Bolåneräntor i Sverige

Storlek: px
Starta visningen från sidan:

Download "Bolåneräntor i Sverige"

Transkript

1 DEGREE PROJECT, IN APPLIED MATHEMATICS AND INDUSTRIAL ECONOMICS, FIRST LEVEL STOCKHOLM, SWEDEN 2014 Bolåneräntor i Sverige EN ANALYS AV INDIVIDUELLA RÄNTOR MED MULTIPEL LINJÄR REGRESSION ANDRÉ BERGLUND, ERIK HELLGREN KTH ROYAL INSTITUTE OF TECHNOLOGY SCI SCHOOL OF ENGINEERING SCIENCES

2

3 Bolåneräntor i Sverige En analys av individuella räntor med multipel linjär regression A NDRÉ B ERGLUND E RIK H ELLGREN Examensarbete inom teknik: Tillämpad matematik och industriell ekonomi (15 credits) Civilingenjörsutbildning i industriell ekonomi (300 credits) Kungliga Tekniska Högskolan 2014 Handledare på KTH Tatjana Pavlenko Examinator Tatjana Pavlenko TRITA-MAT-K 2014:03 ISRN-KTH/MAT/K--14/03--SE Kungliga Tekniska Högskolan Skolan för Teknikvetenskap KTH SCI SE Stockholm, Schweden URL:

4

5 Sammanfattning I denna rapport undersöks hur ett antal kundspecifika faktorer som belåningrad, bank och inkomst påverkar svenska hushålls individuella bolåneräntor. Metoden som används är multipel linjär regression med transformeringar av förklarande variabler. Transformer som används är log-linjär, linjär-log, log-log samt styckvis linjär. Datan innehåller ett stickprov om ca rörliga bolån från juli 2013 insamlade av organisationen Villaägarna på frivillig basis. Variablerna belåningsgrad, lånets storlek och bank bidrar mest till att förklara räntan. Vår analys visar att stora lån i kombination med låg belåningsgrad tenderar till att ge lägst ränta samtidigt som det finns signifikanta skillnader i bolåneränta mellan bankerna även om deras listräntor är lika. Abstract This report investigates how a number of customer-specific factors affect individual interest rates for Swedish home mortgages. The method used is multiple linear regression with transformations of the explanatory variables. Transformations that we employ are log-linear, linear-log, log-log and piecewise linear. The dataset consists of approximately 7000 Swedish home mortgages with floating interest rates from July Loan to value ratio, loan size and the the choice of mortgage lender are identified as the most important factors that influence individual interest rates. We find that large loans in combination with low loan to value ratio tend to lead to lower interest rates. There are also significant differences in interest rates depending on the mortgage lender. 2

6

7 Innehåll 1 Inledning Bakgrund Problemformulering och frågeställning Syfte Rapportens disposition Statistisk analys Generell metod Avgränsningar Linjär regression: teori Modellspecifikation Skattning av β R 2 och R BIC Backward elimination Dummy-variabler Transformation av variabler Heteroskedasticitet Whites konsistenta variansskattning Endogenitet Multikollinearitet F-test och t-test Q-Q plot Data Allmänt om datan Befintliga Variabler Orimliga värden Rensning av orimliga värden Skapade Variabler Genomförande Allmänt om genomförandet Undvikande av multikollinearitet Modell 1 - linjär Modell Resultat Modell 2 - linjär med interaktioner Modell Resultat Modell 3 - logaritmerad beroende variabel Modell Resultat Modell 4 - transformerade förklarande variabler Modell Resultat Modell Modell Resultat

8 3.7 Modell Modell Resultat Modell Resultat Analys Val av modell Mätfel Diskussion Val av kovariater Individuell förhandling av räntan Modellspecifikation Internetrelaterade tjänster och deras påverkan på bolånemarknaden Metod Information och sökkostnader Industriell omvandling och strategier Förutsägelser kring den digitala revolutionen på bolånemarknaden Utvecklingen av den svenska marknaden för bolån Analys av befintliga tjänster Regressionsmodellens bidrag Diskussion Slutsats 34 8 Referenser 35

