Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder"

Transkript

1 Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 25 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion I denna laboration ska vi göra olika mätningar på bilder. Laborationen behövs som förkunskap till den senare laboration om SPECT. 2 Förberedelser inför laborationen Läs igenom hela laborationshandledningen noggrant. Valda delar av senaste föreläsningen ger den teori som behövs. Lös förberedelseuppgifterna i lab-handledningen innan laborationstillfället! De är markerade med en pekande hand. 3 Laborationen 3. Start Laborationen kommer att ske i MATLAB. Börja med att logga in och öppna ett terminal-fönster från bakgrunden. Ge därefter följande kommandon. % matlab > initcourse( TSBB3 ); Kommandot initcourse( TSBB3 ) sätter upp korrekta path :ar i MAT- LAB så att önskade filer hittas. De program som vi ska använda ligger på /site/edu/bb/medicinskabilder/noise.

2 Kopiera dessa filer till din hem-katalog och kör programmet NOISE.m. En fyrdelad test-bild med fyra områden med värdena, 7, 4 och visas till vänster, se Fig.. Matlab-koden för detta program är: % Image size 2 % ========== 3 N = 28; 4 5 % Compose test image 6 % ================== 7 im = zeros(n,n); 8 im(:n/2,:n/2) = ; 9 im(n/2+:n,:n/2) = 4; im(:n/2,n/2+:n) = 7; im(n/2+:n,n/2+:n) = ; 2 3 figure() 4 colormap(jet) 5 subplot(2,2,), imagesc(im, [ ]) 6 axis image, colorbar 7 title( a) original image ) a) original image Figur : a) Testbild. 5 Öppna programmet NOISE.m i en editor och lägg nu till gaussiskt brus med medelvärde mean= och standardavvikelse std= : gnoiseim = im + * randn(n,n); Medelvärdet kan beräknas i en 5 5-omgivning runt varje pixel. Enklast gör man detta genom att falta original-bilden med ett 5 5-filter fyllt med ettor och dividera med antalet ettor: kernelsize = 5; kernel = ones(kernelsize,kernelsize)/(kernelsize^2); gaver = conv2(gnoiseim, kernel, same ); Lägg till också detta i koden och visa resultatet i en bild till höger. Det ska se ut som i Fig. 2. Lyckades ni? 2

3 a) original image b) local mean Figur 2: a) Testbild med pålagt gaussiskt brus. b) Lokalt medelvärde. 3.2 Mätvärden på bild med gaussiskt brus Uppskatta (stickprovs-)standardavvikelsen av originalbilden och visa den under originalbilden. Använd lika stora omgivningar som för beräkning av medelvärden. Vilka kommandon ger du? Nedan finns en tabell med värden i originalbilden. Enligt Matlab-koden ovan är medelvärdena, 7, 4, i de fyra områdena och standardavvikelsen på det pålagda gaussiska bruset. Komplettera tabellen nedan ungefärligt genom att klicka i bilderna. Område övre vänster övre höger nedre vänster nedre höger värde 7 4 ett uppskattat medelvärde standardavvikelse en uppskattad standardavvikelse förväntat CV-värde ett uppskattat CV-värde Fyll i raden förväntat CV-värde i tabellen ovan. 3

4 Uppskatta CV-värdet av originalbilden och visa den snett under originalbilden. Använd lika stora omgivningar som för beräkning av medelvärden. Komplettera tabellen ovan genom att klicka i bilderna. Hur lika bör de uppskattade värdena i de två tabellerna ovan vara de korrekta värdena? Välj mellan "exakt lika, ungefär lika och behöver inte vara lika. 3.3 Mätvärden på bild med poissonbrus Poissonbrus är ju som bekant viktigt i medicinska sammanhang. Nu ska vi göra om mätningarna i avsnitt 3.2 på poissonbrus istället för gaussiskt brus. Vilka värden ska gälla för standardavvikelsen i de de fyra områdena med medelvärde, 7, 4,? Kopiera filen NOISE.m till NOISEpoisson.m. Ersätt det gaussiska bruset med poissonbrus i NOISEpoisson.m. Den approximativa metoden för att skapa poissonbrus beskrevs på föreläsningen: Skapa först approximativt poissonbrus med hjälp av gaussiskt brus. Lokalisera därefter pixlar med negativa värden. I dessa pixlar: kasta tärningen igen tills ett positivt värde erhålls. Kodskelett för Poissonbrus finns i filen Poisson.m som ser ut så här: % Add Poisson noise 2 % ================== 3 pnoiseim = im + XXX; % Add Poisson noise to the image. Replace XXX! 4 [y,x] = find(pnoiseim<); % Locate positions of negative values 5 for k = :size(y,) % Redo the calculation for these positions 6 posval = ; 7 while (posval==) % Compute ONE new noise value. 8 val = im(y(k),x(k)) + YYY; % Replace YYY! 9 if (val>) posval = ; end end pnoiseim(y(k),x(k)) = val; 2 end De två översta bilderna ska se ut som i Fig. 3. Vad ersätter ni XXX med och vad ersätter ni YYY med? Beräkna nu CV-värdena på samma sätt som i avsnitt 3.2 och fyll i tabellen nedan. 4

