TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) kl

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2014-01-14 kl. 08.30-12.30"

Transkript

1 CHALMERS (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM09/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM09 och KVM090) kl Hjälpmedel: Kursböckerna Elliott-Lira: Introductory Chemical Engineering hermodynamics inklusive utdelat Komplettering av föreläsningsmaterial (3/xx sidor) och P. Atkins, L. Jones: Chemical Principles, "abeller och diagram i Energi- och kemiteknik" eller "Data och Diagram", "Physics Handbook", "BEA β" samt valfri kalkylator med tömt minne. I ovan angivna böcker är föreläsningsanteckningar i form av under- och överstrykningar, översättningar, hänvisningar och kommentarer tillåtna, men absolut inte lösningar till exempel eller tidigare tentatal. När ekvationer används utan härledningar bör källa anges. Använda symboler bör definieras om de avviker från kursmaterialets. OBS! Uppgifternas numrering är slumpartad och är inte kopplad till svårighetsgrad. För godkänt (betyg 3) krävs 5 poäng, för betyg 4 20 poäng och för betyg 5 25 poäng. Senast kl kommer Lennart Vamling, ankn. 302 eller Nikola Markovic, ankn. 34, att första gången vara tillgänglig i skrivsalen. Lösningar finns anslagna på Värmeteknik och maskinläras anslagstavla. entamen kommer att rättas anonymt. Resultat meddelas via LADOK senast Granskning får ske kl och , kl i Värmeteknik och maskinläras bibliotek. Därefter kan tentor hämtas ut från Energi och miljös tentamensexpedition, EDI-huset, plan 3, ingång Maskingränd, rum 3434A (öppet mån-fre ). Den s.k. Atkinsoncykeln är en cyklisk process i en cylinder med rörlig kolv som ofta används för att approximera förloppet i de motorer som idag används i en del hybridbilar. Cykeln består av följande delsteg: 2 Isentrop kompression 2 3 Isokor värmning 3 4 Isentrop expansion 4 Isobar kylning Kompressionsförhållandet (V /V 2 ) är 0, det s.k. expansionsförhållandet (V 4 /V 3 ) är 3, mängden gas i cylindern är 0, mol, P = 98 kpa och = 300 K. a) Beräkna 2, 3, och 4! b) Beräkna hur mycket värme som behöver tillföras i steget 2 3 Arbetsmediet kan approximeras med en ideal gas med C p = 29,0 J/(mol K) och κ = C p /C v =,40. (6 p)

2 CHALMERS 2 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM09/KVM090) 2. En uppfinnare påstår att han har fått fram en utrustning som bara behöver tillföras mättad ånga med temperaturen 00 C för att, genom en komplicerad process i flera steg, kontinuerligt vid temperaturen 200 C kunna leverera,3 MJ värme per kg tillförd ånga. a) Är denna process är termodynamiskt möjlig med de data som är givna ovan? b) Vid vilken mängd levererat värme (vid 200 C) går gränsen mellan vad som är termodynamiskt möjligt och omöjligt? Antag steady-state och att kylvatten med temperaturen 0,0 C finns tillgängligt i obegränsad mängd. Välj, bland möjliga, ett tillstånd (, P, ) på det utgående flödet så att vad som är termodynamiskt möjligt maximeras. Värme avges vid 200 C Utrustning mättad ånga vatten 00 C (tillstånd, se text ovan) Kylning (mha kylvatten) vid 0 C (6 p) 3. Ett i värmepumpar vanligt förekommande arbetsmedium är R407C, som är en blandning som består av 43,9 mol% R34a, 38, mol% av R32 och 8,0 mol% av R25. Antag att denna blandning kan anses vara ideal och att trycket är tillräckligt lågt för att Raults lag kan anses giltig. Vi skall nu undersöka förloppet i värmepumpens kondensor för denna blandning lite närmare. a) Om vi, för att få tillräcklig temperatur på vattnet ut till radiatorerna, önskar att arbetsmediets utloppstemperatur ur kondensorn skall vara minst 320 K och att arbetsmediet då skall vara i vätskeform, vilket minsta tryck behövs för att uppnå det? b) Om vi inte har någon tryckändring i kondensorn, vid vilken temperatur börjar de första vätskedropparna bildas? (Antag att trycket är 2,2 MPa om du inte klarar att lösa uppgift a)). Om iteration krävs för någon av deluppgifterna räcker det att du kan visa att du hittat en punkt som ligger närmare lösningen än en rimligt vald startgissning. Ångtrycken för de olika ämnena ges i figur på nästa sida:

