Trysslinge Vindkraftanläggning TEKNISK BESKRIVNING NORDISK VINDKRAFT

Storlek: px
Starta visningen från sidan:

Download "Trysslinge Vindkraftanläggning TEKNISK BESKRIVNING NORDISK VINDKRAFT 2013-10-28"

Transkript

1 Trysslinge Vindkraftanläggning TEKNISK BESKRIVNING NORDISK VINDKRAFT

2 Innehåll 1. FÖRORD INLEDNING Bakgrund och syfte Vindkraftverkets uppbyggnad och funktion Vind och produktion PROJEKTET Teknisk data och dimensioner Byggskedet Ytbehov Fundament Kranuppställningsplatser Övriga uppställningsytor Vägar Vägnät inom vindkraftanläggningen Transportväg till projektområdet Materialtransporter Transport av vindkraftverk Transport av krossmaterial Resning av vindkraftverken Elanslutning Det svenska elnätet Anslutning av vindkraftanläggningen Elnätet inom anläggningen Nedläggning av el- och optisk kabel Drift av vindkraftanläggningen Hinderbelysning Demontering och återställning BILAGOR 2

3 1. FÖRORD Nordisk vindkraft har i samband med framtagandet av Trysslingeprojektets Miljökonsekvensbeskrivning producerat en teknisk beskrivning för att belysa de tekniska aspekterna av vindkraftanläggningen. Den tekniska beskrivningen ligger som bilaga till Miljökonsekvensbeskrivningen samt har en bilaga, Trysslinge Infrastruktur ritning. 2. INLEDNING 2.1 Bakgrund och syfte En ansökan om tillstånd enligt miljöbalken (MB) ska innehålla ritningar och tekniska beskrivningar med uppgifter om förhållandena på platsen, produktionsmängd samt användningen av råvaror m.m. Syftet med den tekniska beskrivningen är således att ge en beskrivning av hur vindkraftanläggningen är uppbyggd och dess tekniska komponenter, samt att redovisa de arbetsmetoder som kommer att användas vid byggnation. Exempel på verksamheter är byggnation av vägar och elnät, kranuppställningsplatser samt övriga uppställningsplatser och servicebyggnader. 2.2 Vindkraftverkets uppbyggnad och funktion Ett vindkraftverk består i regel av ett fundament i betong, torn, transformator, ett nav med tre rotorblad samt ett maskinhus med generator (nacell), se Figur 1. Generatorn omvandlar rörelseenergi till elektrisk energi som sedan via en transformator ansluts till överliggande elnät. Vindkraftverkets installerade effekt beror på en mängd olika tekniska faktorer såsom rotorns svepyta, rotorns förmåga att fånga upp vind samt generatorns verkningsgrad. Transformatorn kan antingen placeras inne i vindkraftverket eller utanför i en transformatorkiosk. Beroende på verksfabrikat kan maskinhuset även innehålla en växellåda. Både generatorer och en eventuell växellåda kommer att vara luft- och/eller vätskekylda. I tornet finns en ingång så att nacellen kan nås via en stege eller hiss. Ett vindkraftverk styrs automatiskt genom ett avancerat system av givare som samlar in data i form av vindhastighet, vindriktning, varvtal, effekt m.m. Systemet registrerar eventuella störningar som obalanser i rotorn, friktionskrafter och läckage. Data samlas in i ett automatiskt övervakningssystem som varnar för eventuella driftstörningar. Teknikutvecklingen går snabbt inom vindkraftbranschen och det sker ett ständigt förbättringsarbete. Beroende på turbinmodell är sammansättningen av ingående material något varierande. En del torn består av betong, men övervägande andelen av leverantörerna har material av stål. Rotorbladen består vanligen av en kombination av glasfiber, kolfiber, trä och epoxy. De exakta dimensionerna kan inte anges i dagsläget då val av turbin ännu inte gjorts och designen varierar såväl mellan de olika leverantörerna som mellan de enskilda leverantörernas olika modeller. Vindkraftverket förankras i marken antingen genom ett gravitationsfundament eller genom ett bergfundament. Vilken fundamenttyp som används bestäms av markens geotekniska förhållanden, se vidare avsnitt