9 1 Inledning 1.1 Bakgrund De senaste årens stigande bostadspriser har bidragit till att öka svenska hushålls skuldsättningsgrad och därmed också deras känslighet mot räntor och ränteförändringar. Under fjärde kvartalet 2013 var hushållens skuldsättning 174.5% av den disponibla inkomsten (Finansinspektionen, 2014). Bankernas marginaler på bolån, individuella ränterabatter och de vinster svenskarnas bolån genererar har under en längre tid varit föremål för flitig debatt. Kunderna har uppmanats att informera sig och förhandla om villkoren för bolånen, vilket dock är lättare sagt än gjort. Den svenska bolånemarknaden domineras av ett fåtal banker och bolåneinstitut. Deras aktuella listräntor finns tillgängliga på internet och publiceras dagligen i tidningar. Listräntorna varierar inte i någon större utsträckning mellan bankerna utan ligger generellt väldigt nära varandra. Listräntan kan ses som ett riktmärke på vilken ränta som kunden kan förvänta sig men den slutliga räntan är i de flesta fall förhandlingsbar. Varje enskilt bolån ger upphov till en kreditrisk för bolåneinstitutet vilket gör att räntan måste anpassas. Det finns således ingen garanti för att man kan förvänta sig att få låna till listräntan. Finansinspektionen (2013b) har föreslagit att bankerna 1 ska bli skyldiga att redovisa vad som påverkar den individuella kundräntan som en åtgärd för att skapa ökad öppenhet kring bolåneräntan. I kölvattnet av diskussionen i media kring så kallade ränterabatter har flera internettjänster skapats för att bidra till mer öppenhet kring bolåneräntorna. Under 2012 lanserade SvD Räntekartan där användarna kan uppge sin ränta och jämföra med vilken ränta andra har uppgett att de har. Villaägarnas tjänst Räntekollen ger en indikation på det maximala förhandlingsutrymmet baserat på den personliga kreditrisken och bankens upplåningskostnad. 1.2 Problemformulering och frågeställning En bolånetagares slutgiltiga bolåneränta förhandlas i regel mellan banktjänstemannen och kunden och behöver som sagt inte nödvändigtvis vara samma som listräntan. Allmänhetens insyn i vad som påverkar den bolåneränta som kunden slutligen får är begränsad eftersom bankerna inte delger allmänheten den internprissättning de använder sig av vid utlåning och räntan förhandlas individuellt. Prisättningsmodellen betraktas som en affärshemlighet och ett konkurrensmedel. Genom Yellow-Belly som har utvecklat tjänsten Räntekollen har vi fått tillgång till ett dataset med svenska bolånekunder, deras ränta och andra uppgifter som inkomst och bostadsvärde. Då datan samlats in på frivillig basis och enbart innehåller uppgifter om bolånekunder som använt Räntekollen kan den inte antas vara representativ för hela befolkningen. Vår analys gäller därför enbart för den intresserade bolånekunden. I den kvantitativa delen av detta examensarbete söker vi med hjälp av statistiska metoder svar på frågan: (I) Vilka kundspecifika faktorer påverkar räntan för den intresserade bolånetagaren? Då listräntan bara kan ses som ett riktmärke för boräntan har prisjämförelser mellan banker varit svåra och kunden har fått vända sig till flera olika banker för att få ett perspektiv på vad som är en rimlig ränta givet densammes ekonomiska situation. Ett annat alternativ har varit att fråga vänner och bekanta om vilken ränta de har. Detta kan vara 1 I denna rapport används bank och bolåneinstitut synonymt 5

10 svårt i praktiken då även personernas privatekonomi behöver jämföras för att jämförelsen ska vara relevant. Under åren 2012 och 2013 har nya tjänster lanserats som använder sig av internet för bolånerådgivning och datainsamling, t.ex. Räntekartan och Räntekollen. Bolånetjänsters data över svenska bolån och tillhandahållande av relevant information till kunderna har potential att verka som omvandlingstryck på bolånebranschen. Detta leder till den andra frågeställningen som detta arbete besvarar: (II) På vilket sätt har marknaden för bolån påverkats av internetrelaterade tjänster och vilka utmaningar står bolånebranschen inför? 1.3 Syfte Syftet med denna rapport är tvådelat. Vi vill för det första undersöka vilka faktorer som påverkar bolåneräntan för konsumenten och bedöma om denna går att förklara med statistiska metoder. För det andra vill vi studera hur ökad digitalisering och informationsutbyte i allmänhet kan påverka marknaden för bolån. 1.4 Rapportens disposition I detta examensarbete utreds två frågeställningar. I kapitel 3 och 4 behandlas frågeställning I. I kapitel 5, Internetrelaterade tjänster och deras påverkan på bolånebranschen behandlas frågeställning II där även resultaten från den statistiska analysen i kapitel 3 och 4 integreras. 2 Statistisk analys 2.1 Generell metod För att söka svar på vår frågeställning om vilka kundspecifika faktorer som påverkar bolåneräntan ämnar vi använda multipel linjär regressionsanalys på ett dataset innehållande befintliga bolån. Datan kommer från befintliga bolånekunder som själva uppgett sin nuvarande ränta och andra personliga uppgifter såsom inkomst och lånebelopp i syfte att se hur mycket förhandlingsutrymme deras bank teoretiskt har. Datan fångar upp de kvantitativa aspekterna av en kunds risk och potentiella affär med banken men utelämnar mjuka uppgifter hos bolånetagaren som också kan vara relevanta men är svåra eller omöjliga att studera med vår metod (se avsnitt 5.1). Genom en regressionsmodell kan vi få ökad insikt i hur de kvantitativa variablerna påverkar bolåneräntan. 2.2 Avgränsningar De lån vi har valt att studera är existerande lån hos olika bolåneinstitut vilket medför att lån som inte blivit medgivna av bankerna inte heller är representerade i vår undersökning. Vidare har vi valt att begränsa oss till att undersöka rörliga bolån med 3-månadersränta. Ett befintlig lån med längre bindningstid, t. ex. tre år kan ha en ränta som bundits upp till tre år bakåt i tiden vilket gör att dessa inte är lämpliga för en undersökning då räntan varierar över tiden. Rörliga bolån däremot har en ränta som har bestämts tidigast tre månader bakåt i tiden. Vi har valt att utföra vår analys på data från juli 2013 eftersom listräntan då hade varit relativt stabil under föregående månader. Vi har även valt att begränsa undersökningen till de åtta största aktörerna som tillsammans har 95% av den svenska bolånemarknaden (Finansinspektionen, 2013a). 6