5 Område övre vänster övre höger nedre vänster nedre höger värde 7 4 standardavvikelse förväntat CV-värde ett uppskattat CV-värde a) original image b) local mean Figur 3: a) Testbild med pålagt poissonbrus. b) Lokalt medelvärde. 3.4 Krympning och etikettering Matlab-koden för programmet CVL.m visas nedan. Då det exekveras visas en binär bild med bokstäverna CVL till vänster och till höger visas resultatet av krympning (erosion) av två lager pixlar, se Fig. 4. load CVLim 2 3 SE = [ ; 4 ; 5 ; 6 ; 7 ]; 8 9 CVLerode = imerode(cvlim, SE); figure(), colormap(gray) 2 subplot(2,2,), imagesc(cvlim, [ ]) 3 axis image, colorbar 4 title( original image ) 5 subplot(2,2,2), imagesc(cvlerode, [ ]) 6 axis image, colorbar 7 title( eroded image ) I en senare lab om SPECT ska vi göra denna operation i 3D. Kommandot imerode fungerar tyvärr inte för 3D. Istället får man gå direkt på definitionen med faltning. Använd först kommandot convn och sedan kommandot ==. Inbild och utbild ska vara lika stora så använd parametern same. 5

6 2 4 original image eroded image Figur 4: a) Binär bild. b) Efter krympning (erosion) av två lager pixlar. Kommandot == kan användas så här: Antag att du har en matris i inimage som där du vill söka efter värdet 5. Exekvera: outimagelogical = (inimage == 5); outimage = double(outimagelogical); I outimage hamnar då en matris som har värdet där inimage hade värdet 5. Klassen (class) på outimagelogical är logical medan klassen på outimage är double. Testa detta så att du får exakt samma bild som för imerode. Vad ger du för kommandon? Vi ska nu etikettera bilden. Använd nedanstående Matlabkommandon då de fungerar även för 3D. Resultatet visas i Fig. 5. temp = bwconncomp(cvlerode); CVLlabel = labelmatrix(temp); 2 4 labelled image Figur 5: Etiketterad bild. 6

7 Bokstaven C (se Fig. 6a) fås enkelt ur den etiketterade bilden i Fig. 5, genom att utnyttja något som ni lärde er på förra sidan. Ge kommandot! 2 4 only C noisy C Figur 6: a) En binär bild av bokstaven C. b) En brusig bild av bokstaven C. 3.5 CV-beräkning innanför ett område Slutligen ska vi beräkna CV-värdet i en brusig boktav C, see Fig. 6b. (Detta kommer vi sedan att göra på SPECT-labben inom ett område där lungan finns på en SPECT-volym av bröstkorgen.) Skapa Fig. 6b genom att kombiera Fig. 2a med Fig. 6a. Ge kommandot för att skapa innehållet i Fig. 6b nedan! Medelvärdet och standardavvikelsen kommer att kunna beräknas nästan på samma sätt som i avsnitt 3.2 och avsnitt 3.3, men antalet pixlar som används för att för att uppskatta dessa värden kommer att variera med positionen. Börja med medelvärdet. Skapa nedanstående variabler (kernelsize och kernel har du nog sedan tidigare): kernelsize = 5; kernel = ones(kernelsize,kernelsize)/(kernelsize^2); Norig = (kernelsize^2); % Norig = 225 ones255 = ones(kernelsize,kernelsize); % matris med 5*5 :or Skapa Fig. 7a genom att falta Fig. 6a med ones255. Skapa Fig. 7b, genom att falta det brusiga C:et med kernel. Varför blir inte resultatet i Fig. 7b det önskade lokala medelvärdet innanför det brusiga C:et? 7