4 Definitioner Med vindkraftverk avses här själva vindkraftverket bestående av fundament, torn, maskinhus, rotorblad och transformator. Med vindkraftanläggning, vindkraftetablering eller vindkraftpark avses själva vindkraftverken samt de kringverksamheter som vindkraftverken kräver; elnätet inom projektområdet, väganslutning från allmän väg och fram till respektive verk, servicebyggnader, kranuppställningsplatser och övriga uppställningsytor. Med ett vindkraftverks tornhöjd eller navhöjd avses avstånd mellan fundament och navet där rotorbladen fästs, se Figur 1. Med rotorradie avses längden på ett rotorblad, med rotordiameter avses diametern på rotorns svepyta, det vill säga längden av två rotorblad inklusive navet. Se Figur 1. Vindkraftverkets totalhöjd motsvarar tornhöjden inklusive längden av ett rotorblad, när rotorbladet står rakt upp från vindkraftverkets nav. Energitermer Producerad energi mäts i kilowattimmar (kwh) och dess multipelenheter: kwh = 1 megawattimme (MWh) MWh = 1 gigawattimme (GWh) GWh = 1 terrawattimme (TWh) Produktionskapacitet mäts i kilowatt (kw) och dess multipelenheter: kw = 1 megawatt (MW) MW = 1 gigawatt (GW) Tabell 1. Definitioner och energitermer. 4

5 Figur 1. Vindkraftverkens utformning, generell beskrivning av ett vindkraftverk och dess ingående delar. Kemikalier De kemikalier som hanteras i vindkraftverken är hydrauloljor, växellådsoljor, ev. ballastvätska, lagerfett samt glykol och andra frostskyddsvätskor. Det vanligaste är att vindkraftverken är luftoch/eller vätskekylda. Kontroll av vindkraftverken sker löpande och service utförs årligen enligt anvisningar från leverantör. Under anläggningsfasen används även drivmedel i form av diesel/bensin, motorolja och hydraulolja till de maskiner och motorfordon som används vid etableringen och under driftsfasen nyttjas drivmedel till servicefordon. 2.3 Vind och produktion Vindmätning Hösten 2012 restes två temporära vindmätningsmaster i projektområdet, med syfte att verifiera vindhastigheter, vindriktningar, frekvenser och turbulensgrad. Ytterligare en mast är lokaliserad norr om området, den del som i ett tidigare skede var en del av projektområdet men som nu plockats bort. En permanent mätmast kommer att installeras under byggfasen och användas under hela vindkraftparkens livslängd och den kommer att användas för att ge vinddata för styrning av anläggningen. Ytterligare fyra temporära master kommer att installeras under byggfasen. Dessa har 5

6 syftet att verifiera vindkraftverkens elproduktion och masterna kommer att tas ned ett till två år efter det att anläggningen har tagits i bruk. Mätning av vind Sodar-utrustning (SOnic Detection And Ranging) som mäter vindhastigheter på höjdintervaller mellan meter kommer att användas för att extrapolera vindhastigheter från mätmasternas topp upp till centrum på vindkraftverkets nav. Utrustningen placeras normalt sett ut på en trailer vid mätmasterna under projekteringsfasen, se Figur 2. Figur 2. Mobil sodarutrustning i fält. Långtidsmätningarna av områdets vindresurser kommer att utvärderas och ligga till grund för produktionsberäkningar, ekonomiska kalkyler och vilken verksmodell som upphandlas. Skisser över exempel på permanenta och temporära mätmaster visas i Figur 3. 6

7 Figur 3. Exempel på permanenta-, och temporäramätmaster samt telekommast. I Figur 4 visas en vindros över projektområdet. Den visar det långsiktiga årsgenomsnittet utifrån resultat från de tre första mätmasterna som sattes upp på projektområdet. Vindrosen påvisar att den förhärskande vindriktningen är från sydväst med sekundära dominerande vindriktningar från öst. Vindrosen visar den årliga medelvinden baserad på de tre uppsatta mätmasterna. 7

8 Figur 4. Vindros basrad på resultatet från de tre master som etablerats på projektområdet. Vindkraftverkens dimensioner Effekt Navhöjd Rotordiameter Totalhöjd 2-5 MW cirka 140 meter cirka 120 meter max 210 meter över högsta marknivå Tabell 2. Vindkraftverkens dimensioner Vindkraftverkens produktion och etableringsmiljö Antal verk max 47 st Årlig elproduktion Etableringsmiljö cirka 360 GWh (á 6-8 GWh/verk och år) skog Tabell 3. Vindkraftanläggningens produktion och etableringsmiljö 8