11 Datan innehåller uppenbara felinmatningar som sållas bort. Kriterierna som används för att göra detta är emellertid avgränsningar i sig (se avsnitt 2.4.3). 2.3 Linjär regression: teori Modellspecifikation Den multipla linjära regressionsmodellen är specificerad enligt följande: k y i = x ij β j + e i, i = 1,..., n (1) j=0 där y kallas för beroende variabel, x j för förklarande variabel, β j för regressionskoefficient eller kovariat och e i för felterm. I det här fallet finns n observationer med k förklarande variabler. Ekvation (1) kan skrivas om till formen där Skattning av β Y = Xβ + e, (2) Y = y., β = β., e = e. y n β k e n 1 x 11 x 1k X = x n1 x nk Ordinary Least Squares (OLS) skattningen av β, betecknat ˆβ, minimerar n i=1 ê i 2 genom att lösa normalekvationerna X t ê = 0, (3) där ê = Y X ˆβ. Då fås OLS-skattningen ˆβ = (X t X) 1 X t Y (4) av β. För en härledning se (Lang, 2013). Denna modell bygger emellertid på att vissa antaganden om feltermernas natur. Dessa är: 1. E[e X] = 0. Det betingade väntevärdet för feltermerna antas vara noll. 2. E[ee t X] = σ 2 I. Feltermerna antas ha samma varians (homoskedasticitet) och vara oberoende mellan observationer. Då minstakvadratproblemet lösts fås prediktionen av Y, Ŷ = X ˆβ. 7

12 2.3.3 R 2 och R 2 Vid en regressionsmodell är det önskvärt att anpassa en modell som med hjälp av kovariaterna förklarar den beroende variabeln så bra som möjligt. R 2 är ett mått på förklaringsgrad och är definierat enligt R 2 = ni=1 (ŷ i ȳ) 2 ni=1 (y i ȳ) 2 = 1 ni=1 ê i 2 ni=1 (y i ȳ) 2, (5) där n i=1 (ŷ i ȳ) 2 kallas för ESS (explained sum of squares) och n i=1 ê 2 i för RSS (residual sum of squares). R 2 mäter alltså hur bra modellen förklarar data. R 2 tar inte hänsyn till hur många förklarande variabler som finns med i modellen. Många förklarande variabler ökar förklaringsgraden men modellen kan då istället vara överspecificerad. R 2 är definierat enligt R 2 = 1 n 1 ni=1 2 ê i n k 1 ni=1 (y i ȳ) 2 (6) och är minskande i k, antalet förklarande variabler BIC Vid val av vilka förklarande variabler som ska tas med i ekvation (1) kan BIC (Bayesian Information Criterion) användas. Den modell som väljs med hjälp av BIC minimerar nln( ê 2 ) + kln(n). (7) BIC är ökande i k för att motverka överspecificerade modeller Backward elimination Vid val av linjär modell är det lätt att använda för många förklarande variabler, s.k.overfitting. Då finns en risk för att vissa variabler inte bär på någon egentlig information utan istället beskriver fluktuationer i feltermen. BIC kan då användas för val av modell. En metod för att göra detta kallas backward elimination och sker i följande steg: 1. Börja med samtliga variabler. 2. Ta bort den variabeln som förbättrar modellen mest enligt valt kriterium. I fallet med BIC är det variabeln som, om den tas bort, minskar BIC-värdet mest. 3. Fortsätt med ovanstående metod tills ingen förklarande variabel kan uteslutas. För att använda backward elimination är det viktigt att det inte råder multikollinearitet (se avsnitt för en definition av multikollinearitet). Då kan relevanta variabler uteslutas tidigt eftersom de är för starkt korrelerade med andra variabler i modellen Dummy-variabler Dummy-variabler används som förklarande variabler för att beskriva en binär egenskap, till exempel om man har a-kassa eller inte. Dummy-variabeln antar värdet 1 om personen i fråga är medlem i en a-kassa och 0 annars. Den tillhörande koefficienten beskriver hur mycket den beroende variabeln ökar eller minskar om dummy-variablen är 1. Då det kan existera interaktionseffekter mellan dummy-variabeln och andra förklarande variabler kan interaktioner av formen (a kassa) (lön) tas med. 8

13 2.3.7 Transformation av variabler OLS används för linjära samband, men med transformation av variabler kan vissa ickelinjära samband skrivas linjärt. Tre välkända transformationer kommer att användas i detta arbete 1. log-linjär: ln(y) = β 1 x 1 + e. I detta fall leder en absolut förändring av kovariaten x 1 till en procentuell förändring av y då y y x 1β linjär-log: y = β 1 ln(x 1 ) + e. En procentuell förändring av x 1 leder i detta fall till en absolut förändring av y då y β x x. 3. log-log: ln(y) = β 1 ln(x 1 )+e. En procentuell förändring av x i leder till en procentuell förändring av y eftersom y y β 1 x x. En närmare beskrivning återfinns i (Kennedy, 2008) Heteroskedasticitet Heteroskedasticitet uppstår när feltermernas varians skiljer sig mellan observationer, alltså att E[ee t X] σ 2 I. Ett typiskt fall av heteroskedasticitet är när feltermernas varians beror på kovariaternas värden. Heteroskedasticitet kan upptäckas genom att plotta residualerna mot varje kovariat och man kan då grafiskt urskilja om feltermerna beror på kovariaternas värden. När modellen inkluderar många kovariater blir den metoden snabbt oöverskådlig. Istället kan man plotta residualerna mot de predikterade värdena för att få en uppfattning om variansen är konstant över observationer. Heteroskedasticitet är ett tecken på att modellen kan vara felformulerad. Om heteroskedasticitet upptäcks är det första steget därför att omformulera modellen, t. ex. genom att transformera variabler. Kvarstår problemet kan man använda sig av White s korrigerade standardel (Lang, 2013) Whites konsistenta variansskattning Heteroskedastiska residualer ger felaktiga skattningar av regressionskoefficienternas standardfel. Ett första steg för att åtgärda detta är att transformera variabler. Om heteroskedastisitet återstår kan Halbert Whites metod användas. Whites konsistenta variansskattning är då Cov( ˆβ) = (X t X) 1 X t D(ê 2 )X(X t X) 1 n = (X t X) 1 ( ê 2 i x t ix i )(X t X) 1, i=0 (8) där D(ê) 2 är en n n diagonalmatris n n vilkens i:te diagonalelement är ê i 2.(Lang, 2013) Endogenitet Endogenitet uppstår då en eller flera kovariater är korrelerade med feltermen vilket strider mot ett av antagandena vid användningen av OLS som då inte kommer att ge konsistenta skattningar av β (Lang, 2013). Urvalsfel, selection bias, kan ge upphov till endogenitet. I vårt fall, då data samlats in från bolånetagare som själva uppgett vad de har för ränta, kan denna inte ses som representativ för hela populationen. Om vi istället inskränker undersökningen till att gälla den intresserade bolånekunden antar vi inte längre att vår data är representativ för alla bolånekunder och har således inget endogenitetsproblem. 9

