalen n,lm l,m s Två elektroner kan

Läs mer

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet. Avsikten med laborationen är att studera de elektriska ledningsmekanismerna hos i första hand halvledarmaterial. Från mätningar av konduktivitetens temperaturberoende samt Hall-effekten kan en hel del

Läs mer

BANDGAP 2009-11-17. 1. Inledning

BANDGAP 2009-11-17. 1. Inledning 1 BANDGAP 9-11-17 1. nledning denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser Dan Flavin 2014-04-02 Föreläsning 6, Komponentfysik 2014 1 Komponentfysik

Läs mer

Atomer, ledare och halvledare. Kapitel 40-41

Atomer, ledare och halvledare. Kapitel 40-41 Atomer, ledare och halvledare Kapitel 40-41 Centrala begrepp Kvantiserade energinivåer i atomer Elektronspinn och finstruktur Elektronen i en atom både banimpulsmoment, som karakteriseras av kvanttalet

Läs mer

Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag:

Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag: 530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans

Läs mer

Kvantbrunnar Kvantiserade energier och tillstånd

Kvantbrunnar Kvantiserade energier och tillstånd Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Fredagen den 29:e maj 2009, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt

Läs mer

BANDGAP 2013-02-06. 1. Inledning

BANDGAP 2013-02-06. 1. Inledning 1 BANDGAP 13--6 1. Inledning I denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive

Läs mer

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Torsdagen den 5:e juni 2008, kl. 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

Välkomna till kursen i elektroniska material! Martin Leijnse

Välkomna till kursen i elektroniska material! Martin Leijnse Välkomna till kursen i elektroniska material! Martin Leijnse Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare,

Läs mer

Halogenlampa Spektrometer Optisk fiber Laserdiod och UV- lysdiod (ficklampa)

Halogenlampa Spektrometer Optisk fiber Laserdiod och UV- lysdiod (ficklampa) Elektroner och ljus I den här laborationen ska vi studera växelverkan mellan ljus och elektroner. Kunskap om detta är viktigt för många tillämpningar men även för att förklara fenomen som t ex färgen hos

Läs mer

Laboration: Optokomponenter

Laboration: Optokomponenter LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: Optokomponenter Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer

Läs mer

Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111

Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - Tentamen Måndagen den 21:e maj 2012, kl 14:00 18:00 Fysik del B2 för tekniskt

Läs mer

Sammanfattning: Fysik A Del 2

Sammanfattning: Fysik A Del 2 Sammanfattning: Fysik A Del 2 Optik Reflektion Linser Syn Ellära Laddningar Elektriska kretsar Värme Optik Reflektionslagen Ljus utbreder sig rätlinjigt. En blank yta ger upphov till spegling eller reflektion.

Läs mer

530117 Materialfysik vt 2010. 10. Materiens optiska egenskaper. [Callister, etc.]

530117 Materialfysik vt 2010. 10. Materiens optiska egenskaper. [Callister, etc.] 530117 Materialfysik vt 2010 10. Materiens optiska egenskaper [Callister, etc.] 10.0 Grunder: upprepning av elektromagnetism Ljus är en elektromagnetisk våg våglängd, våglängd, k vågtal, c hastighet, E

Läs mer

Laborationer i miljöfysik. Solcellen

Laborationer i miljöfysik. Solcellen Laborationer i miljöfysik Solcellen Du skall undersöka elektrisk ström, spänning och effekt från en solcellsmodul under olika förhållanden, och ta reda på dess verkningsgrad under olika förutsättningar.