8 Nu kan ni fortsätta att skapa Fig. 7c. Vad är det korrekta medelvärdet och överensstämmer det med Fig. 7c? a) onlyc conv with ones225 b) noisyc conv with kernel c) Norig * figure b)./ figure a) Figur 7: a) Nnew. b) Lokalt medelvärde av den brusiga C-bilden. c) Norig * figur b./ figur a, dvs korrigerat lokalt medelvärde av det brusiga C:et. Det ni har beräknat nu, i varje pixel, är faktiskt (jämför nedanstående rutor med Fig. 7.): N new m orig = Norig N orig n= f n m new = Nnew N new n= f n Vi har alltså kompenserat för att vi har färre pixlar (N new ) för beräkning av stickprovsmedelvärdet när vi är nära kanten på bokstaven C. Då kan ni fortsätta på samma sätt med standardavvikelsen. Skapa Fig. 8a, genom att falta det brusiga C:et upphöjt till 2 med kernel. Skapa Fig. 8b, Fig. 8c och slutligen Fig. 8d. Det gäller att fact = Nnew./(Nnew-); Det ni har beräknat nu, i varje pixel, är faktiskt (jämför nedanstående rutor med Fig. 8.): 8

9 N orig Norig n= f 2 n N new Nnew n= f 2 n (m new ) 2 s new = ( N new (N new ) Nnew N new n= f n 2 ( N new Nnew n= f 2 n (m new ) 2) Vi har alltså kompenserat för att vi har färre pixlar (N new ) för beräkning av stickprovsstandardavikelsen när vi är nära kanten på bokstaven C. a) noisyc 2 conv with kernel b) Norig * figure a)./ figure 7a) c) figure b) (figure 7c) d) real(sqrt(fact.*figure c)) Figur 8: a) Lokalt medelvärde av den brusiga C-bilden upphöjt till 2. b) Norig * figur a./ figur 7a, dvs korrigerat lokalt medelvärde av det brusiga C:et upphöjt till 2. c) figur b - (figur 7c upphöjt till 2). d) real(sqrt(fact.*figur c)), dvs korrigerad standardavvikelse av det brusiga C:et. Angående Fig. 8d: Vi tar real eftersom det kan bli negativa värden längs kanterna på Fig. 8c. Drar man roten ur ett negativt tal får man imaginära värden. Vad är den korrekta standardavvikelsen och överensstämmer den med Fig. 8d? Visa bilden på standardavvikelsen för läraren. Blev hen nöjd? Då kan ni fortsätta med att beräkna CV. Kontrollera att din bild liknar Fig. 9a. Ta också fram Fig. 9b och visa sedan för läraren. Blev hen nöjd? I så fall - spara dessa kommandon inför SPECT-labben! 9

10 2 4 CV CV within C Figur 9: a) CV-beräkning. b) CV-beräkning innanför det brusiga C:et.

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 27 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion

Läs mer

Medicinska Bilder, TSBB31. Lab3: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab3: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab3: Mätvärden på Medicinska Bilder Maria Magnusson, Avdelningen för Datorseende Institutionen för Systemteknik Linköpings Universitet Introduktion I denna laboration ska vi göra

Läs mer

Medicinska Bilder, TSBB31. Lab6: Mätningar på SPECT/CT-volymer

Medicinska Bilder, TSBB31. Lab6: Mätningar på SPECT/CT-volymer Medicinska Bilder, TSBB31 Lab6: Mätningar på SPECT/CT-volymer Maria Magnusson, 2012-2016 Avdelningen för Datorseende Institutionen för Systemteknik Linköpings Universitet 1 Introduktion I denna laboration

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Laboration 1. "kompilera"-ikonen "exekvera"-ikonen

Laboration 1. kompilera-ikonen exekvera-ikonen Programmerade system I1 Syfte Laboration 1. Syftet med denna laboration är dels att göra dej bekant med de verktyg som kan vara aktuella i programmeringsarbetet, dels ge en första inblick i att skriva

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Bilaga 4, Skapa grafiskt användargränssnitt med guide

Bilaga 4, Skapa grafiskt användargränssnitt med guide Bilaga 4 Bil 4:1 Bilaga 4, Skapa grafiskt användargränssnitt med guide Enklast till en början är att vid MATLABS kommandoprompt skriva guide vilket ger dels ett figurfönster och det som kallas Guide Control

Läs mer

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera

Läs mer

Laboration 1. "kompilera"-ikonen "exekvera"-ikonen

Laboration 1. kompilera-ikonen exekvera-ikonen Syfte Laboration 1. Objektorienterad programmering, Z1 Syftet med denna laboration är dels att göra dej bekant med de verktyg som kan vara aktuella i programmeringsarbetet, dels ge en första inblick i

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Lab 1: Operationer på gråskalebilder

Lab 1: Operationer på gråskalebilder Lab 1: Operationer på gråskalebilder Maria Magnusson, 2016, 2017 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet 1 Introduktion Läs igenom häftet innan laborationen.