3 CHALMERS 3 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM09/KVM090) R34a R32 R P/MPa /K (6 p)

4 ermodynamik (KVM09) a) Visa utgående från huvudsatser, definitioner och generella räkneregler för partiella derivator, att det isoterma volymsberoendet hos Gibbs funktion kan uttryckas på följande två sätt: ( ) G V = V ( ) P V = V ( 2 ) A V 2. (3 p) b) Beräkna ändringen i Gibbs och Helmholtz funktioner ( G och A) då en mol O 2 (g) komprimeras från V = m 3 till V 2 = m 3 vid K. Gasen beskrivs av den trunkerade virialekvationen P V = R + BP där B( ) = m 3 mol vid 250 K. (3 p) 5. a) Betrakta följande gasfasjämvikt: CH 4 + H 2 O CO + 3H 2. ermodynamiska data (vid 25 C) för reaktanter och produkter: CH 4 H 2 O CO H 2 f H /kj mol S /J K mol CP /J K mol otalt: 6 poäng Gör med dessa termodynamiska data en så god uppskattning som möjligt av jämviktskonstanten vid 650 K. (3 p) b) Vid ett experiment infördes metan och vattenånga hastigt i ett slutet och termostaterat kärl vid 950 K. Omedelbart efter blandningen av gaserna (men innan reaktionen startat) var partialtrycken.00 bar av var och en av reaktanterna. Beräkna partialtrycken av alla fyra specierna (behandlade som ideala gaser) vid jämvikt. Jämviktskonstanten vid denna temperatur är 6.8. (3 p) otalt: 6 poäng

5 ermodynamik Lösningsförslag Definitioner: kj 000 J kpa 000 Pa J R MJ 000 kj molk Uppgift - Atkinson-cykel Givna uppgifter 300 K Kompressions_kvot 0 Expansions_kvot 3 J γ.4 Cp 29.0 P 98 kpa n 0. mol molk Ur dessa fås Cp Cv γ a) Beräkna alla okända temperaturer Punkt 2 Isentrop kompression från J molk V R P V2 V Kompressions_kvot 2 V γ K V2 γ V P2 P P kpa V2 Punkt 3 isokor värmning från 2 V3 V2 För att komma vidare behöver vi få fram P3 - "gå cykeln baklänges" för att få fram den. V4 V3Expansions_kvot Punkt 4 - isobar kylning från 4 till V4P4 P4 P K R Punkt 3 (forts) - adiabatisk expansion från 3 till 4 γ V4 P3 P4 P kpa V3 P3V K R b) Beräkna tillfört värme i steget 2-3. Värmebalans (integrerad) ger (nu)=q_23. För idealgas så gäller (med konstant Cv) att U=Cv

6 Q_23 ncv( 3 2) Q_ J Svar: a) emperaturerna är 754 K, 088 K resp. 390 K b) illfört värme är 693 J Uppgift 2 Energi och entropibalans Låt utrustningen utgöra vårt system. Då har vi ett inlopp och ett utlopp, samt värmeutbyte med omgivningen vid två temperaturnivåer (200 C och 0 C). Värmeutbytena kallar vi Q_H resp Q_C. Vid Steady-state ger då energibalansen att 0=mHin-mHut+Q_H+Q_C Vi kan även ställa upp en entropibalans för systemet. Den ger 0=mSin-mSut+Q_H/H+Q_C/C+S_gen Vi känner tillståndet vid Hin (mättad vattenånga vid 00 C), men vad vet vi om utloppet? Vi vet att vi skall utnyttja det maximalt, dvs vi skall gå till så låg entalpi, dvs så lågt tryck och temperatur som möjligt. Eftersom vi har stor tillgång till kylvatten vid 0 C, så är detta "bästa" tillstånd mättad vätska vid 0 C. Från tabell så har vi Hin kj kj Sin Hut kj Sut 0.5 kg kgk kg kj kgk Från energibalans så har vi QC= H-QH. Om vi sätter in detta i entropibalansen, så blir QH=( S-Sgen- H/C)/(/H-/C)) a) Givet är att QH 300 kj H ( ) K C ( ) K kg Från tabellvärdena har vi ΔH Hut Hin ΔS Sut Sin Ur ekvationen ovan får vi då genererad entropi Sgen QH C H ΔH ΔS C kj kgk Alltså möjligt då Sgen>0 b) Gränsen för maximalt avgivet värme (-QH_limit) fås då vi har en förlustfri utrustning, dvs då Sgen=0. QH_limit ΔH ΔS C H C kj kg Svar: Med angivna förutsättningar kan apparaten som mest avge 479 kj/kg ånga, det uppgivna värdet är alltså termodynamiskt möjligt.

