Röntgensjuksköterskerutbildningen Kurs RSJD16 Kursmål, instuderingsfrågor, exempel på tentamensfrågor

Storlek: px
Starta visningen från sidan:

Download "Röntgensjuksköterskerutbildningen Kurs RSJD16 Kursmål, instuderingsfrågor, exempel på tentamensfrågor"

Transkript

1 Röntgensjuksköterskerutbildningen Kurs RSJD16 Kursmål, instuderingsfrågor, exempel på tentamensfrågor Mål Kunskap och förståelse Efter avslutad kurs skall studenten kunna redogöra för uppbyggnad och funktion av olika bildgivande detektorsystem (t.ex. bildplattesystem, direktdigitalt) samt förklara den digitala bildens uppkomst (delkurs 1) förklara olika exponeringsparametrars inverkan på bildkvaliteten vid konventionella röntgen och datortomografiundersökningar (delkurs 1) förklara sambanden mellan exponeringsparametrar, bildkvalitet och patientstråldos vid konventionella röntgen och datortomografiundersökningar (delkurs 1) redogöra för biologiska effekter av joniserande strålning och motivera åtgärder utifrån ett etiskt strålskyddsperspektiv (delkurs 1) motivera tillämpningen av relevanta styrdokument i samband med olika röntgenundersökningar (delkurs 1 och 2) motivera kontroller av utrustning och arbetsmetoder avseende bildkvalitet och säkerhet (delkurs 1 och 2) Instuderingsfrågor avseende konventionella röntgenutrustningar (under utveckling!) 1. Förklara skillnaden mellan joniserande och icke joniserande strålning. 2. Beskriv atomens uppbyggnad samt förklara masstal, atomnummer och bindningsenergi. 3. I röntgenrörets anod produceras den strålning vi i dagligt tal kallar röntgenstrålning. Beskriv hur växelverkan sker som orsakar röntgenstrålningen samt hur den beror av energi och Z. Diskutera även röntgenstrålningens energi. 4. Ange varifrån vi utsätts för joniserande strålning samt ungefär i vilken omfattning. 5. Ett sätt att beskriva hur energifördelningen ser ut från ett röntgenrör är med sk. röntgenspektrum. Skissera ett röntgenspektrum och förklara utseendet.

2 6. Hur har man löst problemet med värmeutvecklingen i anoden? 7. Antag att du har monoenergetiska fotoner (alla har samma energi) som passerar genom en vägg. Rita upp hur antalet fotoner som kommer igenom väggen avtar med ökande väggtjocklek. 8. I en del röntgenundersökningar används kontrastmedel. Vad är det, ge exempel på några lämpliga sådana och förklara varför de fungerar. 9. På en av föreläsningarna beräknade ni värden för hur antalet fotoner som passerar genom ett blyförkläde varierar med varierande fotonenergi. Förklara varför andelen som passerar igenom ökar med ökande energi. 10. Vilka problem har vi med spridd strålning och hur kan vi försöka minimera dessa problem? 11. Beskriv uppbyggnad och funktion för röntgenröret. Vilka delar ingår i ett röntgenrör och vad har de för funktion? (Omfattande fråga!) 12. Diskutera filtrering av röntgenstrålningen. Varför och hur sker detta? 13. Förklara vad kontrast i röntgenbilden är samt beskriv hur denna påverkas av olika parametrar. 14. Diskutera skillnaderna mellan organprogram och exponeringsautomatik samt när man använder dessa. 15. Förklara vad begreppen 3 komponentteknik, 2 komponentteknik och 1 komponentteknik innebär. 16. Förklara hur du kan påverka bilden vid 1 komponentteknik samt hur dessa justeringar påverkar din undersökning. 17. Förklara vad häleffekten är samt vad den har för inverkan på dina patientundersökningar 18. Beskriv hur kontrasten i bilden påverkas av olika parametrar. 19. Diskutera den geometriska oskärpan, dess orsak samt lämpliga åtgärder för att minimera den. 20. Diskutera hur avståndet mellan röntgenstrålkälla, patient och bildmedium påverkar röntgenbilden.

3 21. Beräkna hur stort strålfältet blir på detektorn om det är 10 x 10 cm 2 på patienten. FBA = 125 cm, patienten är 11 cm tjock och avståndet mellan undersökningsbordet och detektorn är 12 cm. 22. Hur påverkas bilden (se nedan) om ni ändrar: A) Från finfokus (FF) till grovfokus (GF) B) 30x40 bländare till 18x24 bländare C) sänker kv D) ökar mas E) ökar FFA F) raster > utan raster G) minskar fokus objekt avstånd (FOA), ökar objekt film avstånd (OFA) (samma FFA) Beskriv förändringen av kontrast i bilden, svärtning, geometrisk oskärpa, förstoring, stråldos till patient, rörelseoskärpa, exponeringstid, sekundärstrålning (spridd strålning). 23. Spridd strålning är ett problem inom röntgendiagnostiken såväl för bildkvalitén som för personalstrålskyddet. Förklara hur denna strålning uppkommer, hur den försämrar bildkvalitén samt vilka åtgärder du kan vidta för att minimera mängden spridd strålning som produceras. 24. Du kan även minimera mängden av den uppkomna spridda strålningen att nå detektorn. Förklara hur detta göres samt hur dessa metoder fungerar. Diskutera föroch nackdelar med metoderna. 25. Ett antal olika parametrar påverkar bildkvaliteten och patientstråldosen vid en röntgenundersökning. Förklara hur dessa påverkas och varför av förändringar i Rörspänning Rörström * tid Filtrering 26. Diskutera fördelen resp. nackdelen med fotonspektrets lågenergidel samt när detta används.

4 27. I figuren nedan visas röntgenspektrum för 50 kv resp. för 100 kv. Förklara varför kurvorna ser olika ut med avseenden på storlek och utseende. Röntgenspektrum som funktion av rörspänningen (kv). 28. Fundera över vilken rörspänning du bör använda vid olika undersökningar eller för olika kroppsdelar. Reflektera även över rimlig storlek på mas värdet. Fortsätt med denna iakttagelse i den verksamhetsförlagda utbildningen och diskutera gärna med dina handledare på arbetsplaterna. 29. Ange vilka olika typer av detektorsystem som finns vid konventionell röntgendiagnostik samt förklara hur dessa fungerar. 30. Ange vilka för och nackdelar dessa system har samt eventuella begränsningar med systemen. 31. Vad finns för system för att få en uppfattning om stråldosen till patienten och detektor vid konventionell röntgendiagnostik och hur ungefär fungerar dessa? 32. Poängsystemet vad är det och varför används det? Du ska kunna använda det och förstå hur förändringarna påverkar bilden. 33. Ange och motivera vilka olika parametrar som bör ingå i kvalitetskontroll av röntgenutrustningen.