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation

Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 Möjligheter/Problem med 2-dimensionella mätdata Uppstart: Se planen (kursens hemsida) Etapp 1 Mätdata i 2 dimensioner behöver utredas/signalbehandlas

Läs mer

Laboration 4: Digitala bilder

Laboration 4: Digitala bilder Objektorienterad programmering, Z : Digitala bilder Syfte I denna laboration skall vi återigen behandla transformering av data, denna gång avseende digitala bilder. Syftet med laborationen är att få förståelse

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

OBS! Snabbinsatt Matlab-intro vissa fönsterhanteringsdetaljer kan vara fel men gör gärna Matlab-uppgifterna. DN1240, Numeriska metoder för OPEN1.

OBS! Snabbinsatt Matlab-intro vissa fönsterhanteringsdetaljer kan vara fel men gör gärna Matlab-uppgifterna. DN1240, Numeriska metoder för OPEN1. OBS! Snabbinsatt Matlab-intro vissa fönsterhanteringsdetaljer kan vara fel men gör gärna Matlab-uppgifterna. DN1240, Numeriska metoder för OPEN1. Laboration 0 del 1-3 (frivilliga delar) Del 1-3 (dvs upg

Läs mer

TSBB16 Datorövning A Samplade signaler Faltning

TSBB16 Datorövning A Samplade signaler Faltning Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna

Läs mer

Laboration med Minitab

Laboration med Minitab MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt

Läs mer

Signaler, information & bilder, föreläsning 15

Signaler, information & bilder, föreläsning 15 Signaler, information & bilder, föreläsning 5 Michael Felsberg Computer Vision Laboratory Department of Electrical Engineering michael.felsberg@liu.se Översikt Histogram och tröskelsättning Histogramutjämning

Läs mer

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Matematisk Statistik SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Introduktion Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.

Läs mer

Inledning till OpenOffice Calculator Datorlära 2 FK2005

Inledning till OpenOffice Calculator Datorlära 2 FK2005 Inledning till OpenOffice Calculator Datorlära 2 FK2005 Mål Lära sig att skapa och använda ett räkneblad med OpenOffice Calculator Beräkna medelvärde och standardavvikelsen med räknebladet Producera en

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010

Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010 v. 2015-01-07 ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010 Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp

Läs mer

Laboration 1. Grafisk produktion och tryckkvalitet (TNM015) Rastrering och objektiva kvalitetsmått. S. Gooran (VT2007)

Laboration 1. Grafisk produktion och tryckkvalitet (TNM015) Rastrering och objektiva kvalitetsmått. S. Gooran (VT2007) Laboration 1 Grafisk produktion och tryckkvalitet (TNM015) Rastrering och objektiva kvalitetsmått S. Gooran (VT2007) Syfte: Denna laboration är till för att öka förståelsen för olika rastreringstekniker

Läs mer

Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum

Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum 1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)

Läs mer

Per Holm Lågnivåprogrammering 2014/15 24 / 177. int och double = = 2, 147, 483, 647

Per Holm Lågnivåprogrammering 2014/15 24 / 177. int och double = = 2, 147, 483, 647 Lågnivåprogrammering Föreläsning 2 Lågnivåprogrammering Förberedelse inför laboration 2. Maskinspråk, assemblerspråk Talrepresentation En enkel dator, komponenter Instruktionsformat, instruktionscykel

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Ett enkelt OCR-system

Ett enkelt OCR-system P r o j e k t i B i l d a n a l y s Ett enkelt OCR-system av Anders Fredriksson F98 Fredrik Rosqvist F98 Handledare: Magnus Oskarsson Lunds Tekniska Högskola 2001-11-29 - Sida 1 - 1.Inledning Många människor

Läs mer

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32)

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32) Programmeringsteknik och Matlab Övning Dagens program Övningsgrupp 2 (Sal Q22/E2) Johannes Hjorth hjorth@nada.kth.se Rum 458 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d2

Läs mer

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1.

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. Denna labb är tänkt att öva datorhantering och öva inledande Matlab. Eftersom förkunskaperna varierar finns en del frivilliga uppgifter

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

DN1212, Numeriska metoder & grundläggande programmering. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas

DN1212, Numeriska metoder & grundläggande programmering. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas DN1212, Numeriska metoder & grundläggande programmering för P1. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas Introduktion till UNIX och MATLAB Del 1: UNIX och

Läs mer

Tentamen Bildanalys (TDBC30) 5p

Tentamen Bildanalys (TDBC30) 5p Tentamen Bildanalys (TDBC30) 5p Skrivtid: 9-15 Hjälpmedel: kursboken Digital Image Processing Svara på alla frågor på nytt blad. Märk alla blad med namn och frågenummer. Disponera tiden mellan frågorna

Läs mer

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1.