7 Uppgift 3 - dagg och bubbelpunkt Numrera ämnena enligt R34a=, R32=2 och R25=3 Låt z beteckna totalsammansättningen Givet z 43.9% z2 38.% z3 z z2 8 % a) Sökt är lägsta möjliga kondenseringstrycket då utloppet är 320 K och "allt vätska". Detta innebär att vi söker bubbelpunktstrycket för temperaturen 320 K! Givet: bp 320K x z x2 z2 x3 z3 Ur diagrammet vid =320 K psat.2mpa p2sat 2.92MPa p3sat 2.35MPa Enligt E/L 9.59/0.20 Pbp xpsat x2p2sat x3p3sat b) Vi söker nu vid vilken temperatur de första vätskedropparna bildas för det i a) funna kondenseringstrycket. Det innebär att vi söker daggpunktstemperaturen för trycket 2,067 MPa Pdp Pbp y z y2 z2 y3 z3 Pa För ideal blandning så är Pdp=/(y/psat+y2/p2sat+y3/p3sat) För att få fram mättnadstrycken så behöver vi temperaturen. Beräkningsgången blir då att gissa en temperatur, beräkna totaltrycket, kolla hur väl det stämmer med det önskade och därefter justera gissad temperatur Vi börjar med att kolla med samma temp som bubbelpunkten (för att vi redan har data) psat.2mpa p2sat 2.92MPa p3sat 2.35MPa Enligt E/L 9.60/0.2 P320K y psat y2 p2sat y3 p3sat.755mpa För lågt, andra gissing 330 K, läs av i diagram: psat.55mpa p2sat 3.68MPa p3sat 2.95MPa P330K y psat y2 p2sat y3 p3sat 2.233MPa Det blev lite för högt, ny gissning tas genom interpolation (men mer än hit krävs egentligen inte, eftersom vi funnit en "bättre" punkt.

8 ( Pbp P320K) Δ P330K P320K Ny gissning 326K Ny avläsning ger psat.4mpa p2sat 3.3MPa p3sat 2.7MPa P326K y psat y2 p2sat y3 p3sat 2.07MPa Som väntat ganska nära, interpolation ger Pdp P326K Δ P330K P326K Nästa gissning är då lämpligtvis 327 K Alternativt för annat Pdp Pdp_alt 2.2MPa Interpolation Pdp_alt P326K Δ_alt 4 ( ) P330K P326K Svar: a) Lägsta trycket är 2,07 MPa b) emperaturen i daggpunkten är ca 327 K (mellan 326 och 330), alternativt för tryck 2,2 MPa ca 329 K

9 ermodynamik (KVM09) Kortfattade lösningsförslag till tentamen i ermodynamik , uppgifterna 4 och 5 4.a) Från definitionerna G = H S, H = U + P V och A = U S fås G = H S = U + P V S = A + P V, ( ) G V = ( ) ( ) A P + V + P. () V V Första huvudsatsen slutet system du = dq + dw, andra huvudsatsen (reversibel process) ds = dq/ och reversibelt EC-arbete dw = P dv ger du = ds P dv. Via definitionen av A fås da = d(u S) = du ds Sd = ds P dv ds Sd = Sd P dv. (2) För en isoterm process (d = 0) gäller alltså ( ) A = P, (3) V vilket insatt i () ger ( ) ( ) G P = V. (4) V V Derivering av (3) ger ( 2 ) ( ) A P = V 2 V vilket insatt i (4) ger ( ) ( G 2 ) A = V V V 2 Båda likheterna är därmed bevisade., (5). (6) 4.b) Den finita ändringen av G fås med hjälp av den givna derivatan: ( ) V2 G ( ) V2 P P2 G = dv = V dv = V dp V V V V P P2 ( ) R = P + B dp = R ln(p 2 /P ) + B(P 2 P ), P