5 Exempel på tentamensfrågor Ange två sätt att hindra den skapade spridda strålningen att nå filmen. Rita figurer och beskriv metodernas verkningssätt. För att ett röntgenrör ska fungera krävs flera olika komponenter, bland annat en katod och en anod. Beskriv uppbyggnaden av katoden och anoden samt förklara deras funktion i röntgenröret samt hur strålningen produceras. Varför får man geometrisk oskärpa i bilden? Vad kan man göra för att minimera den? Röntgenbilden påverkas av de inställningar du gör vid undersökningen av patienten. Diskutera vad som händer i röntgenröret, i patienten och i bilden då du ändrar a) kv b) mas

6 RSJD16 HT 2013 Ganska korta svar till instuderingsfrågorna 1. Joniserande strålning tillför så mycket energi att atomer kan joniseras, dvs elektroner kan frigjöras från atomen. Icke joniserande strålning (t.ex. synligt ljus, radiovågor, mm) har lägre energi och kan inte producera joner men kan däremot skada på andra sätt. 2. Kärna protoner (+) + neutorner (neutrala) Elektroner ( ) som cirkulerar i banor eller skal. Elektronerna bundna med viss energi till varje skal. Bindningsenergi är karakteristisk för varje grundämne. Atomnummer antal protoner i kärnan, betecknas Z. Masstal antal protoner och neutroner i kärnan, dvs kärnans massa, betecknas A. 3. Bromsstrålning: Elektroner vxv med atomkärnan. Nära kärnan elektronen bromsas upp mer, avböjs mer och bromsstrålningsfotonen får högre energi. Ökad produktion av bromsstrålning för högre Z. Ökad produktion av bromsstrålning för högre elektronenergi. Därför består anodbanan av volfram som har högt Z (dessutom väremtåligt). Karakteristisk röntgenstrålning: Elektronerna joniserar anodmaterialets atomer vilket ger vakanser i elektronskalen. För vakans i k skalet krävs minst 70 kev elektronenergi. Elektron från yttre skal faller in och besätter vakansen. Skillnaden i bindningsenergi mellan yttre skalet och k skalet emitteras som en foton, karakteristisk röntgenstrålning. Större sannolikhet för karakteristisk röntgenstrålning vid högre Z. (Lågt Z ger framför allt Augerelektroner). 4. Naturlig bakgrund kroppen, marken, kosmisk strålning ca 1 msv per år Radon i bostäder ca 2 msv/år Medicinsk bestrålning rtg, nukleramedicin, strålbehandling, ca 1.5 msv/år Övrigt kärnkraft, kärnindustri, nedfall, mm ca 0.1 msv/år 5. Lägsta energi, maxenergi, bromsstrålningsfördelning, karakteristisk röntgenstrålning. 6. Vinklad anod samt roterande anod gör att värmen fördelas över en större yta men effektivt fokus kan bibehållas relativt litet. Den vinklade anoden innebär att det blir linjefokus vilket sprider ut den producerade värmen på en större yta men samtidigt behålls ett litet fokus

7 7. Exponentiellt avtagande kurva. 8. Kontrastmedel har högre täthet och atomnummer än kroppens vävnader och används för att öka kontrasten mellan t.ex. blodkärl och mjukvävnad. Pga det högre atomnumret och högre tätheten kommer mycket större andel av fotonerna att fotoväxelverka i kontrastmedlet än i omgivande vävnad vilket ger låg signal (svärtning) i områden med kontrast. (Kan gå upp i kv, sänka mas och ändå få en god kontrast i bilden. Kontrasmedel kan vara jod eller bariumbaserade. 9.Ökad energi minskad andel fotovxv och ökad transmission. 10. Signal utan information. Slöja över hela bilden. Onödig stråldos. Påverkas av fältstorlek, patienttjocklek och kv. Minska uppkomsten: blända in och komprimera. Minska mängden som når bilden: raster och luftgap (beskriv dessa). 11. Här ger jag bara delarna i punktform:

8 Katod, elektronproduktion, termisk emission, elektrostatisk repulsion, focusing cup. Generatorn, högspänning över röntgenröret, transformera och likrikta Anoden, bromsstrålningsproduktion, högt Z för hög bromsstrålningsproduktion, volfram, rhenium, grafit, molybden, kopparrotor, roternade anod, linjefokus. Glashölje, olja, rörkåpa, Filtrering Bländarhus 12. Egenfiltrering glashölje, olja och utgångsfönster attenuerar de mest lågenergetiska fotonerna i så hög grad att de inte når patietnen. Avsikten är att minska stråldosen till patienten från dessa lågenergetiska fotoner eftersom de inte bidrar till bilden. Tilläggsfiltrering ytterligare filtrering (i bländarhuset) med t.ex. aluminiumfilter för att reducera dosen ytterligare. (Finns även olika former av kompensationsfilter för att optimera svärtningen i bilden beroende på undersökt kroppsdel.) 13. Kontrast är skillnad i signal (svärtning) mellan olika delar i röntgenbilden. Påverkas av strålningens penetration (transmission) (objektkontrast) graden av spridd strålning, egenskaper hos det registrerande mediet (detektorn) Skillnader i transmitterad strålning beroende på: olika tjocklek, olika densitet, olika atomnummer, strålkvalitet (kv) 14. Organprogram förinställda parameterar för en snabbare enklare användning. Exponeringsautomatik jonkammaren (dominanterna) avgör när signalen (svärtningen) i bilden är lagom komponent: inställning av kv, ma och tid. 2: kv och mas 1: kv dvs exponeringsautomatik 16. Exponeringsautomatik: Patientanpassning: för att undvika för lång/kort exponeringstid ökas/sänks kv. 17. Mindre mängd röntgenstrålning emitteras på anodsidan pga attenuering i själva anoden. Enbart av praktisk betydelse vid maximal utbländning.

9 Lägg tunnare delen av det undersökta kroppsparitet mot anodsidan. 18. kv: minskar med ökande mas mas: påverkar ej Inbländning: minskad svärtning, något ökad kontrast Tjocklek: Densitet: ökar med ökande densitet (kontrastmedel) Z: ökar med ökande Z (större sannolikhet för fotovxv. Kontrastmedel) 19. En punkt avbildas med en halvskugga (penumbra). Orsak: fokus inte punktformigt. Åtgärder: mindre fokusstorlek, öka FOA, minska OBA 20. Ökat FOA: ökat avstånd innebär (om man bländar in till samma strålfält) lägre absorberad dos och minskad svärtning i bilden (samma mas). Minskad förstoring. Minskad geometrisk upplösning. Ökat OBA: Ökad förstoring, minskad svärtning och minskad mängd spridd strålning i bilden, ökad geometrisk oskärpa. 21. M= förstoring a = verklig storlek M= FBA / FOA FOA = = 102 M = 125/102 = gånger M a = * 10 =12.25 cm Strålfältet blir x cm Diskuteras vid en föreläsning. Se annars termin Comptonvxv framför allt i material med lågt Z (mjukvävnad, vatten). Lägger sig som en jämn svärtning (signal) över hela bilden. Försämrar kontrasten i bilden (bildkvalitén). Blända in, komprimera för att minimera uppkomsten.