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. Denna labb är tänkt att öva datorhantering och öva inledande Matlab. Eftersom förkunskaperna varierar finns en del frivilliga uppgifter

Läs mer

Detta dokument skall ge en kortfattad introduktion till Jasmine installationen vid DSV.

Detta dokument skall ge en kortfattad introduktion till Jasmine installationen vid DSV. Detta dokument skall ge en kortfattad introduktion till Jasmine installationen vid DSV. Kortfattat skall ni lära er följande. - Ni skall lära er att koppla upp er mot den lokala Jasmine databasen - Köra

Läs mer

Instruktion för laboration 1

Instruktion för laboration 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

DN1240, Numeriska metoder. Laboration 0 (frivilliga delar) (dvs uppgifterna behöver inte redovisas) Introduktion till UNIX och MATLAB

DN1240, Numeriska metoder. Laboration 0 (frivilliga delar) (dvs uppgifterna behöver inte redovisas) Introduktion till UNIX och MATLAB DN1240, Numeriska metoder för O1. Laboration 0 (frivilliga delar) (dvs uppgifterna behöver inte redovisas) Introduktion till UNIX och MATLAB Del 1: UNIX och kontoadministration Uppgift 1.1 Ni bör jobba

Läs mer

Laboration 3: Parameterskattning och Fördelningsanpassning

Laboration 3: Parameterskattning och Fördelningsanpassning LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 3: Parameterskattning och Fördelningsanpassning 1 Syfte Syftet

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska

Läs mer

Intro till SPSS Kimmo Sorjonen (0811)

Intro till SPSS Kimmo Sorjonen (0811) 1 Intro till SPSS Kimmo Sorjonen (0811) 1. Att mata in data i SPSS 1. Klicka på ikonen för SPSS. 2. Välj alternativet Type in data och klicka på OK. 3. Databladet har två flikar: Data view och Variable

Läs mer

ATT RITA GRAFER MED KOMMANDOT "PLOT"

ATT RITA GRAFER MED KOMMANDOT PLOT MATLAB, D-plot ATT RITA GRAFER MED KOMMANDOT "PLOT" Syntax: Vi börjar med det enklaste plot-kommandot i matlab,,där x är en vektor x- värden och y en vektor med LIKA MÅNGA motsvarande y-värden. Anta att

Läs mer

Statistik över heltal

Statistik över heltal Övningsuppgift Statistik över heltal Steg 2 Författare: Mats Loock Kurs: Inledande programmering med C# Kurskod:1DV402 Upphovsrätt för detta verk Detta verk är framtaget i anslutning till kursen Inledande

Läs mer

Instruktion för laboration 1

Instruktion för laboration 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik ANL/TB SANNOLIKHETSTEORI I, HT07. Instruktion för laboration 1 De skrifliga laborationsrapporterna skall vara skrivna så att

Läs mer

En introduktion till MatLab

En introduktion till MatLab Chalmers tekniska högskola En introduktion till MatLab Gustafsson Gabriel gabgus@student.chalmers.se Johansson Việt Simon simoj@student.chalmers.se Författare: Norell Pontus npontus@student.chalmers.se

Läs mer

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT-2009 Laboration P3-P4 Statistiska test MH:231 Grupp A: Tisdag 17/11-09, 8.15-10.00 och Måndag 23/11-09, 8.15-10.00 Grupp B: Tisdag

Läs mer

Mäta rakhet Scanning med M7005

Mäta rakhet Scanning med M7005 Matematikföretaget jz M7005.metem.se 141121/150411/150704/SJn Mäta rakhet Scanning med M7005 Mätgivare Detalj Mäta rakhet - Scanning 1 (12) Innehåll 1 Ett exempel... 3 2 Beskrivning... 6 2.1 Scanna in

Läs mer

Laboration: Grunderna i Matlab

Laboration: Grunderna i Matlab Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid

Läs mer

LABORATION 1. Syfte: Syftet med laborationen är att

LABORATION 1. Syfte: Syftet med laborationen är att LABORATION 1 Syfte: Syftet med laborationen är att ge övning i hur man kan använda det statistiska programpaketet Minitab för beskrivande statistik, grafisk framställning och sannolikhetsberäkningar, visa

Läs mer

Laboration Fuzzy Logic

Laboration Fuzzy Logic BILAGA B Laboration Fuzzy Logic Lär dig simulera ett program! ABB INDUSTRIGYMNASIUM Fuzzy Logic Wikingsons Wåghalsiga Wargar Projekt ABB VT 2006 Västerås Innehåll 1 Introduktion... 3 2 Uppgiften... 3 2.1

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013)

Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013) Grafisk Teknik Rastrering Övningar med lösningar/svar Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar. Uppgifterna är för det mesta hämtade

Läs mer

L A B R A P P O R T 1

L A B R A P P O R T 1 L A B R A P P O R T 1 BILDTEKNIK Dan Englesson Emil Brissman 9 september 2011 17:04 1 Camera noise 1.1 Task 1 Ett antal svarta bilder togs genom att fota i totalt mörker för att beräkna kamerans svartnivå.