14 När relevanta förklarande variabler inte är inkluderade i modellen hamnar de istället i feltermen. Om någon av våra kovariater är korrelerad med en variabel som inte tagits med i modellen är den då också korrelerad med feltermen vilket innebär endogenitet. Detta är inget problem vid prediktion men kan förändra tolkningen av regressionskoefficienterna Multikollinearitet Multikollinearitet uppstår när kovariaterna är linjärt beroende eller nästan linjärt beroende. Förenklat kan då sägas att effekten av en viss förklarande variabel blir svår att isolera vilket ger upphov till stora skattningar av regressionskoefficientens standardfel (Hill m.fl., 2008). Multikollinearitet kan till exempel uppstå vid användningen av dummy-variabler. Om till exempel variabeln (kvinna) tas med samtidigt som variabeln (man) är dessa uppenbarligen linjärt beroende då (kvinna)+(man) = 1. Istället väljer man att bara ta med en dummy-variabel och välja den andra som referenspunkt, en s.k. benchmark. Ett mått på multikollinearitet är Variance inflation factors (VIF) och är för kovariat i definierat enligt 1 V IF i = 1 Ri 2, (9) där Ri 2 fås genom att regressera kovariaten i mot resterande kovariater från modellen. Ett högt Ri 2 och indikerar att kovariaten i väl förklaras av de andra kovariaterna. En tumregel är att V IF i > 10 är skadligt för modellen (Kennedy, 2008, s. 199) F-test och t-test För att testa om regressionsmodellens skattade kovariater är statistiskt signifikanta används students t-test. För att testa en skattad koefficient ˆβ tas värdet av testvariablen t = ˆβ β 0 SE( ˆβ) (10) fram, där SE( ˆβ) är standardavvikelsen för skattningen ˆβ och β 0 är värdet det testas mot. Nollhypotesen β 0 = 0 används då den skattade kovariatens statistiska signifikans kontrolleras. Under nollhypotesen har t en students t-fördelning med n k 1 frihetsgrader där n = antal observationer och k = antal kovariater. Motsvarande p-värde är p = 2P r(t t ) (11) där T är t(n k 1)-fördelad. Nollhypotesen ˆβ = β 0 förkastas om p är mindre än en tidigare bestämd signifikansnivå α. (Lang, 2013) För att testa nollhypotesen att en eller flera β = 0 kan ett F-test användas. Testvariabeln för F-testet är F = n k 1 ( ê 2 ) r ê 2 1 (12) där r = antal restriktioner, ê 2 är RSS för en komplett modells regression och ê 2 är RSS för samma modell med önskade kovariaters koefficienter satta till noll. Motsvarande p-värde är p = P r(z F ) (13) där Z är F (r, n k 1)-fördelad. Nollhypotesen förkastas om p < α. F-testet och t-testet förutsätter att residualerna är normalfördelade. Om vi inte vet feltermernas fördelning förutom att de är oberoende och identiskt fördelade finns inget exakt test för nollhypoteserna. F-testet är däremot fortfarande assymptotiskt giltigt för stora n. (Lang, 2013) 10

15 Q-Q plot Q-Q plottar används för att jämföra sannolikhetsfördelningen av empirisk data mot en teoretisk fördelning, t.ex. normalfördelningen. Detta uppnås genom att plotta empiriska kvantiler mot teoretiska kvantiler för en jämförelsefördelning. De empiriska kvantilerna ges av n datapunkter z 1,n,... z n,n sorterade i storleksordning. En Q-Q plot är en plot av punkterna: {( F 1 ( n k + 1 n + 1 ) ) }, z k,n : k = 1,..., n, där F är fördelningsfunktionen för jämförelsefördelningen, t.ex. Φ vid normalfördelning. Stämmer fördelningarna överens ska punkterna ligga approximativt på en linje. (Hult m.fl., 2012) 2.4 Data Allmänt om datan Den statistiska analysen är baserad på bolånedata, erhållen av vår sammarbetspartner Yellow-Belly. Datan, innehållande bolånetagares ränta och annan information om bolånetagaren, är insamlad genom Villaägarnas tjänst Räntekollen som tillhandahåller en modell av bankens teoretiska marginalkostnad för bolån. Användaren ombeds fylla i ett formulär med uppgifter vilka vi har fått ta del av. De observationer för 3-månaderslån under juli 2013 vi har valt att avgränsa undersökningen till kan ses i figur 1. En delmängd bestående av observationer tillhörande bank 1 kan ses i figur 2 där listräntan vid tidpunkten är markerad som en röd linje. I båda figurer kan man se att observationerna ser ut att bilda linjer vilket betyder att räntan ofta antar diskreta värden. En ränta om 3.0% förekommer exempelvis ofta. Figur 1: Ränta observationer Figur 2: Ränta observationer bank Befintliga Variabler De variabler som finns tillgängliga i datan följer nedan. Ibland finns två låntagare, men vi har enbart datan för bolånetagare A. (ränta): Den erhållna 3-månadersräntan för respektive låntagare 11