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

Föredrag av Tor Paulin för kursen seminarier på svenska 2009 LYSDIODER: TEKNOLOGI OCH FRAMTIDSUTSIKTER

Föredrag av Tor Paulin för kursen seminarier på svenska 2009 LYSDIODER: TEKNOLOGI OCH FRAMTIDSUTSIKTER Föredrag av Tor Paulin för kursen seminarier på svenska 2009 LYSDIODER: TEKNOLOGI OCH FRAMTIDSUTSIKTER Lysdiod eller kort LED (Light Emitting Diode) är en halvledarkomponent. Halvledare Ett material med

Läs mer

10.0 Grunder: upprepning av elektromagnetism

10.0 Grunder: upprepning av elektromagnetism 530117 Materialfysik vt 2010 10. Materiens optiska egenskaper [Callister, etc.] 10.0 Grunder: upprepning av elektromagnetism Ljus är en elektromagnetisk våg våglängd, våglängd, k vågtal, c hastighet, E

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer

10.0 Grunder: upprepning av elektromagnetism Materialfysik vt Materiens optiska egenskaper. Det elektromagnetiska spektret

10.0 Grunder: upprepning av elektromagnetism Materialfysik vt Materiens optiska egenskaper. Det elektromagnetiska spektret 10.0 Grunder: upprepning av elektromagnetism 530117 Materialfysik vt 2010 Ljus är en elektromagnetisk våg 10. Materiens optiska egenskaper [Callister, etc.] våglängd, våglängd, k vågtal, c hastighet, E

Läs mer

Miljöfysik. Föreläsning 6. Solel Solcellsanläggningar Halvledare En pn-övergång I-U karakteristik för solceller

Miljöfysik. Föreläsning 6. Solel Solcellsanläggningar Halvledare En pn-övergång I-U karakteristik för solceller Miljöfysik Föreläsning 6 Solel Solcellsanläggningar Halvledare En pn-övergång I-U karakteristik för solceller I-U karakteristik för solceller Förluster En solcells verkningsgrad Hur solceller påverkar

Läs mer

Fysik. Laboration 3. Ljusets vågnatur

Fysik. Laboration 3. Ljusets vågnatur Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall

Läs mer

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090 011-01-10 08 00-13 00 Tentamen i Komponentfysik ESS030, ETI40/0601 och FFF090 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

Atom-, Molekyl- och Fasta Tillståndets Fysik

Atom-, Molekyl- och Fasta Tillståndets Fysik Föreläsning 8/9 Atom-, Molekyl- och Fasta Tillståndets Fysik Flerelektronatomer På motsvarande sätt som för väteatomen kommer elektronerna i atomerna hos grundämnen som har två eller fler elektroner också

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? 1 Föreläsning 2 Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen på samma sida är reflekterat

Läs mer

HALVLEDARE. Inledning

HALVLEDARE. Inledning HALVLEDARE Inledning Halvledare har varit den i särklass viktigaste materialkategorin för den högteknologiska utvecklingen under 1900-talet. Man kan också säga att inget annat exempel kan mer tydligt visa

Läs mer

Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00

Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25-2014-08-26 Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105)

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) 6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) Termodynamikens nollte huvudsats säger att temperaturskillnader utjämnas i isolerade system. Med andra ord strävar system efter termisk jämvikt

Läs mer

Miljöfysik vt2009. Mikael Syväjärvi, IFM

Miljöfysik vt2009. Mikael Syväjärvi, IFM Miljöfysik vt2009 Mikael Syväjärvi, IFM Energisituation I Sverige Cirka 150 TWh elektricitet 150 000 000 000 kwh 20 000 kwh per månad för hus 20-30% av energi belysning i hem Medelvärde - ca 20% hem, kontor,

Läs mer

Vad är KiselGermanium?

Vad är KiselGermanium? Vad är KiselGermanium? Kiselgermanium, eller SiGe, får nog sägas vara den nya teknologin på modet inom området integrerade kretsar för radiofrekvenser, RF-ASIC. Det kan vara på sin plats med en genomgång

Läs mer

Introduktion till halvledarteknik

Introduktion till halvledarteknik Introduktion till halvledarteknik Innehåll 4 Excitation av halvledare Optisk absorption och excitation Luminiscens Rekombination Diffusion av laddningsbärare Optisk absorption och excitation E k hv>e g

Läs mer

3.7 Energiprincipen i elfältet

3.7 Energiprincipen i elfältet 3.7 Energiprincipen i elfältet En laddning som flyttas från en punkt med lägre potential till en punkt med högre potential får även större potentialenergi. Formel (14) gav oss sambandet mellan ändring