10 ermodynamik (KVM09) där V -uttrycket kommer från virialekvationen, liksom integrationsgränserna, V = R P + B, P = R V B (P i/pa 03798, ) Alternativt kan man byta variabel (dp = R/(V B) 2 dv ) och beräkna G = P2 P = R V dp = R [ ln V2 ( ) V2 B V B V V (V B) 2 dv + B(V 2 V ) V 2 B)(V B) Vi erhåller (oavsett metod!) G 4739 J mol. Från definitionen av G, H och A (se uppgift 4.a ovan) fås G = A + (P V ) = A + B P, dvs A = G B(P 2 P ) 4762 J mol. 5.a) Beräkna H, S och C P för reaktionen vid K: ]. H = i S = i C P = i ν i H (i) = J mol ν i S (i) = J K mol ν i C P (i) = 46.7 J K mol. Räkna om entalpi- och entropiändringarna (isobar temperaturändring = K 2 = K), antag att C P är approximativt - oberoende: H ( 2 ) = H ( ) + C P ( 2 ) = J mol, S ( 2 ) = S ( ) + C P ln 2 = J K mol. Beräkna G för reaktionen vid 650 K: G = H S = J mol. Utnyttja nu G = R ln K = K = b) Partialtrycken (bar) vid t = 0 och vid jämvikt: CH 4 + H 2 O CO + 3H 2 t = Jämvikt x x x 3x

11 ermodynamik (KVM09) Vi antar idealgasblandning: K = i K(P ) 2 27 ( Pi = P ) νi = P CO P 3 H 2 P CH4 P H2 O(P ) 2 = x(3x) 3 ( x) 2 (P ) 2, x 4 ( ) x 2 2 ( x), 2 c2 =, x där vi infört c = P K/ bar. Vi får ekvationen x 2 + cx c = 0 = x = c [ ( ) ] c 2 /2 2 ± + c 2 med rötterna x = ( ), dvs P CH4 = x = bar, P H2 O = x = bar, P CO = x = bar, P H2 = 3x =.48 bar. otaltrycket blir alltså P tot = 2 + 2x = 2.99 bar.

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag CALMERS 1 (3) Kemi- och bioteknik/fysikalk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M (KVM091 och KVM090) 2010-10-19 kl. 08.30-12.30 och lösningsförslag jälpmedel: Kursböckerna

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30 CHALMERS 1 (5) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl. 08.30-12.30 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl.

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V CHLMERS 1 (3) TENTMEN I TERMODYNMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V Hjälpmedel: Kursböckerna Elliott-Lira: Introductory Chemical Engineering Thermodynamics och P. tkins, L. Jones:

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00 CHALMERS 1 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) förmiddag

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) förmiddag CHALMERS 1 (3) Energi och Miljö/ärmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KM090/91) ENAMEN I ERMODYNAMIK för K2 och Kf2 (KM091 och KM090) 2009-10-20 förmiddag Hjälpmedel:

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) kl

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) kl CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-10-21 kl.

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-08-30 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-08-30 kl. 08.30-12.30 CHALMERS 1 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termoynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-08-30 kl.

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V CHALMERS 1 () ermodynamik (KVM090) LÖSNINFÖRSLA ENAMEN I ERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V 1. I den här ugiften studerar vi en standard kylcykel, som är en del av en luftkonditioneringsanläggning.

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens

Läs mer

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Tentamen i teknisk termodynamik (1FA527)

Tentamen i teknisk termodynamik (1FA527) Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare

Läs mer

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω) FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:

Läs mer

Omtentamen i teknisk termodynamik (1FA527) för F3,

Omtentamen i teknisk termodynamik (1FA527) för F3, Omtentamen i teknisk termodynamik (1FA527) för F3, 2012 04 13 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, miniräknare. Anvisningar:

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

Termodynamik Föreläsning 7 Entropi

Termodynamik Föreläsning 7 Entropi ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9

Läs mer

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Repetition F9. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F9. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F9 Process (reversibel, irreversibel) Entropi o statistisk termodynamik: S = k ln W o klassisk termodynamik: S = q rev / T o låg S: ordning, få mikrotillstånd o hög S: oordning, många mikrotillstånd

Läs mer

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14.

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14. Tentamen i termisk energiteknik 5HP för ES3, 2009, 2009-10-19, kl 9-14. Namn:. Personnr: Markera vilka uppgifter som du gjort: ( ) Uppgift 1a (2p). ( ) Uppgift 1b (2p). ( ) Uppgift 2a (1p). ( ) Uppgift

Läs mer

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 UPPSALA UNIVERSITET Fysiska institutionen Sveinn Bjarman Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 Skrivtid: 9-14 Hjälpmedel: Räknedosa, Physics Handbook

Läs mer

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM033) 2009-06-02 08.30-12.30 för K2 och Kf2 i V-huset.