10 24. Förhindra att spridd strålning når bilden genom att använda raster eller luftgap. Beskriv! 25. Ökad kv: bildkvalitet ökad svärtning, lägre kontrast maxenergin ökar, medelenergin ökar, ökad transmission, ökad bromsstrålningsproduktion (fler fotoner), minskad kontrast, minskad patientdos (OM...kompensation med mas), ökad mängd spridd strålning. Om ingen förändring av mas kommer patientstråldosen att öka pga den ökade bromsstrålningsproduktionen. Om mas sänks motsvarande antal steg kommer patientstråldosen att minska pga den ökade energin som ger ökad transmission och minskad andel fotovxv. Ökad mas: ökad svärtning, ökad mängd bromsstrålningsfotoner Ökad patientstråldos Ökad filtrering: färre lågenergetiska fotoner, ökad medelenergi, färre fotoner (når patienten, samma antal produceras), (teoretiskt sett något lägre kontrast i bilden men kanske inte märkbart) Lägre patientstråldos 26. Låg fotonenergi ger högre kontrast i bilden men samtidigt ger det en högre stråldos till patienten eftersom en stor andel av fotonerna kommer att fotovxv i patienten. De fotoner som filtreras bort i röntgenröret (egenfiltrering + tilläggsfiltrering) har så låg energi att dessa inte kan bidra till bilden vid konventionell rtg. Däremot vid mammografi används låga rörspänningar kv eftersom det krävs mycket hög kontrast i bilden samt det är tunna objekt (bröstet) som undersöks där man dessutom komprimerar bröstvävnaden för att öka bildkvalitén kv: en viss mängd bromsstrålning produceras. Ingen karakteristisk röntgenstrålning från volframanoden eftersom k skalselektronernas bindningsenergi i voldram är högre än 50 kev. 100 kev: avsevärt mer bromsstrålning produceras. Karakteristisk röntgenstrålning från volfram. Högre medelenergei och högre maxenergi. 28. Tänk på att det är undersökningen (kroppsdel, avsikt med us, projektion, mm) som avgör vilken rörspänning (kv) som används. Nästan alltid är det mas värdet som ändras om en kraftigare/tunnare patient ska genomgå undersökningen. 29. Bildplattor

11 Bildförstärkare Direktdigitala detektorer med indirekt konversion Direktdigitala detektorer med direkt konversion (film och förstärkningsskärmar) Beskriv! 30. Känslighet kontra upplösning. 31. Exponeringsindex. 32. Hjälpmedel för att ge samma signal (svärtning) i bilden då olika parametrar ändras. 33. (SSM, Bushong)

Aneurysm (olika patienter) RSJE10 Radiografi I Delkurs 2 Strålning och teknik I

Aneurysm (olika patienter) RSJE10 Radiografi I Delkurs 2 Strålning och teknik I RSJE10 Radiografi I Delkurs 2 Strålning och teknik I Del 4 Strålningens växelverkan Sekundärstrålning, raster och förstoring Lena Jönsson Medicinsk strålningsfysik, Lunds universitet Aneurysm (olika patienter)

Läs mer

Patientstrålskydd. Röntgenveckan 2013 Uppsala. Alexander Englund Sjukhusfysiker

Patientstrålskydd. Röntgenveckan 2013 Uppsala. Alexander Englund Sjukhusfysiker Patientstrålskydd Röntgenveckan 2013 Uppsala Alexander Englund Sjukhusfysiker Agenda - Patientsäkerhet Röntgenrör Röntgenspektrum Röntgenparametrar kv, mas Filtrering Inbländning Raster Genomlysning -

Läs mer

Innehåll. Vad är strålning? Vad är strålning? Grundläggande röntgenteknik & fysik Angiografi- och interventionsutrustning. Transport av energi!

Innehåll. Vad är strålning? Vad är strålning? Grundläggande röntgenteknik & fysik Angiografi- och interventionsutrustning. Transport av energi! Innehåll Grundläggande röntgenteknik & fysik Angiografi- och interventionsutrustning Vad är strålning? Röntgenutrustning Teknik Fysik Charlotta Lundh Sjukhusfysiker, MFT 2 Vad är strålning? Vad är strålning?

Läs mer

Hur fungerar en radiografi- och genomlysningsapparat? Hur kan man minska patientstråldoserna inom projektionsradiologi?

Hur fungerar en radiografi- och genomlysningsapparat? Hur kan man minska patientstråldoserna inom projektionsradiologi? Hur fungerar en radiografi- och genomlysningsapparat? Hur kan man minska patientstråldoserna inom projektionsradiologi? 1 Jonas Söderberg Sjukhusfysiker 0340 64 69 35 0705 71 19 69 jonas.soderberg@regionhalland.se

Läs mer

Bildlabb i PACS. Exponerade på samma sätt

Bildlabb i PACS. Exponerade på samma sätt Bildlabb i PACS Tekniskt fantom Kliniskt fantom Exponerade på samma sätt Bildkvalitetslab i PACS Labben illustrerar effekter på bildkvalitet och patientdos vid förändringar av Rörspänning Patient -tjocklek

Läs mer

RSJE10 Radiografi I Delkurs 2 Strålning och teknik I

RSJE10 Radiografi I Delkurs 2 Strålning och teknik I RSJE10 Radiografi I Delkurs 2 Strålning och teknik I Del 1 Joniserande strålning och dess växelverkan Lena Jönsson Medicinsk strålningsfysik Lunds universitet RSJE10 Radiografi I Röntgenbilden Hur olika

Läs mer

Joniserande strålnings växelverkan Hur alstras röntgenstrålning och vad händer när den når och passerar människa?

Joniserande strålnings växelverkan Hur alstras röntgenstrålning och vad händer när den når och passerar människa? Joniserande strålnings växelverkan Hur alstras röntgenstrålning och vad händer när den når och passerar människa? Eva Lund Eva.Lund@liu.se Lärandemål Kunna beskriva hur ett röntgenrör skapar röntgenstrålning

Läs mer

Röntgenteknik. Vad är röntgenstrålning? - Joniserande strålning - Vad behövs för att få till denna bild? Vad behövs för att få till en röntgenbild?

Röntgenteknik. Vad är röntgenstrålning? - Joniserande strålning - Vad behövs för att få till denna bild? Vad behövs för att få till en röntgenbild? joniser ande part ikelst rålni definit ion Röntgenteknik Vad behövs för att få till denna bild? Danielle van Westen Neuroröntgen, USiL Vad behövs för att få till en röntgenbild? Röntgenstrålning ioniserande

Läs mer

RSJF16, Radiografi III, 26,5 högskolepoäng Radiography III, 26.5 credits Grundnivå / First Cycle

RSJF16, Radiografi III, 26,5 högskolepoäng Radiography III, 26.5 credits Grundnivå / First Cycle Medicinska fakulteten RSJF16, Radiografi III, 26,5 högskolepoäng Radiography III, 26.5 credits Grundnivå / First Cycle Fastställande Kursplanen är fastställd av Programnämnden för omvårdnad, radiografi

Läs mer

RSJF16, Radiografi III, 26,5 högskolepoäng Radiography III, 26.5 credits Grundnivå / First Cycle

RSJF16, Radiografi III, 26,5 högskolepoäng Radiography III, 26.5 credits Grundnivå / First Cycle Medicinska fakulteten RSJF16, Radiografi III, 26,5 högskolepoäng Radiography III, 26.5 credits Grundnivå / First Cycle Fastställande Kursplanen är fastställd av Programnämnden för omvårdnad, radiografi

Läs mer

Kursens namn: Medicin, Radiografi Strålningsfysik, teknik och projektionslära

Kursens namn: Medicin, Radiografi Strålningsfysik, teknik och projektionslära Kursens namn: Medicin, Radiografi Strålningsfysik, teknik och projektionslära Kurskod: MC004G Kursansvarig: Eva Funk Examinator: Maud Lundén Datum:160324 Skrivtid: 3 timmar Totalpoäng: 70 poäng Poängfördelning:

Läs mer

RSJE16, Radiografi III, 26,5 högskolepoäng Radiography III, 26.5 credits Grundnivå / First Cycle