Läs mer

Presentationsmaterial Ljus som vågrörelse - Fysik B. Interferens i dubbelspalt gitter tunna skikt

Presentationsmaterial Ljus som vågrörelse - Fysik B. Interferens i dubbelspalt gitter tunna skikt Presentationsmaterial Ljus som vågrörelse - Fysik B Interferens i ubbelspalt gitter tunna skikt Syfte och omfattning Detta material behanlar på intet sätt fullstänigt såant som kan ingå i avsnitt me innebören

Läs mer

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25-2013-04-03 Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen. Komponentfysik Uppgifter pn del 1 VT-15 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i a), men

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ.

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ. Lösningsförslag till deltentamen i IM60 Fasta tillståndets fysik Paramagnetism i ett tvånivåsystem Onsdagen den 30 maj, 0 Teoridel. a) För m S = - är m S z = -m B S z = +m B och energin blir U = -m B B

Läs mer

LED lamper for UV-lys. Labino AB Magnus Karlsson Teknisk Chef Maj 2011

LED lamper for UV-lys. Labino AB Magnus Karlsson Teknisk Chef Maj 2011 LED lamper for UV-lys Labino AB Magnus Karlsson Teknisk Chef Maj 2011 Labino Labino utvecklar och tillverkar UV- and vitljuslampor för industri och offentlig sektor Lamporna är baserade på MPXL och LED

Läs mer

Lösningar Tenta

Lösningar Tenta Lösningar Tenta 110525 1) a) Driftström: Elektriskt laddade partiklar (elektroner och hål) rör sig i ett elektriskt fält. Detta ger upphov till en ström som följer ohms lag. Diffusion: Elektroner / hål

Läs mer

Elektromagnetiska vågor (Ljus)

Elektromagnetiska vågor (Ljus) Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer

Läs mer

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1 3.8. Halvledare [Understanding Physics: 20.8-20.11] Som framgår av fig. 20.27, kan energigapet i en halvledare uttryckas E g = E c E v, där E c är den lägsta energin i ledningsbandet och E v den högsta

Läs mer

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Tentamen Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Tisdagen den 27:e maj 2008, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt

Läs mer

ETE310 Miljö och Fysik VT2016 BELYSNING. Linköpings universitet Mikael Syväjärvi

ETE310 Miljö och Fysik VT2016 BELYSNING. Linköpings universitet Mikael Syväjärvi ETE310 Miljö och Fysik VT2016 BELYSNING Linköpings universitet Mikael Syväjärvi Det finns mycket belysning i världen. Photo: Philip Hens EU beslutade att fasa ut glödlampan Corren 8 okt 2008 EU beslut

Läs mer

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Tentamen Freagen en 1:e juni 2012, kl 08:00 12:00 Fysik el B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111 Tentamen

Läs mer

rep NP genomgång.notebook March 31, 2014 Om du har samma volym av två olika ämnen så kan de väga helt olika. Det beror på ämnets densitet.

rep NP genomgång.notebook March 31, 2014 Om du har samma volym av två olika ämnen så kan de väga helt olika. Det beror på ämnets densitet. 1. Materia 2. Ellära 3. Energi MATERIA Densitet = Hur tätt atomerna sitter i ett ämne Om du har samma volym av två olika ämnen så kan de väga helt olika. Det beror på ämnets densitet. Vattnets densitet

Läs mer

Laborationer i miljöfysik. Solcellen

Laborationer i miljöfysik. Solcellen Laborationer i miljöfysik Solcellen Du skall undersöka elektrisk ström, spänning och effekt från en solcellsmodul under olika förhållanden, och ta reda på dess verkningsgrad under olika förutsättningar.