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

Datorövning 2 Matlab/Simulink. Styr- och Reglerteknik för U3/EI2

Datorövning 2 Matlab/Simulink. Styr- och Reglerteknik för U3/EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 08/ Thomas Munther Datorövning 2 Matlab/Simulink i Styr- och Reglerteknik för U3/EI2 Laborationen förutsätter en del förberedelser

Läs mer

TAMS28 DATORÖVNING 1-2015 VT1

TAMS28 DATORÖVNING 1-2015 VT1 TAMS28 DATORÖVNING 1-2015 VT1 Datorövningen behandlar simulering av observationer från diskreta och kontinuerliga fördelningar med hjälp av dator, illustration av skattningars osäkerhet, analys vid parvisa

Läs mer

NetBeans 5.5. Avsikt. Projektfönster

NetBeans 5.5. Avsikt. Projektfönster NetBeans 5.5 Avsikt Att bekanta dig med NetBeans programmeringsmiljö, dvs att med hjälp av NetBeans 1. skapa ett nytt projekt 2. skriva in källkod (sparas som.java-fil) 3. kompilera (översätta) koden till

Läs mer

Outline. I Vi kan lätt göra samma sak för fyra variabler... I Hur gör vi för 400 inlästa värden? I Ofta behöver man flera likadana variabler

Outline. I Vi kan lätt göra samma sak för fyra variabler... I Hur gör vi för 400 inlästa värden? I Ofta behöver man flera likadana variabler Outline Objektorienterad Programmering (TDDC77) Föreläsning V: arrayer, metoder, räckvidd (scope), eclipse Ahmed Rezine IDA, Linköpings Universitet Hösttermin 2016 Vända om inlästa värden Vända om inlästa

Läs mer

Förberedelseuppgift inför datorlaborationen

Förberedelseuppgift inför datorlaborationen Förberedelseuppgift inför datorlaborationen Det finns datorprogram som följer strålar genom linssystem. Rätt använda kan de vara extremt kraftfulla verktyg och bespara dig många timmars beräkningar. Datorlaborationen

Läs mer

Anvä ndärguide Nyä Expeditionsresor

Anvä ndärguide Nyä Expeditionsresor Anvä ndärguide Nyä Expeditionsresor Hjälpguide för att använda Wordpress och Nya Expeditionsresor.se 2014-08-10 Innehållsförteckning Logga in till Wordpress-panelen... 3 Skapa bildspel... 4 Färgkoder...

Läs mer

Hemsida. Lathund för medlemsföreningar. Funktioner för medlemsföreningar på hemsidan. Syfte med medlemsföreningens sidor

Hemsida. Lathund för medlemsföreningar. Funktioner för medlemsföreningar på hemsidan. Syfte med medlemsföreningens sidor Hemsida Lathund för medlemsföreningar 2015 10 13 Funktioner för medlemsföreningar på hemsidan Varje medlemsförening har en egen sektion på scuf.se Styrelsen kan redigera sin medlemsförenings sidor, skriva

Läs mer

Laboration 1: Beskrivande statistik

Laboration 1: Beskrivande statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 1: Beskrivande statistik 1 Syfte Syftet med den här laborationen

Läs mer

Tentamen, Programmeringsteknik för BME, F och N

Tentamen, Programmeringsteknik för BME, F och N LUNDS TEKNISKA HÖGSKOLA 1(6) Institutionen för datavetenskap Tentamen, Programmeringsteknik för BME, F och N 2015 06 03, 14.00 19.00 Anvisningar: Preliminärt ger uppgifterna 7 + 11 + 16 + 11 = 45 poäng.