RSJE16, Radiografi III, 26,5 högskolepoäng Radiography III, 26.5 credits Grundnivå / First Cycle Medicinska fakulteten RSJE16, Radiografi III, 26,5 högskolepoäng Radiography III, 26.5 credits Grundnivå / First Cycle Fastställande Kursplanen är fastställd av Nämnden för omvårdnadsutbildning 2014-05-22

Läs mer

Grundläggande röntgenteknik & fysik Angiografi- och interventionsutrustning. Maria Larsson Sjukhusfysiker, MFT

Grundläggande röntgenteknik & fysik Angiografi- och interventionsutrustning. Maria Larsson Sjukhusfysiker, MFT Grundläggande röntgenteknik & fysik Angiografi- och interventionsutrustning Maria Larsson Sjukhusfysiker, MFT 2017-02-27 Vad är strålning? Röntgenutrustning Teknik Fysik Innehåll Vad är strålning? Joniserande

Läs mer

Teknik, Fysik och Strålsäkerhet i Röntgendiagnostik

Teknik, Fysik och Strålsäkerhet i Röntgendiagnostik Teknik, Fysik och Strålsäkerhet i Röntgendiagnostik Åke Cederblad 2010 Medicinsk Fysik och Teknik 2 1. INLEDNING...7 RÖNTGENUNDERSÖKNINGAR...7 Konventionella röntgenundersökningar slätröntgen...9 Röntgenundersökningar

Läs mer

OBS! Ange svaren till respektive lärare på separata skrivningspapper om inget annat anges

OBS! Ange svaren till respektive lärare på separata skrivningspapper om inget annat anges Kursens namn: Medicin A, Strålningsfysik, teknik och projektionslära inom radiografi Kurskod: MC1035 Kursansvarig: Eva Funk Datum: 2015-05-16 Skrivtid: 3 timmar Totalpoäng: 76 poäng Poängfördelning: Strålningsfysik

Läs mer

CT bilddata, bildbearbetning och bildkvalitet Brus & Upplösning

CT bilddata, bildbearbetning och bildkvalitet Brus & Upplösning CT bilddata, bildbearbetning och bildkvalitet Brus & Upplösning Strålning & Teknik I 2013-09-12 Mikael Gunnarsson Sjukhusfysiker Strålningsfysik, SuS Malmö Vad är bildkvalitet? Bildkvalitet Högkontrast

Läs mer

ATOM OCH KÄRNFYSIK. Masstal - anger antal protoner och neutroner i atomkärnan. Atomnummer - anger hur många protoner det är i atomkärnan.

ATOM OCH KÄRNFYSIK. Masstal - anger antal protoner och neutroner i atomkärnan. Atomnummer - anger hur många protoner det är i atomkärnan. Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (p + ) Elektroner (e - ) Neutroner (n) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att de bildar ett skal.

Läs mer

KOMPENDIUM I RÖNTGENTEKNOLOGI

KOMPENDIUM I RÖNTGENTEKNOLOGI KOMPENDIUM I RÖNTGENTEKNOLOGI KAPITEL 2 RÖNTGENRÖR Reviderad: 20050816 Diagram över det elektromagnetiska strålspektrum och några användningsex. 14 Elektriskt fält Magnetfält Elektromagnetisk våg GAMMASTRÅLNING

Läs mer

Konventionell röntgen - teori och fall

Konventionell röntgen - teori och fall Konventionell röntgen - teori och fall Erik Hedström BoF, SUS Disposition Teknik Systema-sk granskning: Lungröntgen Buköversikt Vad behövs för att skapa en röntgenbild? Röntgenstrålning joniserande strålning

Läs mer

Radiofysikavdelningen

Radiofysikavdelningen Radiofysikavdelningen Sektionen för Röntgenfysik, US, Linköping Praktisk strålskyddsövning med röntgengenomlysningsutrustning Michael Sandborg och Jonas Nilsson Althén Leg. Sjukhusfysiker vid Radiofysikavdelningen

Läs mer

Röntgen och nuklearmedicin

Röntgen och nuklearmedicin Röntgen och nuklearmedicin Vad är undersökningarna bra för och är de säkra? Strålning används på olika sätt för att ta bilder av kroppens inre. Bilderna behövs för att kunna hitta sjukdomar och som hjälp

Läs mer

STRÅLSKYDD VID RÖNTGENDIAGNOSTIK VERKSAMHETSOMRÅDE BILD, SÖDERSJUKHUSET ANNIKA MELINDER, SJUKHUSFYSIKER

STRÅLSKYDD VID RÖNTGENDIAGNOSTIK VERKSAMHETSOMRÅDE BILD, SÖDERSJUKHUSET ANNIKA MELINDER, SJUKHUSFYSIKER STRÅLSKYDD VID RÖNTGENDIAGNOSTIK VERKSAMHETSOMRÅDE BILD, SÖDERSJUKHUSET ANNIKA MELINDER, SJUKHUSFYSIKER Historik Strålmiljö Bilddiagnostik Joniserande strålning Lagar och regler Strålskydd 118 Strålskyddets

Läs mer

Atomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral)

Atomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Atom- och kärnfysik Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att

Läs mer

Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12!

Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12! 1) Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12! Om vi tar den tredje kol atomen, så är protonerna 6,

Läs mer

Röntgen och Nuklearmedicin ALERIS RÖNTGEN

Röntgen och Nuklearmedicin ALERIS RÖNTGEN Röntgen och Nuklearmedicin ALERIS RÖNTGEN Vad är undersökningarna bra för och är de säkra? Strålning används på olika sätt för att ta bilder av kroppens inre. Bilderna behövs för att kunna hitta sjukdomar

Läs mer

Kursens namn: Medicin Radiografi, Strålningsfysik, teknik och projektionslära inom radiografi

Kursens namn: Medicin Radiografi, Strålningsfysik, teknik och projektionslära inom radiografi Kursens namn: Medicin Radiografi, Strålningsfysik, teknik och projektionslära inom radiografi Kurskod: MC004G Kursansvarig: Eva Funk Datum: 2016-05-07 Examinator: Maud Lundén Skrivtid: 3 timmar Totalpoäng:

Läs mer

Atomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral)

Atomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Atom- och kärnfysik Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att

Läs mer

Atom- och kärnfysik! Sid 223-241 i fysikboken

Atom- och kärnfysik! Sid 223-241 i fysikboken Atom- och kärnfysik! Sid 223-241 i fysikboken 1. Atomen Kort repetition av Elin Film: Vetenskap-Atom: Upptäckten När du har srepeterat och sett filmen om ATOMEN ska du kunna beskriva hur en atom är uppbyggd

Läs mer

Strålsäkerhet vid interventionell kardiologi. Pernilla Jonasson, sjukhusfysiker Sahlgrenska Universitetssjukhuset

Strålsäkerhet vid interventionell kardiologi. Pernilla Jonasson, sjukhusfysiker Sahlgrenska Universitetssjukhuset Strålsäkerhet vid interventionell kardiologi Pernilla Jonasson, sjukhusfysiker Sahlgrenska Universitetssjukhuset Röntgenstrålning som verktyg Röntgens barndom Tidiga strålskador Strålskydd Passar skon?