Läs mer

Alla svar till de extra uppgifterna

Alla svar till de extra uppgifterna Alla svar till de extra uppgifterna Fö 1 1.1 (a) 0 cm 1.4 (a) 50 s (b) 4 cm (b) 0,15 m (15 cm) (c) 0 cm 1.5 2 m/s (d) 0 cm 1.6 1.2 (a) A nedåt, B uppåt, C nedåt, D nedåt 1.7 2,7 m/s (b) 1.8 Våglängd: 2,0

Läs mer

WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING

WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING Energin i vinden som blåser, vattnet som strömmar, eller i solens strålar, måste omvandlas till en mera användbar form innan vi kan använda den. Tyvärr finns

Läs mer

Föreläsning 13: Opto- komponenter

Föreläsning 13: Opto- komponenter Föreläsning 13: Opto- komponenter Opto- komponent Interak?on ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser CCD/CMOS Dan Flavin 1 Opto- komponenter En opto- komponent Omvandlar

Läs mer

Extra övningsuppgifter

Extra övningsuppgifter Optiska fibrer 1. En fiber har numerisk apertur 0,12 och kärnans brytningsindex är 1,4. Kärnans diameter är 7 µm. a) Vad är mantelns brytningsindex? b) För vilka våglängder är fibern en singelmodfiber?

Läs mer

Solpaneler. Solpanelssystem: Solpanelssystemet består av: Solpanel Regulator Batteribank

Solpaneler. Solpanelssystem: Solpanelssystemet består av: Solpanel Regulator Batteribank Solpaneler Solpanelen är en anordning som omvandlar solenergin till elektricitet. Solljuset absorberas av solcellsmaterialet därefter sparkas elektroner ut ur materialet, dessa leds i en externkrets och

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,

Läs mer

Physics to Go! Part 1. 2:a på Android

Physics to Go! Part 1. 2:a på Android Physics to Go! Part 1 2:a på Android Halvledare Halvledare Halvledare V V V Grupp V: Si, Ge Transistorer, CCD, solceller, indirekt bandgap Grupp -V: GaP, GaAs, ngaasp LED, lasrar, detektorer Grupp -N:

Läs mer

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva

Läs mer

HALVLEDARES ELEKTRISKA KONDUKTIVITET

HALVLEDARES ELEKTRISKA KONDUKTIVITET HALVLEDARES ELEKTRISKA KONDUKTIVITET 1 Inledning I fasta ämnen ockuperar ämnens elektroner s.k. energiband. För goda elektriska ledare är det översta ockuperade energibandet endast delvis fyllt vilket

Läs mer

Kemiska bindningar. Matti Hotokka

Kemiska bindningar. Matti Hotokka Kemiska bindningar Matti Hotokka Definition Praktisk definition En bindning består av ett elektronpar, som befinner sig mellan de bundna atomerna Vardera atom bidrar med en elektron till bindningen H +

Läs mer

2.6.2 Diskret spektrum (=linjespektrum)

2.6.2 Diskret spektrum (=linjespektrum) 2.6 Spektralanalys Redan på 1700 talet insåg fysiker att olika ämnen skickar ut olika färger då de upphettas. Genom att låta färgerna passera ett prisma kunde det utsända ljusets enskilda färger identifieras.

Läs mer

Varför förbrukar ersätta glödlampor?

Varför förbrukar ersätta glödlampor? Material för att styra färgen på LED lampor Inom EU kommer snart glödlampan att förbjudas. Ett alternativ är då lampor uppbyggda av lysdioder (LED). Problemet med dessa är att de inte alltid ger rätt ljusspektrum

Läs mer

5. Elektromagnetiska vågor - interferens

5. Elektromagnetiska vågor - interferens Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor

Läs mer

Tentamen i Materia, 7,5 hp, CBGAM0

Tentamen i Materia, 7,5 hp, CBGAM0 Fakulteten för teknik- och naturvetenskap Tentamen i Materia, 7,5 hp, CBGAM0 Tid Måndag den 9 januari 2012 08 15 13 15 Lärare Gunilla Carlsson tele: 1194, rum: 9D406 0709541566 Krister Svensson tele: 1226,

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

8. Atomfysik - flerelektronatomer

8. Atomfysik - flerelektronatomer Flerelektronatomer På motsvarande sätt som för väteatomen kommer elektronerna i atomerna hos grundämnen som har två eller fler elektroner också att vara instängda inom ett litet område runt kärnan. Det

Läs mer

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända!