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM033) 2009-06-02 08.30-12.30 för K2 och Kf2 i V-huset. CHALMERS 2010-05-10 1 (4) Energi och miljö/ Värmeteknik och maskinlära TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM033) 2009-06-02 08.30-12.30 för K2 och Kf2 i V-huset. Tentamen omfattar: Avdelning A: Avdelning

Läs mer

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum

Läs mer

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset CHALMERS 2012-05-21 1 (4) Energi och miljö/ Värmeteknik och maskinlära TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM034 och KVM033) 2012-05-21 08.30-12.30 i V-huset Tentamen omfattar: Avdelning A: Avdelning B:

Läs mer

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

Kapitel III. Klassisk Termodynamik in action

Kapitel III. Klassisk Termodynamik in action Kapitel III Klassisk Termodynamik in action Termodynamikens andra grundlag Observation: värme flödar alltid från en varm kropp till en kall, och den motsatta processen sker aldrig spontant (kräver arbete!)

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,

Läs mer

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 6 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2) Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,

Läs mer

KOMPRESSIBEL STRÖMNING I RÖR OCH KANALER, KONSTANT TVÄRSNITT

KOMPRESSIBEL STRÖMNING I RÖR OCH KANALER, KONSTANT TVÄRSNITT KOMPRESSIBEL STRÖMNING I RÖR OCH KANALER, KONSTANT TVÄRSNITT Stationär, endimensionell strömning, perfekt gas, konstant tvärsnitt. Inget tekniskt eller visköst arbete, försumbara variationer i potentiell

Läs mer

Föreläsning i termodynamik 28 september 2011 Lars Nilsson

Föreläsning i termodynamik 28 september 2011 Lars Nilsson Arbetsgivande gascykler Föreläsning i termodynamik 28 september 211 Lars Nilsson Tryck volym diagram P V diagram Isobar process (konstant tryck)?? Isokor process (konstant volym)?? Isoterm process (konstant

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet

Läs mer

Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1

Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1 Exempeltentamen 1 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln.

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Maj 7, 2013, KoK kap. 6 sid 171-176) och kap. 8 Centrala ekvationer i statistisk mekanik

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt Lösningsförslag till tentamen Energiteknik 060213 Uppg 1. BA Trycket i en luftfylld pistong-cylinder är från början 100 kpa och temperaturen är 27C. Volymen är 125 l. Pistongen, som har diametern 3 dm,

Läs mer

Tentamen i teknisk termodynamik (1FA527) för F3,

Tentamen i teknisk termodynamik (1FA527) för F3, Tentamen i teknisk termodynamik (1FA527) för F3, 2012 12 17 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook,

Läs mer

Tentamen, Termodynamik och ytkemi, KFKA01,

Tentamen, Termodynamik och ytkemi, KFKA01, Tentamen, Termodynamik och ytkemi, KFKA01, 2016-10-26 Lösningar 1. a Mängden vatten är n m M 1000 55,5 mol 18,02 Förångningen utförs vid konstant tryck ex 2 bar och konstant temeratur T 394 K. Vi har alltså

Läs mer

Överhettad ånga, Table A-6 (2.5 MPa): T [ C] v [m 3 /kg] ? Linjär interpolation:

Överhettad ånga, Table A-6 (2.5 MPa): T [ C] v [m 3 /kg] ? Linjär interpolation: Exempel 1, Ch.3 Givet: H 2 O, P = 2.5 MPa = 2500 kpa, T = 265 C = 538.15 K. Sökt: v (volymitet). Table A-4: T = 265 C > T sat@2.5mpa = 223.95 C Table A-5: P = 2500 kpa < P sat@265 C = 5085.3 kpa Överhettad

Läs mer

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V. Man får svara på svenska eller engelska!

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V. Man får svara på svenska eller engelska! 2006-12-22 Sid 2(5) Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 22 december 2006 kl 8:30-12:30 i V Examinator: Derek Creaser Derek Creaser (0702-283943) kommer att besöka tentamenslokalen

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF14) Tid och plats: Tisdag 13/1 9, kl. 8.3-1.3 i V-huset. Examinator: Mats

Läs mer

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur)

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur) ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Tisdag 27 oktober Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall.

Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall. Kretsrocesser Termodynamiken utvecklades i början för att förstå hur bra man kunde bygga olika värmemaskiner, hur man skulle kunna öka maskinernas verkningsgrad d v s hur mycket mekaniskt arbete som kunde

Läs mer

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna:

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna: Allmän kemi Kap 17 Termodynamik Läromålen Studenten skall efter att ha genomfört delkurs 1 kunna: n - använda de termodynamiska begreppen entalpi, entropi och Gibbs fria energi samt redogöra för energiomvandlingar

Läs mer

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Kapitel I Introduktion och första grundlagen Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

Kapitel I. Introduktion och första grundlagen

Kapitel I. Introduktion och första grundlagen Kapitel I Introduktion och första grundlagen Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal partiklar (atomer, molekyler,...) i vilka temperaturen

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand Förslag till lösningar TENTAMEN I TERMODYNAMIK, 5 p Typtewnta Del 1: Räkneuppgifter (20 p) 1 Hångin 2345 Hångut 556 t in 80 t ut 110 hin 335 hut 461 många 20 mv 283,9683 v 0,00104

Läs mer

TENTAMEN. Material- och energibalans, KE1100/KE1120 Inledande kemiteknik, KE1010/KE1050 och 3C1451 2015-04- 08. kl 08:00 13:00 LYCKA TILL!

TENTAMEN. Material- och energibalans, KE1100/KE1120 Inledande kemiteknik, KE1010/KE1050 och 3C1451 2015-04- 08. kl 08:00 13:00 LYCKA TILL! TENTAMEN Material- och energibalans, KE1100/KE1120 Inledande kemiteknik, KE1010/KE1050 och 3C1451 2015-04- 08 kl 08:00 13:00 Maxpoäng 60 p. För godkänt krävs minst 30 p. Vid totalpoäng 27-29,5 p ges möjlighet

Läs mer

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning). EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

Termodynamik (repetition mm)

Termodynamik (repetition mm) 0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö

Läs mer

Arbetet beror på vägen

Arbetet beror på vägen VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

Termodynamik FL7 ENTROPI. Inequalities

Termodynamik FL7 ENTROPI. Inequalities Termodynamik FL7 ENTROPI Varför är den termiska verkningsgraden hos värmemaskiner begränsad? Varför uppstår den maximala verkningsgraden hos reversibla processer? Varför går en del av energin till spillvärme?

Läs mer

EGENSKAPER FÖR ENHETLIGA ÄMNEN

EGENSKAPER FÖR ENHETLIGA ÄMNEN EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM033) i V-huset.

TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM033) i V-huset. CHALMERS 2012-01-12 1 (4) Energi och miljö/ Värmeteknik och maskinlära TENTAMEN I ENERGITEKNIK OCH MILJÖ (KVM033) 2012-01-12 08.30-12.30 i V-huset. Tentamen omfattar: Avdelning A: Avdelning B: Teori och

Läs mer

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta TENTAMEN I FYSIK FÖR V1, 18 AUGUSTI 2011 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv?

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv? Entropi Entropi är ett mått på oordning En process går alltid mot samma eller ökande entropi. För energi gäller energins bevarande. För entropi gäller entropins ökande. Irreversibla processer innebär att

Läs mer

PTG 2015 Övning 4. Problem 1

PTG 2015 Övning 4. Problem 1 PTG 015 Övning 4 1 Problem 1 En frys avger 10 W värme till ett rum vars temperatur är C. Frysens temperatur är 3 C. En isbricka som innehåller 0,5 kg flytande vatten vid 0 C placeras i frysen där den fryser

Läs mer

Repetition F10. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F10. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F10 Gibbs fri energi o G = H TS (definition) o En naturlig funktion av P och T Konstant P och T (andra huvudsatsen) o G = H T S 0 G < 0: spontan process, irreversibel G = 0: jämvikt, reversibel

Läs mer

Kemisk Dynamik för K2, I och Bio2

Kemisk Dynamik för K2, I och Bio2 Kemisk Dynamik för K2, I och Bio2 Fredagen den 11 mars 2005 kl 8-13 Uppgifterna märkta (GKII) efter uppgiftens nummer är avsedda både för tentan i Kemisk Dynamik och för dem som deltenterar den utgångna

Läs mer

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw Kemi och biokemi för K, Kf och Bt 2012 N molekyler V Repetition Fö2.2 Entropi är ett mått på sannolikhet W i = 1 N S = k lnw Föreläsning 2.3 Fysikaliska reaktioner 2V DS = S f S i = Nkln2 Björn Åkerman

Läs mer

------------------------------------------------------------------------------------------------------- Personnummer:

------------------------------------------------------------------------------------------------------- Personnummer: ENERGITEKNIK II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 Namn: -------------------------------------------------------------------------------------------------------