Läs mer

KOMPENDIUM I RÖNTGENTEKNOLOGI

KOMPENDIUM I RÖNTGENTEKNOLOGI KOMPENDIUM I RÖNTGENTEKNOLOGI KAPITEL 8 Strålskydd Reviderad: 20050816 Joniserande strålning Övrig naturlig bakgrundsstrålning 20% Medicinska strålkällor 15% Radon i bostäder 64% Övriga strålkällor 1%

Läs mer

Strålskyddsutbildning T8 Teknik på BoF

Strålskyddsutbildning T8 Teknik på BoF Strålskyddsutbildning T8 Teknik på BoF Leg. sjukhusfysiker Strålskyddsutbildning För att få lov att använda joniserande strålning, t.ex. röntgenstrålning, ska man ha Teoretisk kunskap om strålskydd, Praktisk

Läs mer

EXAMENSARBETE. En jämförelse mellan analog och digital mammografi. Marlene Blind. Luleå tekniska universitet

EXAMENSARBETE. En jämförelse mellan analog och digital mammografi. Marlene Blind. Luleå tekniska universitet EXAMENSARBETE 2007:012 HV En jämförelse mellan analog och digital mammografi Marlene Blind Luleå tekniska universitet Hälsovetenskapliga utbildningar Röntgensjuksköterska Institutionen för Tillämpad fysik,

Läs mer

Betygskriterier (utom läkemedelsberäkningen där 90% rätt för godkänt gäller)

Betygskriterier (utom läkemedelsberäkningen där 90% rätt för godkänt gäller) Kursens namn: Medicin A, Strålningsfysik, teknik och projektionslära inom radiografi Kurskod: MC1035 Kursansvarig: Eva Funk Datum: 2015-03-25 Skrivtid: 4 timmar Totalpoäng: 52 poäng Poängfördelning: Strålningsfysik

Läs mer

8 Röntgenfluorescens. 8.1 Laborationens syfte. 8.2 Materiel. 8.3 Teori. 8.3.1 Comptonspridning

8 Röntgenfluorescens. 8.1 Laborationens syfte. 8.2 Materiel. 8.3 Teori. 8.3.1 Comptonspridning 8 Röntgenfluorescens 8.1 Laborationens syfte Att undersöka röntgenfluorescens i olika material samt använda röntgenfluorescens för att identifiera grundämnen som ingår i okända material. 8. Materiel NaI-detektor

Läs mer

Marie Sydoff, Helsingborgs lasarett, SUS Lund

Marie Sydoff, Helsingborgs lasarett, SUS Lund Marie Sydoff, Helsingborgs lasarett, SUS Lund Varför strålskydd? Förhindra akuta skador och begränsa risken för sena skador Skydda patienterna - patientstrålskydd Skydda er själva - personalstrålskydd

Läs mer

Stora namn inom kärnfysiken. Marie Curie radioaktivitet Lise Meitner fission Ernest Rutherford atomkärnan (Niels Bohr atommodellen)

Stora namn inom kärnfysiken. Marie Curie radioaktivitet Lise Meitner fission Ernest Rutherford atomkärnan (Niels Bohr atommodellen) Atom- och kärnfysik Stora namn inom kärnfysiken Marie Curie radioaktivitet Lise Meitner fission Ernest Rutherford atomkärnan (Niels Bohr atommodellen) Atomens uppbyggnad Atomen består av tre elementarpartiklar:

Läs mer

OBS! Under rubriken lärares namn på gröna omslaget ange istället skrivningsområde.

OBS! Under rubriken lärares namn på gröna omslaget ange istället skrivningsområde. Medicin A, Medicin A, Strålningsfysik, teknik och projektionslära inom radiografi Kurskod: MC1035 Kursansvarig: Eva Funk Datum: 2014 03 27 Skrivtid: 3 timmar Totalpoäng: 60 p Strålningsfysik 22 p Strålningsbiologi

Läs mer

Varför kan det ta så lång tid på röntgen?

Varför kan det ta så lång tid på röntgen? Varför kan det ta så lång tid på röntgen? Röntgenremissens gång Röntgenremissens gång En del patienter tycker att väntetiden kan bli lång vid röntgenavdelningen. Vi vill därför förklara vad som händer

Läs mer

Strålsäkerhetskontroll av konventionell röntgenutrustning

Strålsäkerhetskontroll av konventionell röntgenutrustning Godkänt den: 2017-02-16 Ansvarig: Per-Erik Åslund Gäller för: SF diagnostik Strålsäkerhetskontroll av konventionell röntgenutrustning Innehåll Syfte och omfattning...2 Periodicitet...2 Definitioner och

Läs mer

Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen.

Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen. Atomfysik ht 2015 Atomens historia Atom = grekiskans a tomos som betyder odelbar Filosofen Demokritos, atomer. Stort motstånd, främst från Aristoteles Trodde på läran om de fyra elementen Alla ämnen bildas

Läs mer

EXAMENSARBETE. Konversionsfaktorer för barn i åldrar 0-15 år för konventionell röntgen

EXAMENSARBETE. Konversionsfaktorer för barn i åldrar 0-15 år för konventionell röntgen EXAMENSARBETE 2010:005 HV Konversionsfaktorer för barn i åldrar 0-15 år för konventionell röntgen Christina Weidmann Luleå tekniska universitet Hälsovetenskapliga utbildningar Röntgensjuksköterska Institutionen

Läs mer

Strålsäkerhetsmyndighetens ISSN: 2000-0987

Strålsäkerhetsmyndighetens ISSN: 2000-0987 Strålsäkerhetsmyndighetens ISSN: 2000-0987 Strålsäkerhetsmyndighetens författningssamling ISSN 2000-0987 Utgivare: Johan Strandman Strålsäkerhetsmyndighetens allmänna råd om prestandaspecifikationer vid

Läs mer

Institutionen för kirurgiska vetenskaper Enheten för radiologi Röntgensjuksköterskeprogrammet 180hp. Studiehandledning Radiografi I 15hp

Institutionen för kirurgiska vetenskaper Enheten för radiologi Röntgensjuksköterskeprogrammet 180hp. Studiehandledning Radiografi I 15hp Institutionen för kirurgiska vetenskaper Enheten för radiologi Röntgensjuksköterskeprogrammet 80hp Studiehandledning Radiografi I hp Termin Höstterminen 06 Innehåll Mål Innehåll... Verksamhetsförlagd utbildning-

Läs mer

Kärnenergi. Kärnkraft

Kärnenergi. Kärnkraft Kärnenergi Kärnkraft Isotoper Alla grundämnen finns i olika varianter som kallas för isotoper. Ofta finns en variant som är absolut vanligast. Isotoper av ett ämne har samma antal protoner och elektroner,

Läs mer

De nya dosgränserna för ögats lins

De nya dosgränserna för ögats lins De nya dosgränserna för ögats lins - Konsekvenserna för personalstrålskyddet Röntgenveckan Uppsala 2013 Innehåll! Vad är på gång och vilka berörs?! Mätning av dosen till ögats lins! Typiska doser vid olika

Läs mer

Radiofysikavdelningen

Radiofysikavdelningen Sektionen för Röntgenfysik, US, Linköping Laboration bildkvalitet vid konventionell röntgen, nu med bäckenbilder Jonas Nilsson Althén och Michael Sandborg Leg. sjukhusfysiker US Linköping Rapport Radfys-008-9

Läs mer

Miljöfysik. Föreläsning 5. Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion

Miljöfysik. Föreläsning 5. Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion Miljöfysik Föreläsning 5 Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion Energikällor Kärnkraftverk i världen Fråga Ange tre fördelar och tre nackdelar