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen den 10/6 2015 Räknestuga Förra veckan kapitel

Läs mer

Kapacitansmätning av MOS-struktur

Kapacitansmätning av MOS-struktur Kapacitansmätning av MOS-struktur MOS står för Metal Oxide Semiconductor. Figur 1 beskriver den MOS vi hade på labben. Notera att figuren inte är skalenlig. I vår MOS var alltså: M: Nickel, O: hafniumoxid

Läs mer

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25 Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter

Läs mer

Våglära och optik FAFF30 JOHAN MAURITSSON

Våglära och optik FAFF30 JOHAN MAURITSSON Våglära och optik FAFF30 JOHAN MAURITSSON Prismor A θ 1 n=1 n n=1 2 Prismor A δ 1 θ 1 θ 1 n=1 n n=1 3 Prismor A θ 2 θ 2 n=1 n n=1 4 Prismor A δ θ 1 θ 1 δ 1 δ 2 B θ 2 θ 2 n=1 n n=1 5 Prismor, dispersion

Läs mer

8-10 Sal F Generellt om kursen/utbildningen. Exempel på nanofenomen runt oss

8-10 Sal F Generellt om kursen/utbildningen. Exempel på nanofenomen runt oss Upplägg och planering för NanoIntro 15; Lars Samuelson (lars.samuelson@ftf.lth.se): Måndag 31/8: Presentationer av deltagarna 8-10 Sal F Generellt om kursen/utbildningen. Exempel på nanofenomen runt oss

Läs mer

Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook.

Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook. CHALMERS TEKNISKA HÖGSKOLA 2009-01-13 Teknisk Fysik 14.00-18.00 Sal: V Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics

Läs mer

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten.

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. Speed of light OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. 1.0 Inledning Experiment med en laseravståndsmätare

Läs mer

LABORATION ENELEKTRONSPEKTRA

LABORATION ENELEKTRONSPEKTRA LABORATION ENELEKTRONSPEKTRA Syfte och mål Uppgiften i denna laboration är att studera atomspektra från väte och natrium i det synliga våglängdsområdet och att med hjälp av uppmätta våglängder från spektrallinjerna

Läs mer

Final i Wallenbergs Fysikpris

Final i Wallenbergs Fysikpris Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov Lösningsförslag 1. a) Vattens värmekapacitivitet: Isens värmekapacitivitet: Smältvärmet: Kylmaskinen drivs med spänningen och strömmen. Kylmaskinens

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 8: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Den gul-orange färgen i den smidda detaljen på bilden visar den synliga delen av den termiska strålningen. Värme

Läs mer

Fysik (TFYA14) Fö 5 1. Fö 5

Fysik (TFYA14) Fö 5 1. Fö 5 Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen

Läs mer

Repetitionsuppgifter. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Repetitionsuppgifter. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Repetitionsuppgifter Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL

Läs mer

När man förklarar experiment för andra finns det en bra sekvens att följa:

När man förklarar experiment för andra finns det en bra sekvens att följa: Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben! De mest relevanta kapitlena i kompendiet är kapitel 6 och 7 om

Läs mer

Lågtemperaturfysik. Maria Ekström. November Första utgåvan

Lågtemperaturfysik. Maria Ekström. November Första utgåvan F7 Lågtemperaturfysik Maria Ekström November 2014 - Första utgåvan Syfte Målet är att använda lågtemperaturfysik för studera hur den elektriska ledningsförmågan hos olika typer av material ändras med temperatur.

Läs mer

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. 10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15

Läs mer

Föreläsning 7: Antireflexbehandling

Föreläsning 7: Antireflexbehandling 1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Laboration i kursen Syfte Laborationen ska ge förståelse för begreppen interferens och diffraktion och hur de karaktäriseras genom experiment. Vidare visar laborationen exempel

Läs mer

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

FysikaktuelltNR 4 NOV 2014

FysikaktuelltNR 4 NOV 2014 FysikaktuelltNR 4 NOV 2014 ISSN 0283-9148 Särtryck: Nobelpriset 2014 Kungliga Vetenskapsakademin beslutade den 7 oktober att tilldela 2014-års Nobelpris i Fysik till Isamu Akasaki, Hiroshi Amano och Shuji