16 (inkomst): Den viktade hushållsinkomsten. Viktat enligt (inkomst) = q(inkomst A ) + (1 q)(inkomst B ) där q = (ålder): Ålder låntagare A (inkomst A ) (inkomst A )+(inkomst B ). (skulder): Bolånetagarens skulder utöver bostadslånet (a-kassa): Dummy-variabel för om låntagare A är medlem i en a-kassa (postnummer): Bostadens postnummer (fasta kostnader): Fasta boendekostnader (t. ex. avgift) som inte är räntekostnader, i SEK. (lånebelopp): Lånets storlek i SEK (värde): Bostadens uppskattade marknadsvärde i SEK (belåningsgrad): (lånebelopp) (värde) (bank i ): Dummy-variabel som är 1 om kunden har bank i Orimliga värden Då datan är insamlad via ett formulär på internet förekommer felinmatningar. Enstaka orimliga felinmatningar kan påverka OLS-skattningen av β mycket och göra att modellen anpassas dåligt i intervallet där de flesta observationerna ligger. Ett exempel på detta i datan är exempelvis (ålder) = 999. Observationerna tas antingen bort eller konverteras till rätt format. Notera att de gränser vi har satt upp för de olika variablerna även utgör avgränsningar för detta arbete. Ålder Data för ålder är rapporterad som antingen ålder i antal år eller födelseår vilket vi konverterar till enbart ålder i antal år. Alla observationer med en ålder under 18 år eller över 100 år ses som felaktiga och tas bort ur vårt dataset. Bostadens värde Bostäder med ett uppskattat värde över SEK och under SEK inkluderar majoriteten av bostäderna på den svenska bostadsmarknaden och vi begränsar vårt dataset till detta intervall. Lånebelopp Justering för lånebelopp till följd av vår inskränkning av bostadens värde medför att endast observationer med lånebelopp i intervallet SEK tas med. Fasta kostnader Alla observationer med fasta kostnader över SEK anses orimliga med avseende på vår inskränking av bostadens värde och tas därmer bort ur vårt dataset. Ränta Observationer med en rörlig ränta under 1.5% och över 5% exkluderas ur vårt dataset. Den rörliga listräntan (3-mån) var under perioden för observationerna i intervallet 2-3%. 12

17 Under samma period var STIBOR % (Riksbanken) (relevant för bolåns upplåningskostnad) och rapporterade upplåningsräntor omkring 2% (SBAB; Swedbank). Bolån med rörlig ränta under cirka 1.5% är förmodligen inte lönsamma för bankerna under perioden. Därmed är dessa bolån förhandlade under andra vilkor än övriga observationer. För den övre begränsningen på 5% har vi använt oss av Yellow-Bellys uträknade kostnader för utlåning till en konsument med relativt hög risk och maximal belåningsgrad. De uppskattar att banken ska begära en ränta på minst 4% för denna kund (Villaägarna, 2013) och vi har begränsat vårt dataset att ta med observationer med 5% ränta. Belåningsgrad Kravet på en maximal belåningsgrad på 85% vid tecknande av bolån kombinerat med de senaste årens kraftiga prisuppgång på bostadsmarknaden medför att vi anser att belåningsgrader över 100% är orimliga. Vårt dataset begränsas därmed till observationer med en belåningsgrad mellan 0% och 100%. Inkomst Enbart observationer med inkomst i intervallet SEK inkluderas. En månadsinkomst under SEK anser vi orimligt låg och det finns möjligtvis en utomstående medlåntagare eller borgensman skriven på bolånet som hjälper till med betalning. Dessa observationer har inte samma förutsättningar som övriga. Den övre gränsen på SEK inkluderar de flesta bolånetagarna samt exkluderar majoriteten av potentiella observationer som missuppfattat månadsinkomst för årsinkomst Rensning av orimliga värden Datasetet för rörliga bolån insamlade under juli månad innan rensning innehåller 6944 observationer. Efter rensning som sammanfattas i tabell 1 återstår 6269 observationer. Tabell 1: Rensning av data observationer Ålder -5 Bostadens värde -62 Fasta kostnader -61 Ränta -63 Lånebelopp -74 Belåningsgrad -107 Inkomst -303 total Skapade Variabler (stockholm) Dummy-variabel som är 1 om bostaden finns i stockholmsområdet, dvs postnumret börjar på 1. I Stockholm finns många bankkontor vilket kan påverka konkurrensen och räntorna. 13

18 (belåningsgrad topp) Förhållandet mellan ränta och belåningsgrad är inte nödvändigtvis linjärt. SBAB:s modell för räntan i relation till belåningsgraden är inte linjär som figur 3 illustrerar. Vi ser att grafen ändrar stigning vid en belåningsgrad som är ca Låt oss därför införa variabeln (belåningsgrad topp) = max((belåningsgrad) 0.75, 0). (14) Linjärkombinationen a(belåningsgrad topp) + b(belåningsgrad) beskriver då alla möjliga kombinationer av stigningar på intervallen [0, 0.75) och (0.75, 1]. Ett annat alternativ är att göra två separata regressioner, även kallat piecewise linear regression, för de två linjestyckena. Grafen i figur tre skiftar uppåt och nedåt beroende på lånets storlek vilket motiverar att ha med variabeln (lånebelopp) separat. Figur 3: SBABs ränta för olika belåningsgrader , bostadsvärde 2Mkr 3 Genomförande 3.1 Allmänt om genomförandet För att svara på frågeställningen vilka kundspecifika faktorer som påverkar bolåneräntan kommer vi att anpassa olika linjära modeller till datan och utvärdera dessa. För varje linjär modell reducerar vi antalet förklarande variabler genom att använda oss av backward elimination och funktionen stepwise i den statistiska programvaran R. Med hjälp av den modell som bäst förklarar datan kan vi sedan dra slutsatser om vad som påverkar den slutgiltiga kundräntan Undvikande av multikollinearitet För att undvika multikollinearitet använder vi dummy-variabler för de åtta olika bankerna med en bank som benchmark. Banken som används som benchmark är en av de största 14