Läs mer

Absorberad dos. Hur mäter man stråldoser vid röntgenundersökningar? SK kurs 7 December Absorberad strålningsenergi

Absorberad dos. Hur mäter man stråldoser vid röntgenundersökningar? SK kurs 7 December Absorberad strålningsenergi Dosimetri vid röntgendiagnostik Hur mäter man stråldoser vid röntgenundersökningar? SK kurs 7 December 2015 Gudrun Alm Carlsson Radiofysik, IMH Hälsouniversitetet, Linköping tel: 013-286855 e-mail: Gudrun.Alm.Carlsson@liu.se

Läs mer

Magnus Lömäng

Magnus Lömäng 8QGHUV NQLQJDYH[SRQHULQJVLQGH[I U ELOGSODWWHV\VWHPLQI URSWLPHULQJVDUEHWH Magnus Lömäng 2004-06-03 /L7+,07%,7(;6( Avdelning, Institution Division, Department Datum Date 2004-06-03 Institutionen för medicinsk

Läs mer

Kärnfysik och radioaktivitet. Kapitel 41-42

Kärnfysik och radioaktivitet. Kapitel 41-42 Kärnfysik och radioaktivitet Kapitel 41-42 Tentförberedelser (ANMÄL ER!) Maximipoäng i tenten är 25 p. Tenten består av 5 uppgifter, varje uppgift ger max 5 p. Uppgifterna baserar sig på bokens kapitel,

Läs mer

Teori. Fråga 1) Fråga 2)

Teori. Fråga 1) Fråga 2) Teori Obs! I flersvarsfrågorna finns det ingen direkt koppling mellan antalet alternativ som är korrekta och antalet poäng som frågan kan ge! På flersvarsfrågorna ger korrekta alternativ poäng och felaktiga

Läs mer

OBS! Ange svaren till respektive lärare på separata skrivningspapper om inget annat anges

OBS! Ange svaren till respektive lärare på separata skrivningspapper om inget annat anges Kursens namn: Medicin A, Strålningsfysik, teknik och projektionslära inom radiografi Kurskod: MC1035 Kursansvarig: Eva Funk Datum: 2013-03-26 Skrivtid: 5 timmar Totalpoäng: 100 poäng + 20 poäng läkemedelsberäkning

Läs mer

RSJE10 Radiografi I Delkurs 2 Strålning och teknik I. Del 2 Röntgenrörets uppbyggnad. Lena Jönsson Medicinsk strålningsfysik Lunds universitet

RSJE10 Radiografi I Delkurs 2 Strålning och teknik I. Del 2 Röntgenrörets uppbyggnad. Lena Jönsson Medicinsk strålningsfysik Lunds universitet RSJE10 Radiografi I Delkurs 2 Strålig och tekik I Del 2 Rötgerörets uppbyggad Lea Jösso Medicisk stråligsfysik Luds uiversitet Täthetsskillader Expoerigsparametrar SUS Lud: 50 60 kv, 3.2 5 mas Täthetsskillader

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 2

TILLÄMPAD ATOMFYSIK Övningstenta 2 TILLÄMPAD ATOMFYSIK Övningstenta 2 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

Dental digital röntgenteknik Vad ska vi tänka på?

Dental digital röntgenteknik Vad ska vi tänka på? Odontologiska fakulteten, Tandvårdshögskolan Malmö Dental digital röntgenteknik Vad ska vi tänka på? Kristina Hellén-Halme Avdelningen för Odontologisk röntgendiagnostik, Malmö högskola 1 Skillnad mellan

Läs mer

Instuderingsfrågor Atomfysik

Instuderingsfrågor Atomfysik Instuderingsfrågor Atomfysik 1. a) Skriv namn och laddning på tre elementarpartiklar. b) Vilka elementarpartiklar finns i atomkärnan? 2. a) Hur många elektroner kan en atom högst ha i skalet närmast kärnan?

Läs mer

Optimering av röntgenundersökningar med hjälp av datorsimulering av det bildgivande systemet

Optimering av röntgenundersökningar med hjälp av datorsimulering av det bildgivande systemet Optimering av röntgenundersökningar med hjälp av datorsimulering av det bildgivande systemet David Dance, Gudrun Alm Carlsson, Jan Persliden, Graham McVey, Roger Hunt, Gustaf Ullman, Alexandr Malusek,

Läs mer

Kärnfysikaliska grunder för radioaktiva nuklider

Kärnfysikaliska grunder för radioaktiva nuklider Institutionen för medicin och vård Avdelningen för radiofysik Hälsouniversitetet Kärnfysikaliska grunder för radioaktiva nuklider Gudrun Alm Carlsson Department of Medicine and Care Radio Physics Faculty

Läs mer

Marie Curie, kärnfysiker, 1867 1934. Atomfysik. Heliumatom. Partikelacceleratorn i Cern, Schweiz.

Marie Curie, kärnfysiker, 1867 1934. Atomfysik. Heliumatom. Partikelacceleratorn i Cern, Schweiz. Marie Curie, kärnfysiker, 1867 1934. Atomfysik Heliumatom Partikelacceleratorn i Cern, Schweiz. Atom (grek. odelbar) Ordet atom användes för att beskriva materians minsta beståndsdel. Nu vet vi att atomen

Läs mer

Fysik. Laboration 4. Radioaktiv strålning

Fysik. Laboration 4. Radioaktiv strålning Tekniskt basår, Laboration 4: Radioaktiv strålning 2007-03-18, 7.04 em Fysik Laboration 4 Radioaktiv strålning Laborationens syfte är att ge dig grundläggande kunskap om: Radioaktiva strålningens ursprung

Läs mer

BMLV A, Fysiologisk undersökningsmetodik inom neuro och rörelse

BMLV A, Fysiologisk undersökningsmetodik inom neuro och rörelse BMLV A, Fysiologisk undersökningsmetodik inom neuro och rörelse Kurskod: BL1014 Kursansvarig: Maria Fernström Datum: 2014 12 05 Skrivtid: 3 timmar Totalpoäng: 51p CT och ultraljud 15p Teknik 16p Nuklearmedicin

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 1

TILLÄMPAD ATOMFYSIK Övningstenta 1 TILLÄMPAD ATOMFYSIK Övningstenta 1 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

Atomen - Periodiska systemet. Kap 3 Att ordna materian

Atomen - Periodiska systemet. Kap 3 Att ordna materian Atomen - Periodiska systemet Kap 3 Att ordna materian Av vad består materian? 400fKr (före år noll) Empedokles: fyra element, jord, eld, luft, vatten Demokritos: små odelbara partiklar! -------------------------

Läs mer

Sönderfallsserier N 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134. α-sönderfall. β -sönderfall. 21o

Sönderfallsserier N 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134. α-sönderfall. β -sönderfall. 21o Isotop Kemisk symbol Halveringstid Huvudsaklig strålning Uran-238 238 U 4,5 109 år α Torium-234 234 Th 24,1 d β- Protaktinium-234m 234m Pa 1,2 m β- Uran-234 234 U 2,5 105 år α Torium-230 230 Th 8,0 105

Läs mer

Tentamen. Medicinska bilder kl KAROLINSKA INSTITUTET INSTITUTIONEN FÖR LABORATORIEMEDICIN AVDELNINGEN FÖR MEDICINSK TEKNIK

Tentamen. Medicinska bilder kl KAROLINSKA INSTITUTET INSTITUTIONEN FÖR LABORATORIEMEDICIN AVDELNINGEN FÖR MEDICINSK TEKNIK KAROLINSKA INSTITUTET INSTITUTIONEN FÖR LABORATORIEMEDICIN AVDELNINGEN FÖR MEDICINSK TEKNIK Tentamen Medicinska bilder 2005-06-30 kl 13-17 Textat efternamn... Textat förnamn... Personnummer... Kontrollera

Läs mer

Röntgen (Från Oral Radiology Principles and Interpretation med mera, se länkar längst ner på sidan.)