Läs mer

Lågnivåprogrammering. Föreläsning 2 Lågnivåprogrammering. Binära tal. En enkel modell av datorns inre

Lågnivåprogrammering. Föreläsning 2 Lågnivåprogrammering. Binära tal. En enkel modell av datorns inre Lågnivåprogrammering Föreläsning 2 Lågnivåprogrammering Förberedelse inför laboration 2. Maskinspråk, assemblerspråk Talrepresentation En enkel dator, komponenter Instruktionsformat, instruktionscykel

Läs mer

Föreläsning 1 & 2 INTRODUKTION

Föreläsning 1 & 2 INTRODUKTION Föreläsning 1 & 2 INTRODUKTION Denna föreläsning Vad händer under kursen? praktisk information Kursens mål vad är programmering? Skriva små program i programspråket Java Skriva program som använder färdiga

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

Richard Öhrvall, http://richardohrvall.com/ 1

Richard Öhrvall, http://richardohrvall.com/ 1 Läsa in data (1/4) Välj File>Open>Data Läsa in data (2/4) Leta reda på rätt fil, Markera den, välj Open http://richardohrvall.com/ 1 Läsa in data (3/4) Nu ska data vara inläst. Variable View Variabelvärden

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar

Läs mer

Bildbehandling, del 1

Bildbehandling, del 1 Bildbehandling, del Andreas Fhager Kapitelhänvisningar till: Image Processing, Analysis and Machine Vision, 3rd ed. by Sonka, Hlavac and Boyle Representation av en bild Så här kan vi plotta en bild tex

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

Laboration 1. Objektorienterad programmering, Z1. Syfte

Laboration 1. Objektorienterad programmering, Z1. Syfte Syfte Laboration 1. Objektorienterad programmering, Z1 Syftet med denna laboration är dels att göra dej bekant med de verktyg som kan vara aktuella i programmeringsarbetet, dels ge en första inblick i

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

Värmedistribution i plåt

Värmedistribution i plåt Sid 1 (6) Värmedistribution i plåt Introduktion Om vi med konstant temperatur värmer kanterna på en jämntjock plåt så kommer värmen att sprida sig och temperaturen i plåten så småningom stabilisera sig.

Läs mer

Datorövning 1 Calc i OpenOffice 1

Datorövning 1 Calc i OpenOffice 1 Datorövning 1 Calc i OpenOffice 1 1 OpenOffice Calc Till förmån för de som följer kursen Fysikexperiment för lärare skall vi här gå igenom några få exempel på hur OO Calc (motsvarar MS Excel) kan användas

Läs mer

Datorövning 1 Enkel linjär regressionsanalys

Datorövning 1 Enkel linjär regressionsanalys Datorövning 1 Enkel linjär regressionsanalys Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Excel och Minitab för att 1. få en visuell uppfattning om vad ett regressionssamband

Läs mer

Spä nningsmä tning äv periodiskä signäler

Spä nningsmä tning äv periodiskä signäler UMEÅ UNIVERSITET v, 6-- Tillämpad fysik och elektronik Sverker Johansson Bo Tannfors Nils Lundgren Ville Jalkanen Spä nningsmä tning äv periodiskä signäler Introduktion Laborationen går ut på att med mätinstrument

Läs mer

Laboration 1: Elementära bildoperationer

Laboration 1: Elementära bildoperationer Skolan för Datavetenskap och Kommunikation, KTH Danica Kragic, Tony Lindeberg 2D1421 Bildbehandling och Datorseende Laboration 1: Elementära bildoperationer Syftet med denna laboration är att du ska bekanta

Läs mer

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska Matlab-föreläsning 3 (4), 17 september, 2015 Innehåll Sekvenser (från förra föreläsningen) Upprepning med for-slingor och while-slingor Villkorssatser med if - then -else - Logik Sekvenser - repetion från

Läs mer

Laboration 1 Introduktion till Visual Basic 6.0

Laboration 1 Introduktion till Visual Basic 6.0 Laboration 1 Introduktion till Visual Basic 6.0 Förberedelse Förbered dig genom att läsa föreläsningsanteckningar och de kapitel som gåtts igenom på föreläsningarna. Läs även igenom laborationen i förväg.

Läs mer

7 MÖNSTERDETEKTERING

7 MÖNSTERDETEKTERING 7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden

Läs mer

Kom igång med Stata. Introduktion

Kom igång med Stata. Introduktion Kom igång med Stata Introduktion Stata är det vanligaste statistikprogrammet bland de på institutionen som bedriver mycket kvantitativ forskning. Det är relativt enkelt att lära sig, samtidigt som det

Läs mer

Lathund Hemsida för Astma- och Allergiförbundets föreningar

Lathund Hemsida för Astma- och Allergiförbundets föreningar 1/17 Lathund Hemsida för Astma- och Allergiförbundets föreningar Webbplatsen är byggd i WordPress 3.8.1. Den är byggd för att på ett enkelt sätt ska kunna skapa nya föreningshemsidor och innehåller: Inloggning