Läs mer

Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F12 Kolligativa egenskaper lösning av icke-flyktiga ämnen beror främst på mängd upplöst ämne (ej ämnet självt) o Ångtryckssänkning o Kokpunktsförhöjning o Fryspunktssänkning o Osmotiskt tryck

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Onsdagen den /, kl 4.-8. i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand TENTAMEN I TERMODYNAMIK, 5 p (TYPTENTA) Tid: XX DEN XX/XX - XXXX kl Hjälpmedel: 1. Cengel and Boles, Thermodynamics, an engineering appr, McGrawHill 2. Diagram Propertires of water

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 2012-05-23 1. a Molekylerna i en ideal gas påverkar ej varandra, medan vi har ungefär samma växelverkningar mellan de olika molekylerna i en ideal blandning.

Läs mer

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra 4. Kemisk jämvikt när motsatta reaktioner balanserar varandra 4.1. Skriv fullständiga formler för följande reaktioner som kan gå i båda riktningarna (alla ämnen är i gasform): a) Kolmonoxid + kvävedioxid

Läs mer

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdag den 22 augusti 2012 kl 8:30-13:30 i V. Examinator: Bitr. Prof.

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdag den 22 augusti 2012 kl 8:30-13:30 i V. Examinator: Bitr. Prof. Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdag den 22 augusti 2012 kl 8:30-13:30 i V Examinator: Bitr. Prof. Louise Olsson Louise Olsson (031-722 4390) kommer att besöka tentamenslokalen

Läs mer

Tentamen i Kemisk termodynamik kl 14-19

Tentamen i Kemisk termodynamik kl 14-19 Tentamen i Kemisk termodynamik 2005-11-07 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Energi- och processtekniker EPP14

Energi- och processtekniker EPP14 Grundläggande energiteknik Provmoment: Tentamen Ladokkod: TH101A 7,5 högskolepoäng Tentamen ges för: Energi- och processtekniker EPP14 Namn: Personnummer: Tentamensdatum: 2015-03-20 Tid: 09:00 13:00 Hjälpmedel:

Läs mer

ARBETSGIVANDE GASCYKLER

ARBETSGIVANDE GASCYKLER ARBETSGIVANDE GASCYKLER Verkliga processer är oftast mycket komplicerade till sina detaljer; exakt analys omöjlig. Om processen idealiseras som internt reversibel fås en ideal process vars termiska verkningsgrad

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik Provmoment: Ten0 Ladokkod: TT05A Tentamen ges för: Årskurs Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 202-08-30 Tid: 9.00-3.00 7,5 högskolepoäng

Läs mer

Räkneövning 2 hösten 2014

Räkneövning 2 hösten 2014 Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund 22.9.2014 1 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor

Läs mer

Tentamen KFKA05 och nya KFK080,

Tentamen KFKA05 och nya KFK080, Tentamen KFKA05 och nya KFK080, 2013-10-24 Även för de B-studenter som läste KFK080 hösten 2010 Tillåtna hjälpmedel: Miniräknare med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser

Läs mer

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2)

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) GÖTEBORGS UNIVERSITET INSTITUTIONEN FÖR KEMI Fysikalisk kemi KEM040 Laboration i fysikalisk kemi Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) ifylls

Läs mer

Mer om kretsprocesser

Mer om kretsprocesser Mer om kretsprocesser Energiteknik Anders Bengtsson 18 mars 2010 Sammanfattning Dessa anteckningar är ett komplement till avsnittet om kretsprocesser i häftet Värmetekniska formler med kommentarer. 1 1

Läs mer

Termodynamik och inledande statistisk fysik

Termodynamik och inledande statistisk fysik Några grundbegrepp i kursen Termodynamik och inledande statistisk fysik I. INLEDNING Termodynamiken beskriver på en makroskopisk nivå processer där värme och/eller arbete tillförs eller extraheras från

Läs mer

Tentamen i Allmän kemi 7,5 hp 5 november 2014 ( poäng)

Tentamen i Allmän kemi 7,5 hp 5 november 2014 ( poäng) 1 (6) Tentamen i Allmän kemi 7,5 hp 5 november 2014 (50 + 40 poäng) Tentamen består av två delar, räkne- respektive teoridel: Del 1: Teoridel. Max poäng: 50 p För godkänt: 28 p Del 2: Räknedel. Max poäng:

Läs mer

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck:

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck: Termodynamik FL3 FASEGENSKAPER hos ENHETLIGA ÄMNEN FASER hos ENHETLIGA ÄMNEN Enhetligt ämne: ämne med välbestämd och enhetlig kemisk sammansättning. (även luft och vätske-gasblandningar kan betraktas som