Röntgen (Från Oral Radiology Principles and Interpretation med mera, se länkar längst ner på sidan.) Röntgen (Från Oral Radiology Principles and Interpretation med mera, se länkar längst ner på sidan.) Repetition av grundläggande fysik och kemi Materia är något som upptar plats och har massa. Materia

Läs mer

Föreläsning 2 Modeller av atomkärnan

Föreläsning 2 Modeller av atomkärnan Föreläsning 2 Modeller av atomkärnan Atomkärnan MP 11-1 Protonens och neutronens egenskaper Atomkärnors storlek och form MP 11-2, 4-2 Kärnmodeller 11-6 Vad gör denna ovanlig? Se även http://www.lbl.gov/abc

Läs mer

Utrustning. Interventioner och stråldoser. Utrustning. Strålrisker vid intervention. Strålning? Håkan Geijer

Utrustning. Interventioner och stråldoser. Utrustning. Strålrisker vid intervention. Strålning? Håkan Geijer Utrustning Videokamera/dator Interventioner och stråldoser Linssystem Raster Håkan Geijer Röntgenkliniken Universitetssjukhuset Örebro Bordsskiva vanligen kolfiber Filtrering aluminium/koppar Bländarkåpa

Läs mer

Röntgen inom tandvården FÖR- OCH NACKDELAR MED STRÅLNING

Röntgen inom tandvården FÖR- OCH NACKDELAR MED STRÅLNING Röntgen inom tandvården FÖR- OCH NACKDELAR MED STRÅLNING Röntgen inom tandvården FÖR- OCH NACKDELAR MED STRÅLNING Röntgenstrålning används för att ta bilder av kroppens inre. Bilderna behövs för att kunna

Läs mer

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling Lösning till tentamen i Medicinska Bilder, TSBB3, 08-0-4 Maria Magnusson (maria.magnusson@liu.se) DEL : Grundläggande D signalbehandling Uppgift (6p) a och E: E LP-filtrerar mycket och ger en mycket suddig

Läs mer

Björne Torstenson (TITANO) Sida 1 (6)

Björne Torstenson (TITANO) Sida 1 (6) Björne Torstenson (TITANO) Sida 1 (6) Namn: Ur centralt innehåll: Fysikaliska modeller för att beskriva och förklara uppkomsten av partikel-strålning och elektromagnetisk strålning samt strålningens påverkan

Läs mer

Strålsäkerhetsmyndighetens ISSN: 2000-0987

Strålsäkerhetsmyndighetens ISSN: 2000-0987 Strålsäkerhetsmyndighetens ISSN: 2000-0987 Strålsäkerhetsmyndighetens författningssamling ISSN 2000-0987 Utgivare: Johan Strandman Strålsäkerhetsmyndighetens föreskrifter om utrustning för radiografering;

Läs mer

Prov Ke1 Atomer och periodiska systemet NA1+TE1/ /PLE

Prov Ke1 Atomer och periodiska systemet NA1+TE1/ /PLE Prov Ke1 Atomer och periodiska systemet NA1+TE1/2017-10-12/PLE Hjalmar Namn: Fel svar på ervalsfrågorna ger poängavdrag! Del I: svara i provet 1. Ange masstal, atomnummer och antalet elektroner, protoner

Läs mer

Statens strålskyddsinstituts föreskrifter om kategoriindelning av arbetstagare och arbetsställen vid verksamhet med joniserande strålning;

Statens strålskyddsinstituts föreskrifter om kategoriindelning av arbetstagare och arbetsställen vid verksamhet med joniserande strålning; SSI FS 1998:3 Statens strålskyddsinstituts föreskrifter om kategoriindelning av arbetstagare och arbetsställen vid verksamhet med joniserande strålning; beslutade den 29 oktober 1998. Statens strålskyddsinstitut

Läs mer

Lena Gordon Murkes Datortomografi Barnröngen ALB

Lena Gordon Murkes Datortomografi Barnröngen ALB Lena Gordon Murkes Datortomografi Barnröngen ALB Berättigande, ska undersökningen verkligen göras? Vilken bildkvalitet/stråldos är nödvändig för den aktuella undersökningen om den skall utföras. Är undersökningen

Läs mer

Radioaktivt sönderfall Atomers (grundämnens) sammansättning

Radioaktivt sönderfall Atomers (grundämnens) sammansättning Radioaktivitet Radioaktivt sönderfall Atomers (grundämnens) sammansättning En atom består av kärna (neutroner + protoner) med omgivande elektroner Kärnan är antingen stabil eller instabil En instabil kärna

Läs mer

Energi & Atom- och kärnfysik

Energi & Atom- och kärnfysik ! Energi & Atom- och kärnfysik Facit Energi s. 149 1. Vad är energi? Förmåga att utföra arbete. 2. Vad händer med energin när ett arbets görs? Den omvandlas till andra energiformer. 3. Vad är arbete i

Läs mer

Föreläsning 5 Att bygga atomen del II

Föreläsning 5 Att bygga atomen del II Föreläsning 5 Att bygga atomen del II Moseleys Lag Pauliprincipen Det periodiska systemet Kemi på sidor Vad har vi lärt hittills? En elektron hör till ett skal med ett kvanttal n Varje skal har en specifik

Läs mer

Medicinsk strålningsfysik KAROLINSKA INSTITUTET STOCKHOLMS UNIVERSITET

Medicinsk strålningsfysik KAROLINSKA INSTITUTET STOCKHOLMS UNIVERSITET Medicinsk strålningsfysik KAROLINSKA INSTITUTET STOCKHOLMS UNIVERSITET TENTAMEN I RADIOFYSIK, KURS RF 2030. Dosimetri 5 p 2006-01-20 9.00-14.00 A. Problemdel. Helt korrekt lösning ger 10 p. Använda ekvationer

Läs mer

Snabb spridning av CBCT-tekniken

Snabb spridning av CBCT-tekniken VETENSKAP & KLINIK Snabb spridning av CBCT-tekniken Marie Danell ST-tandläkare, avd för odontologisk radiologi, Odontologiska inst, Jönköping E-post: Marie.Danell@ lj.se Hans-Göran Gröndahl prof emeritus,

Läs mer

SPECT Fysik. Sigrid Leide-Svegborn Strålningsfysik Skånes universitetssjukhus SVENSK FÖRENING FÖR NUKLEARMEDICIN SWEDISH SOCIETY OF NUCLEAR MEDICINE

SPECT Fysik. Sigrid Leide-Svegborn Strålningsfysik Skånes universitetssjukhus SVENSK FÖRENING FÖR NUKLEARMEDICIN SWEDISH SOCIETY OF NUCLEAR MEDICINE SVENSK FÖRENING FÖR NUKLEARMEDICIN SWEDISH SOCIETY OF NUCLEAR MEDICINE Skåne university hospital Malmö Sweden SPECT Fysik Sigrid Leide-Svegborn Strålningsfysik Skånes universitetssjukhus Grundkurs i Hybrid