19 aktörerna vilket minskar risken för multikollinearitet. Variabeln (värde) tas inte heller med i någon modell eftersom VIF då blir för högt. Vid transformering av enskilda variabler, t. ex. genom logaritmering kan också multikollinearitet uppstå om ursprungsvariabeln finns kvar i modellen. 3.2 Modell 1 - linjär Modell Som ett första steg för att anpassa en modell till datan genomför vi en linjär regression utan transformerade variabler. Modellen är (ränta) = β 0 + β 1 (inkomst) + β 2 (ålder) + β 3 (fasta kostnader) + β 4 (lånebelopp) + β 5 (belåningsgrad) + β 6 (skulder) + β 7 (a-kassa) + β 8 (stockholm) + β 8 (bank 2 ) β 14 (bank 8 ) + e. (15) Resultat Efter backward elimination återstår kovariaterna i tabell 3. Bank 2 och 8 samt variablerna för a-kassa, skulder och inkomst faller bort. Modellen har en förklaringsgrad R 2 = och R 2 = Figur 4 och 6 visar att residualerna inte är normalfördelade utan snedvridna åt höger. Linjen i figur 4 är anpassad med minstakvadratmetoden och ger de normalfördelningsparametrarna som passar residualernas fördelning bäst. Figur 6 är ett histogram över residualerna och kurvan i figur 6 är en plot av den normalfördelning som resulterar från minstakvadratanpassningen. Figur 5 visar tecken på heteorskedasticitet; residualernas varians tycks bero på det predikterade värde ŷ i. I modell 3 (avsnitt 3.4) transformeras därför den beroende variabeln (ränta). Tabell 2 visar vilka kovariater som elimineras med BIC och hur mycket det förbättrar modellen med avseende på BIC. Tabell 3 redovisar hur mycket varje återstående kovariat höjer RSS om den tas bort. Ett högt SS betyder alltså att kovariaten bidrar till mycket av förklaringsgraden. Tabell 2: Uteslutna kovariater Kovariat BIC (bank 2 ) (a-kassa) (inkomst) (skulder) (bank 8 ) (stockholm) Tabell 3: Analys av varians Källa SS F (ålder) (fasta kostnader) (lånebelopp) (belåningsgrad) (bank 3 ) (bank 4 ) (bank 5 ) (bank 6 ) (bank 7 ) Residual

20 Tabell 4: Koefficienttabell modell 1 ˆβ standardfel t-värde p-värde (Intercept) e e e e+00 (ålder) e e e e-10 (fasta kostnader) e e e e-06 (lånebelopp) e e e e-65 (belåningsgrad) e e e e-20 (bank 3 ) e e e e-96 (bank 4 ) e e e e-08 (bank 5 ) e e e e-04 (bank 6 ) e e e e-03 (bank 7 ) e e e e-13 Figur 4: Q-Q plot för residualerna Figur 5: Plot över residualer 16

Regressionsanalys av lägenhetspriser i Spånga

Regressionsanalys av lägenhetspriser i Spånga Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016

Läs mer

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING När vi gör en regressionsanalys så bygger denna på vissa antaganden: Vi antar att vi dragit ett slumpmässigt sampel från en population

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression

Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression Christian Aguirre Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:17 Matematisk

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Analys av bostadsrättspriset i Stockholms innerstad

Analys av bostadsrättspriset i Stockholms innerstad Analys av bostadsrättspriset i Stockholms innerstad En multipel linjär regression Kandidatexamensarbete i Teknisk Fysik Anda Zhang andaz@kth.se Handledare Boualem Djehiche Avdelningen för Matematisk Statistik

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

Multipel regressionsanalys av variabler som påverkar priset på bostadsrätter i stor-stockholm

Multipel regressionsanalys av variabler som påverkar priset på bostadsrätter i stor-stockholm Kungliga Tekniska Högskolan Kandidatexamensarbete i Teknisk Fysik Institutionen för Matematisk Statistik Multipel regressionsanalys av variabler som påverkar priset på bostadsrätter i stor-stockholm Författare:

Läs mer

Förhandling. Du kan tjäna cirka 10.000 kronor per år på en lyckad förhandling (räknat på bolån på 2 miljoner kronor)

Förhandling. Du kan tjäna cirka 10.000 kronor per år på en lyckad förhandling (räknat på bolån på 2 miljoner kronor) BOLÅNEBOK #1 Förhandling Du kan tjäna cirka 10.000 kronor per år på en lyckad förhandling (räknat på bolån på 2 miljoner kronor) En lyckad förhandling kräver: o Att du har en någorlunda god privatekonomi

Läs mer

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B

Föreläsning 4 Kap 3.5, 3.8 Material om index. 732G71 Statistik B Föreläsning 4 Kap 3.5, 3.8 Material om index 732G71 Statistik B Skötsel (y) Transformationer Ett av kraven för regressionsmodellens giltighet är att residualernas varians är konstant. Vad gör vi om så

Läs mer

Verksamhetsutvärdering av Mattecentrum

Verksamhetsutvärdering av Mattecentrum Verksamhetsutvärdering av Mattecentrum April 2016 www.numbersanalytics.se info@numbersanalytics.se Presskontakt: Oskar Eriksson, 0732 096657 oskar@numbersanalytics.se INNEHÅLLSFÖRTECKNING Inledning...