Läs mer

Kort-kort om utdelade användarkonton och datormiljön på NADA

Kort-kort om utdelade användarkonton och datormiljön på NADA Kort-kort om utdelade användarkonton och datormiljön på NADA UNIX-konto, användaridentitet Namn Du har fått ett konto med ett användarnamn bestående av prefixet ip99_ och ytterligare tre bokstäver. Dessa

Läs mer

Mätning av fokallängd hos okänd lins

Mätning av fokallängd hos okänd lins Mätning av fokallängd hos okänd lins Syfte Labbens syfte är i första hand att lära sig hantera mätfel och uppnå god noggrannhet, även med systematiska fel. I andra hand är syftet att hantera linser och

Läs mer

Excel-guide. Introduktion

Excel-guide. Introduktion Excel-guide Introduktion I denna laboration kommer ni få använda några grundfunktioner i Microsoft Excel. Laborationen utgår ifrån Excel 2010, men om ni vill använda ett annat program för att lösa uppgifterna

Läs mer

CTH/GU LABORATION 1 MVE /2013 Matematiska vetenskaper. Mer om grafritning

CTH/GU LABORATION 1 MVE /2013 Matematiska vetenskaper. Mer om grafritning CTH/GU LABORATION 1 MVE16-1/13 Matematiska vetenskaper 1 Inledning Mer om grafritning Vi fortsätter att arbeta med Matlab i matematikkurserna. Denna laboration är i stor utsträckning en repetition och

Läs mer

PC-teknik, 5 p LABORATION ASSEMBLERINTRODUKTION

PC-teknik, 5 p LABORATION ASSEMBLERINTRODUKTION PC-teknik, 5 p LABORATION ASSEMBLERINTRODUKTION Laborationsansvarig: Anders Arvidsson Utskriftsdatum: 2005-08-31 Laborant(er): 1 Syfte Laborationen ska ge studenten möjlighet att genom assemblerinlägg

Läs mer

5. En metod som anropar sig själv a) får inte förekomma i Java-program b) kallas destruktiv c) kallas iterativ d) kallas rekursiv 6. Vilka värden har

5. En metod som anropar sig själv a) får inte förekomma i Java-program b) kallas destruktiv c) kallas iterativ d) kallas rekursiv 6. Vilka värden har Datalogi I, grundkurs med Java 10p, 2D4112, 2002-2003 Exempel på tentafrågor i Java Först följer frågor av flervalstyp. Frågorna är inte ordnade efter svårighetsgrad. 1. Skillnaden mellan typerna int och

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och

Läs mer

GitHub for Windows och GitShell

GitHub for Windows och GitShell GitHub for Windows och GitShell En introduktion till programmen och de första grunderna i git. Det finns en tidigare introduktion. Den visar hur man skapar konto på git och använder GitHub for Windows

Läs mer

Bildbehandling i spatialdomänen och frekvensdomänen

Bildbehandling i spatialdomänen och frekvensdomänen Digital Media Lab 2016-02-22 Tillämpad Fysik och Elektronik Ulrik Söderström Bildbehandling i spatialdomänen och frekvensdomänen Fouriertransform och filtering Del 1. Fouriertransformen 1.1. Fourieranalys

Läs mer

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi

Läs mer

IT-körkort för språklärare. Modul 2: Blogg

IT-körkort för språklärare. Modul 2: Blogg IT-körkort för språklärare Modul 2: Blogg Innehåll Gloslista 2 Logga in på bloggen (punkt 1-3) 3 Skapa och redigera sidor och undersidor (punkt 4 och 5) 4 Infoga dokument (punkt 6 och 7) 7 Skapa inlägg

Läs mer

Laboration 1. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 1. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 1 i 5B1512, Grundkurs i matematisk statistik för ekonomer Namn:........................................................ Elevnummer:.............. Laborationen syftar till ett ge information

Läs mer

Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar.

Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Kurskod: HF1006, HF1008 Skolår: 2016/17 armin@kth.se www.sth.kth.se/armin Redovisas under sista två (av totalt fem) labbövningar i Analys-delen. Preliminärt:

Läs mer

Kort manual till SPSS 10.0 för Mac/PC

Kort manual till SPSS 10.0 för Mac/PC Institutionen för beteendevetenskap Linköpings universitet Kort manual till SPSS 10.0 för Mac/PC 1. Att skapa en ny variabel Inmatning av data sker i det spread sheet som kallas Data View (flik längst

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16 Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11 Laboration Statistiska test 2011-11-15/16 2 Syftet med laborationen är att: Ni skall bekanta er med lite av de funktioner som finns

Läs mer