Läs mer

Strålningsfysik, stråldoser, risker och strålskydd

Strålningsfysik, stråldoser, risker och strålskydd Strålningsfysik, stråldoser, risker och strålskydd En mycket kortfattad introduktion Mats Nilsson Odontologisk röntgendiagnostik Odontologiska fakulteten Malmö högskola The Stenbeck Röntgen-Institute in

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 3

TILLÄMPAD ATOMFYSIK Övningstenta 3 TILLÄMPAD ATOMFYSIK Övningstenta 3 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

Strålsäkerhetsmyndighetens ISSN: 2000-0987

Strålsäkerhetsmyndighetens ISSN: 2000-0987 Strålsäkerhetsmyndighetens ISSN: 2000-0987 Strålsäkerhetsmyndighetens författningssamling ISSN 2000-0987 Utgivare: Johan Strandman Strålsäkerhetsmyndighetens föreskrifter om tillstånd att inneha och använda

Läs mer

Fotoelektriska effekten

Fotoelektriska effekten Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar

Läs mer

En resa från Demokritos ( f.kr) till atombomben 1945

En resa från Demokritos ( f.kr) till atombomben 1945 En resa från Demokritos (460-370 f.kr) till atombomben 1945 kapitel 10.1 plus lite framåt: s279 Currie atomer skapar ljus - elektromagnetisk strålning s277 röntgen s278 atomklyvning s289 CERN s274 och

Läs mer

Dosdatainsamling i ingenjörens tjänst!

Dosdatainsamling i ingenjörens tjänst! Dosdatainsamling i ingenjörens tjänst! Jonas Söderberg Sjukhusfysiker 2014-09-10 307 000 invånare Undersökningar Vi gör c:a 200 000 radiologiska u.s. per år + operation och tandröntgen. Modaliteter 70

Läs mer

KEMI 1 MÄNNISKANS KEMI OCH KEMIN I LIVSMILJÖ

KEMI 1 MÄNNISKANS KEMI OCH KEMIN I LIVSMILJÖ KEMI 1 MÄNNISKANS KEMI OCH KEMIN I LIVSMILJÖ FYSIK BIOLOGI KEMI MEDICIN TEKNIK Laborationer Ett praktiskt och konkret experiment Analys av t ex en reaktion Bevisar en teori eller lägger grunden för en

Läs mer

7. Radioaktivitet. 7.1 Sönderfall och halveringstid

7. Radioaktivitet. 7.1 Sönderfall och halveringstid 7. Radioaktivitet Vissa grundämnens atomkärnor är instabila de kan sönderfalla av sig själva. Då en atomkärna sönderfaller bildas en mindre atomkärna, och energi skickas ut från kärnan i form av partiklar

Läs mer

Solens energi alstras genom fusionsreaktioner

Solens energi alstras genom fusionsreaktioner Solen Lektion 7 Solens energi alstras genom fusionsreaktioner i dess inre När solen skickar ut ljus förlorar den också energi. Det måste finnas en mekanism som alstrar denna energi annars skulle solen

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n, 13 APRIL 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Vågfysik. Ljus: våg- och partikelbeteende

Vågfysik. Ljus: våg- och partikelbeteende Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens

Läs mer

Anmälningspliktig verksamhet. Smådjursröntgen. Handbok i strålskydd. Handbok: Mars 2019 Tillgänglig på

Anmälningspliktig verksamhet. Smådjursröntgen. Handbok i strålskydd. Handbok: Mars 2019 Tillgänglig på Anmälningspliktig verksamhet Smådjursröntgen Handbok i strålskydd Handbok: Mars 2019 Tillgänglig på www.stralsakerhetsmyndigheten.se Denna handbok är skriven för dig som bedriver eller arbetar inom anmälningspliktig

Läs mer

Utvärdering av OSL-system - nanodot

Utvärdering av OSL-system - nanodot 2013-12-04 Medicinskt servicecentrum Medicinsk fysik och teknik MFTr 2013/6 Medicinsk fysik Utvärdering av OSL-system - nanodot Sofia Åkerberg Henrik Bertilsson MFTr 2013/3 Sida 1 Innehållsförteckning

Läs mer

Periodiska systemet. Atomens delar och kemiska bindningar

Periodiska systemet. Atomens delar och kemiska bindningar Periodiska systemet Atomens delar och kemiska bindningar Atomens delar I mitten av atomen finns atomkärnan där protonerna finns. Protoner är positivt laddade partiklar Det är antalet protoner som avgör

Läs mer

Nuklearmedicin, vad är det? Hur fungerar en gammakamera? Anna Olsson Sjukhusfysiker Nuklearmedicin

Nuklearmedicin, vad är det? Hur fungerar en gammakamera? Anna Olsson Sjukhusfysiker Nuklearmedicin Nuklearmedicin, vad är det? Hur fungerar en gammakamera? Anna Olsson Sjukhusfysiker Nuklearmedicin Vad är skillnaden? CT SPECT Nuklearmedicinska undersökningar Bygger på fysiologiska processer Avbilda

Läs mer

Akademiska sjukhuset. Skapat av: Ragnar Neubeck Skapat den: Reviderat av: Per-Erik Åslund Reviderat den:

Akademiska sjukhuset. Skapat av: Ragnar Neubeck Skapat den: Reviderat av: Per-Erik Åslund Reviderat den: Titel: Akademiska sjukhuset Division: DAT Instruktion för strålsäkerhetskontroll av röntgenutrustning Godkänt av: Kategori: Verksamhetsområde: MSI Enhet: SF ID.nr: RAD-SA402-IN1-v2 Lars Jangland 1:e Sjukhusfysiker,

Läs mer

Till dig som läser till Röntgensjuksköterska eller vill göra det! Välkommen till Bild- och funktionsmedicinskt centrum! Akademiska sjukhuset -

Till dig som läser till Röntgensjuksköterska eller vill göra det! Välkommen till Bild- och funktionsmedicinskt centrum! Akademiska sjukhuset - Till dig som läser till Röntgensjuksköterska eller vill göra det! Välkommen till Bild- och funktionsmedicinskt centrum! Akademiska sjukhuset - Uppsala Akademiska sjukhuset är en av de största arbetsplatserna

Läs mer

Anvisningar till ansökan för stråletisk bedömning avseende diagnostisk användning av joniserande strålning i forskningssyfte

Anvisningar till ansökan för stråletisk bedömning avseende diagnostisk användning av joniserande strålning i forskningssyfte Anvisningar till ansökan för stråletisk bedömning avseende diagnostisk användning av joniserande strålning i forskningssyfte Strålskyddskommittén bistår den regionala etikprövningsnämnden, EPN, med att

Läs mer

EXAMENSARBETE. En jämförelse mellan CT-kolografi och konventionell colonröntgen. Sara Kjellstedt Maria Öhrvall. Luleå tekniska universitet

EXAMENSARBETE. En jämförelse mellan CT-kolografi och konventionell colonröntgen. Sara Kjellstedt Maria Öhrvall. Luleå tekniska universitet EXAMENSARBETE 2007:013 HV En jämförelse mellan CT-kolografi och konventionell colonröntgen Sara Kjellstedt Maria Öhrvall Luleå tekniska universitet Hälsovetenskapliga utbildningar Röntgensjuksköterska

Läs mer