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter.

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. PANELDATA Poolade data över tiden och över tvärsnittet Alternativ 1: Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. Oberoende stickprov dragna från stora populationer vid olika tidpunkter.

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

Den svenska arbetslöshetsförsäkringen

Den svenska arbetslöshetsförsäkringen Statistiska Institutionen Handledare: Rolf Larsson Kandidatuppsats VT 2013 Den svenska arbetslöshetsförsäkringen En undersökning av skillnaden i genomsnittligt antal ersättningsdagar som kvinnor respektive

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Föreläsning 10, del 1: Icke-linjära samband och outliers

Föreläsning 10, del 1: Icke-linjära samband och outliers Föreläsning 10, del 1: och outliers Pär Nyman par.nyman@statsvet.uu.se 19 september 2014-1 - Sammanfattning av tidigare kursvärderingar: - 2 - Sammanfattning av tidigare kursvärderingar: Kursen är för

Läs mer

Regressionsanalys av huspriser i Vaxholm

Regressionsanalys av huspriser i Vaxholm Regressionsanalys av huspriser i Vaxholm Rasmus Parkinson Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:19 Matematisk statistik Juni 2015 www.math.su.se

Läs mer

Mindre lån dyrare ränta

Mindre lån dyrare ränta Mindre lån dyrare ränta Resultat från Räntekollen Postadress Besöksdress Telefon Fax E-post Hemsida Box 7118, 192 07 Sollentuna Johan Berndes väg 8-10 010-750 01 00 010-750 02 50 info@villaagarna.se www.villaagarna.se

Läs mer

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två

Läs mer

Linjär regressionsanalys. Wieland Wermke

Linjär regressionsanalys. Wieland Wermke + Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

Estimation av bostadsrättspriser i Stockholms innerstad medelst multipel regressionsanalys

Estimation av bostadsrättspriser i Stockholms innerstad medelst multipel regressionsanalys Estimation av bostadsrättspriser i Stockholms innerstad medelst multipel regressionsanalys Rickard Gunnvald F-09 Patrik Gunnvald F-09 ricgun@kth.se gunnvald@kth.se Kurs SA104X Examensarbete inom teknisk

Läs mer

Effekter av bolånetaket

Effekter av bolånetaket Effekter av bolånetaket EN FÖRSTA UTVÄRDERING 6 APRIL 2011 April 2011 Dnr 11-1622 INNEHÅLL Sammanfattning 3 Bolån efter taket en ögonblicksbild 4 Frågorna samt sammanfattning av bankernas svar 4 2 SAMMANFATTNING

Läs mer

Följande resultat erhålls (enhet: 1000psi):

Följande resultat erhålls (enhet: 1000psi): Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Korrelation och regression Innehåll 1 Korrelation och regression Spridningsdiagram Då ett datamaterial består av två (eller era) variabler är man ofta intresserad av att veta om det nns ett

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2013-03-27

Läs mer

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi

Läs mer

Bolånetagarnas amorteringar har ökat sedan införandet av individuella amorteringsplaner

Bolånetagarnas amorteringar har ökat sedan införandet av individuella amorteringsplaner PROMEMORIA Datum 2014-11-11 FI Dnr 14-15503 Författare Johan Berg, Maria Wallin Fredholm Finansinspektionen Box 7821 SE-103 97 Stockholm [Brunnsgatan 3] Tel +46 8 787 80 00 Fax +46 8 24 13 35 finansinspektionen@fi.se

Läs mer

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

Skrivning i ekonometri lördagen den 25 augusti 2007

Skrivning i ekonometri lördagen den 25 augusti 2007 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti 007 1. Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

NÄR SKA MAN SÄLJA SIN BOSTAD?

NÄR SKA MAN SÄLJA SIN BOSTAD? NÄR SKA MAN SÄLJA SIN BOSTAD? En multipel regressionsanalys av bostadsrätter i Stockholm Oscar Jonsson Moa Englund Stockholm 2015 Matematik Institutionen Kungliga Tekniska Högskolan Sammanfattning Projektet

Läs mer

Skrivning i ekonometri lördagen den 15 januari 2005

Skrivning i ekonometri lördagen den 15 januari 2005 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA102:3 Skrivning i ekonometri lördagen den 15 januari 5 1. Vi vill undersöka hur variationen i försäljningspris = price för hus i en liten stad

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

Regressionsanalys med SPSS Kimmo Sorjonen (2010)

Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1 Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1. Multipel regression 1.1. Variabler I det aktuella exemplet ingår följande variabler: (1) life.sat, anger i vilket utsträckning man är nöjd med livet;

Läs mer

Prediktion av villapris

Prediktion av villapris Prediktion av villapris och dess faktorers inverkan Examensarbete inom farkostteknik, grundnivå, SA105X Institutionen för Matematik, inriktning Matematisk Statistik Kungliga Tekniska Högskolan Maj 2013

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk)

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk) Poissonregression En lämplig utgångspunkt om vi har en beroende variabel som är en count variable, en variabel som antar icke-negativa heltalsvärden med ganska liten variation E(y x1, x2,.xn) = exp( 0

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

a) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade)

a) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade) 5:1 Studien ifråga, High School and beyond, går ut på att hitta ett samband mellan vilken typ av program generellt, praktiskt eller akademiskt som studenter väljer baserat på olika faktorer kön, ras, socioekonomisk

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

En analys av variabler som påverkar bostadsrättspriser i Stockholms kommun - En multipel regressionsanalys över tiden