Läs mer

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F7 Intermolekylär växelverkan kortväga repulsion elektrostatisk växelverkan (attraktion och repulsion): jon-jon (långväga), jon-dipol, dipol-dipol medelvärdad attraktion (van der Waals): roterande

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,

Läs mer

Kap 10 ångcykler: processer i 2-fasområdet

Kap 10 ångcykler: processer i 2-fasområdet Med ångcykler menas att arbetsmediet byter fas under cykeln Den vanligaste typen av ångcykler är med vatten som medium. Vatten är billigt, allmänt tillgängligt och har hög ångbildningsentalpi. Elproducerande

Läs mer

Jämviktsuppgifter. 2. Kolmonoxid och vattenånga bildar koldioxid och väte enligt följande reaktionsformel:

Jämviktsuppgifter. 2. Kolmonoxid och vattenånga bildar koldioxid och väte enligt följande reaktionsformel: Jämviktsuppgifter Litterarum radices amarae, fructus dulces 1. Vid upphettning sönderdelas etan till eten och väte. Vid en viss temperatur har följande jämvikt ställt in sig i ett slutet kärl. C 2 H 6

Läs mer

Tentamen i: Hydraulik och Pneumatik. Totalt antal uppgifter: 10 + 5 Datum: 2012-03-26. Examinator: Hans Johansson Skrivtid: 14.00 19.

Tentamen i: Hydraulik och Pneumatik. Totalt antal uppgifter: 10 + 5 Datum: 2012-03-26. Examinator: Hans Johansson Skrivtid: 14.00 19. KARLSTADS UNIVERSITET Fakulteten för teknik- och naturvetenskap Tentamen i: Hydraulik och Pneumatik Kod: MSGB24 Totalt antal uppgifter: 10 + 5 Datum: 2012-03-26 Examinator: Hans Johansson Skrivtid: 14.00

Läs mer

Tentamensskrivning i FYSIKALISK KEMI Bt (Kurskod: KFK 162) den 19/ kl

Tentamensskrivning i FYSIKALISK KEMI Bt (Kurskod: KFK 162) den 19/ kl Tentamensskrivning i FYSIKALISK KEMI Bt (Kurskod: KFK 162) den 19/10 2010 kl 08.30-12.30 Observera! Börja på nytt ark för varje ny deluppgift. Tillåtna hjälpmedel 1. Miniräknare av valfri typ. 2. Utdelad

Läs mer

Homogen gasjämvikt: FYSIKALISK KEMI. Laboration 2. Dissociation av dikvävetetraoxid. N2O4(g) 2 NO2(g)

Homogen gasjämvikt: FYSIKALISK KEMI. Laboration 2. Dissociation av dikvävetetraoxid. N2O4(g) 2 NO2(g) Linköpings universitet 2013-10-03 IFM / Kemi Fysikalisk kemi Termodynamik FYSIKALISK KEMI Laboration 2 Homogen gasjämvikt: Dissociation av dikvävetetraoxid N2O4(g) 2 NO2(g) Linköpings Universitet Kemi

Läs mer

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare.

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare. Exempeltetame 3 (OBS! De a te ta m e ga vs i a ku rse delvis bytte i eh å ll. Vis s a u ppgifter s om i te lä gre ä r a ktu ella h a r dä rför ta gits bort, vilket m edför a tt poä gs u m m a ä r < 50.

Läs mer

Tentamen - Termodynamik 4p

Tentamen - Termodynamik 4p Tentamen - Termodynamik 4p Tid: 9.00-15.00, Torsdag 5 juni 003. Hjälpmedel: Physics Handbook, räknare 1. Betrakta en ideal gas. a) Använd kinetisk gasteori för att härleda ett samband mellan tryck, volym

Läs mer

Dagens föreläsning. Tema 3 Indunstning

Dagens föreläsning. Tema 3 Indunstning Dagens föreläsning ema 3 Indunstning Kap 1-2 Allmänt indunstning Repetition enkeleffektsindunstare Kokpunktsförhöjning Avluftning Generella balanser för flerstegsindunstare Vad är indunstning? Indunstning

Läs mer

Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson

Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson Ångkraftsprocessen (Rankinecykeln) Föreläsning i termodynamik 11 oktober 2011 Lars Nilsson Ångkraftsprocessens roll i svensk elproduktion Ångtabellen: mättad vätska och mättad ånga efter tryck Ångtabellen:

Läs mer