Läs mer

elektrostatik: laddningar I vila eller liten rörelse utan acceleration

elektrostatik: laddningar I vila eller liten rörelse utan acceleration Ellära 1 Elektrostatik, kap 22 Eleonora Lorek Begrepp elektricitet (franska électricité, till nylatin ele ctricus, till latin ele ctrum, av grekiska ē lektron 'bärnsten'), ursprungligen benämning på den

Läs mer

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016 Inför Laborationen Laborationen sker i två lokaler: K204 (datorsal) och H226. I början av laborationen samlas ni i H212. Laborationen börjar 15 minuter efter heltimmen som är utsatt på schemat. Ta med

Läs mer

Fotoelektriska effekten

Fotoelektriska effekten Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar

Läs mer

Mätningar på solcellspanel

Mätningar på solcellspanel Projektlaboration Mätningar på solcellspanel Mätteknik Av Henrik Bergman Laboranter: Henrik Bergman Mauritz Edlund Uppsala 2015 03 22 Inledning Solceller omvandlar energi i form av ljus till en elektrisk

Läs mer

Topologiska material. Kvantmekaniska effekter med stora konsekvenser. Annica Black-Schaffer.

Topologiska material. Kvantmekaniska effekter med stora konsekvenser. Annica Black-Schaffer. Topologiska material Kvantmekaniska effekter med stora konsekvenser Annica Black-Schaffer annica.black-schaffer@physics.uu.se Lärardag i fysik, Kungl. Vetenskapsakademien 29 oktober 2014 Materiefysik Material

Läs mer

Solens energi alstras genom fusionsreaktioner

Solens energi alstras genom fusionsreaktioner Solen Lektion 7 Solens energi alstras genom fusionsreaktioner i dess inre När solen skickar ut ljus förlorar den också energi. Det måste finnas en mekanism som alstrar denna energi annars skulle solen

Läs mer

3. Ljus. 3.1 Det elektromagnetiska spektret

3. Ljus. 3.1 Det elektromagnetiska spektret 3. Ljus 3.1 Det elektromagnetiska spektret Synligt ljus är elektromagnetisk vågrörelse. Det följer samma regler som vi tidigare gått igenom för mekanisk vågrörelse; reflexion, brytning, totalreflexion

Läs mer

Zeemaneffekt. Projektlaboration, Experimentell kvantfysik, FK5013

Zeemaneffekt. Projektlaboration, Experimentell kvantfysik, FK5013 Zeemaneffekt Projektlaboration, Experimentell kvantfysik, FK5013 Introduktion En del energinivåer i en atom kan ha samma energi, d.v.s. energinivåerna är degenererade. Degenereringen kan brytas genom att

Läs mer

Elektricitet och magnetism

Elektricitet och magnetism Elektricitet och magnetism Eldistribution Laddning Ett grundläggande begrepp inom elektricitetslära är laddning. Under 1700-talet fann forskarna två sorters laddning POSITIV laddning och NEGATIV laddning

Läs mer

Fysik 1 kapitel 6 och framåt, olika begrepp.

Fysik 1 kapitel 6 och framåt, olika begrepp. Fysik 1 kapitel 6 och framåt, olika begrepp. Pronpimol Pompom Khumkhong TE12C Laddningar som repellerar varandra Samma sorters laddningar stöter bort varandra detta innebär att de repellerar varandra.

Läs mer

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll.

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll. Vätespektrum Förberedelser Läs i Tillämpad atomfysik om atomspektroskopi (sid 147-149), empiriska samband (sid 151-154), och Bohrs atommodell (sid 154-165). Läs genom hela laborationsinstruktionen. Gör

Läs mer

Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge.

Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge. Laborationsinstruktion laboration Halvledarfysik UPPSALA UNVERSTET delkurs Fasta tillståndets fysik 1 lokal 4319 innehåll delkurskod 1TG100 labkod HF UPPGFTER: Mätning av Halleffekten och elektriska ledningsförmågan

Läs mer