En analys av variabler som påverkar bostadsrättspriser i Stockholms kommun - En multipel regressionsanalys över tiden En analys av variabler som påverkar bostadsrättspriser i Stockholms kommun - En multipel regressionsanalys över tiden Kandidatexamensarbete i Teknisk Fysik Institutionen för Matematisk Statistik Kungliga

Läs mer

Analys av variabler som påverkar lönsamheten i gymbranschen med multipel linjär regression

Analys av variabler som påverkar lönsamheten i gymbranschen med multipel linjär regression DEGREE PROJECT, IN APPLIED MATHEMATICS AND INDUSTRIAL ECONOMICS, FIRST LEVEL STOCKHOLM, SWEDEN 2015 Analys av variabler som påverkar lönsamheten i gymbranschen med multipel linjär regression REBECCA AXELSSON,

Läs mer

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1(6) PCA/MIH Johan Löfgren 2016-11-10 Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1 Inledning Sveriges kommuner och landsting (SKL) presenterar varje år statistik över elevprestationer

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Regressionsanalys handlar om att estimera hur medelvärdet för en variabel (y) varierar med en eller flera oberoende variabler (x). Exempel: Hur

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Uppgift a b c d e f (vet ej) Poäng

Uppgift a b c d e f (vet ej) Poäng TENTAMEN: Statistisk modellering för I3, TMS161, måndagen den 9 januari 2006 kl 8.30-11:30 på V. Jour: Magnus Karlsson, tel: 772 42 91. Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

Industriell matematik och statistik, LMA136 2013/14

Industriell matematik och statistik, LMA136 2013/14 Industriell matematik och statistik, LMA136 2013/14 7 Mars 2014 Disposition r Kondensintervall och hypotestest Kondensintervall Statistika Z (eller T) har fördelning F (Z en funktion av ˆθ och θ) q 1 α/2

Läs mer

Laboration 4 R-versionen

Laboration 4 R-versionen Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

Den svenska bolånemarknaden och bankernas kreditgivning

Den svenska bolånemarknaden och bankernas kreditgivning Den svenska bolånemarknaden och bankernas kreditgivning Lars Frisell, chefsekonom Per Håkansson, chefsjurist 16 februari 2010 Slutsatser Systemet fungerar överlag väl Betalningsförmågan sätts i centrum

Läs mer

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser

Läs mer

Föreläsning 7 och 8: Regressionsanalys

Föreläsning 7 och 8: Regressionsanalys Föreläsning 7 och 8: Pär Nyman par.nyman@statsvet.uu.se 12 september 2014-1 - Vårt viktigaste verktyg för kvantitativa studier. Kan användas till det mesta, men svarar oftast på frågor om kausala samband.

Läs mer

kodnr: 2) OO (5p) Klassindelningar

kodnr: 2) OO (5p) Klassindelningar kodnr: 1) KH (10p) a) Förklara innebörden av kausalitetsbegreppet i ett kvantitativt-metodologiskt sammanhang (2p) b) Förklara innebörden av begreppet nonsenssamband (2p) c) Argumentera för och motivera

Läs mer

Beräkning av räntekostnadsindex i KPI

Beräkning av räntekostnadsindex i KPI Pm till nämnden för KPI 1(9) 2012-04-19 Beräkning av räntekostnadsindex i KPI För diskussion Förändringar i räntekostnadsindex har de senaste åren haft ett stort genomslag på Konsumentprisindex (KPI).

Läs mer

FACIT (korrekta svar i röd fetstil)

FACIT (korrekta svar i röd fetstil) v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 7

ÖVNINGSUPPGIFTER KAPITEL 7 ÖVNINGSUPPGIFTER KAPITEL 7 TIDSSERIEDIAGRAM OCH UTJÄMNING 1. En omdebatterad utveckling under 90-talet gäller den snabba ökningen i VDlöner. Tabellen nedan visar genomsnittlig kompensation för direktörer

Läs mer

3.6 Generella statistiska samband och en modell med för sockerskörden begränsande variabler

3.6 Generella statistiska samband och en modell med för sockerskörden begränsande variabler 3.6 Generella statistiska samband och en modell med för sockerskörden begränsande variabler Hans Larsson, SLU och Olof Hellgren, SLU Inledning En uppgift för projektet var att identifiera ett antal påverkbara

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Till ampad statistik (A5) Förläsning 13: Logistisk regression

Till ampad statistik (A5) Förläsning 13: Logistisk regression Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

Instruktioner till Inlämningsuppgift 1 och Datorövning 1

Instruktioner till Inlämningsuppgift 1 och Datorövning 1 STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-14 MC Instruktioner till Inlämningsuppgift 1 och Datorövning 1 Kurs i Ekonometri, 5 poäng. Uppgiften ingår i examinationen för kursen och

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Boräntan, bopriserna och börsen 2015

Boräntan, bopriserna och börsen 2015 Boräntan, bopriserna och börsen 2015 22 december 2015 Lägre boräntor, högre bostadspriser och en liten börsuppgång. Så kan man summera svenska folkets förväntningar på 2015. BORÄNTAN, BOPRISERNA & BÖRSEN

Läs mer

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Prissättningsanalys av annonser på internet

Prissättningsanalys av annonser på internet EXAMENSARBETE INOM TEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2016 Prissättningsanalys av annonser på internet En analys av variabler som påverkar slutpriset GUSTAF ERLANDSSON CHRISTOFER TÄRNELL KTH KUNGLIGA

Läs mer

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar

Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar ICKE-LINJÄRA MODELLER Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Y i = 1 + 2 X 2i + u i Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar cov(x i,u i )

Läs mer