9 3. PROJEKTET 3.1 Teknisk data och dimensioner Principen om att tillämpa bästa möjliga teknik enligt MB tillåter inte att man i dagsläget kan fastställa vilket vindkraftverk och leverantör som kommer att väljas vid tidpunkt för upphandling. Miljöprövningen sker därför utifrån vissa ramvärden. Angivna ramvärden uppfylls oavsett val av fabrikat och typ, dessa värden anges i Tabell 2 och Tabell 3. Vindkraftanläggningen beräknas kunna producera el för upp till hushåll som förbrukar kwh el/år eller villor med en förbrukning på kwh el/år, vilket även kan jämföras med cirka 350 villor/1300 hushåll per vindkraftverk. 3.2 Byggskedet Byggnationen av vindkraftsparken förväntas ta totalt cirka två år. Frekvensen av transporter vid byggskedet kommer att bero på var i byggnationsprocessen man befinner sig. Etablering av vägar, fundament, uppställningsplatser samt nedläggning av elkabel kommer att utföras så att natur- och kulturkänsliga områden i så stor utsträckning som möjligt undviks, i enlighet med vad som anges i miljökonsekvensbeskrivningen (MKB). 3.3 Ytbehov Det aktuella projektområdet omfattar cirka 42 kvadratkilometer (4200 ha) och den planerade vindkraftanläggningen rymmer 47 vindkraftverk. Det ytbehov som maximalt krävs för att anlägga vindkraftanläggningen kommer att utgöra cirka 5,5 procent av det totala projektområdet. Vissa av dessa ytor kommer dock endast temporärt behöva tas i anspråk under själva byggnationen. Det permanenta markanspråket uppgår till cirka 4,2 procent. Beräknat markanspråk visas i tabell 4 och 5. Begreppen som presenteras i tabellerna och varje respektive ytas funktion beskrivs vidare nedan. En ritning med preliminär utformning av de ytor som tas i anspråk visas i Bilaga A. Typ av yta Yta för verksplacering inklusive avverkning kring verksplats Kranuppställningsplatser inkl. ytor för kringavverkning Yta nyetablering av väg (bredd 6 m), längd 29,9 km, inkl. en avverkad korridor på 30 m varav 18 meter förblir permanent. Yta uppgradering av väg (bredd 6 m), längd 51 km (kurvrätning, trädfria zoner i kurvor etc.) inkl. en avverkad korridor på 18 m. Övriga ytor (ställverksstation inkl. service byggnader, platskontor med byggbaracker, lagringsytor, rotormonteringsytor, master etc.) Summa totalt ytbehov Hektar (ha) 3,3 ha (0,07 ha/verk) 47 ha (ca 1 ha/verk) 94,9 ha 62 ha 20.7 ha 228 ha Tabell 4. Översiktlig beräkning av ytbehov för 47 vindkraftverk (enligt planerad huvudlayout) á 3-4 MW. 9

10 Permanent markanspråk Temporärt makanspråk 174,1 ha 39,8 ha Möjligt temporärt markanspråk beroende på leverantörsval och slutliga tekniska lösningar Summa totalt markanspråk Projektområdets totala areal Tabell 5. Översiktlig beräkning av markanspråk över tiden, beräknat för 47 vindkraftverk (enligt planerad huvudlayout) á 3-4 MW. 14,1 228 ha 4167 ha Maximalt möjligt markanspråk 5,5 % Permanent markanspråk 4,2 % 3.4 Fundament Vindkraftverken kan förankras antingen genom ett gravitationsfundament eller genom ett bergfundament. Vilken fundamentstyp som används bestäms av markens geotekniska förhållanden. En geoteknisk skrivbordsstudie har genomförts, närmare byggfasen kommer studien att kompletteras med undersökningar i fält. Turbinleverantören anger vilken typ av fundament som ska användas i det aktuella fallet för att garantivillkoren ska uppfyllas. På mark med normal beskaffenhet sker förankring via gravitationsfundament, vilket innebär att tornet bultas fast i en bultkorg som är ingjuten i fundamentet, vilket grävs ner under markytan, se principskiss för gravitationsfundament i Figur 5. Figur 5. Översiktlig skiss på ett gravitationsfundament för vindkraftverk. 10

11 Vid etablering på berg kan ett fundament av typen bergadapter användas, då tornet förankras med bultar fastgjutna med betong i djupa hål i berggrunden, se principskiss för bergförankrat fundament i Figur 6. Figur 6. Översiktlig skiss på ett bergförankrat fundament för vindkraftverk Även fundamentets dimensioner varierar beroende på val av turbintyp och några exakta dimensioner kan därför inte anges. Ett gravitationsfundament för ett vindkraftverk av denna storleksordning upptar uppskattningsvis en yta på drygt 500 m 2. Cirka m 3 betong krävs vid gjutning av ett gravitationsfundament och cirka ton armeringsstål, se Figur 7 och Figur 8. 11

12 För ett fundament av typen bergadapter åtgår mindre betong. Betongtillverkning för grundläggning och fundament sker ofta med en mobil betongstation som anläggs temporärt i utredningsområdet. Grus, cement och vatten blandas då på plats och transporteras till fundamentet där det pumpas ut med pumpbil. Uppskattning av yta för betongstation samt uppläggningsplats för materialförråd är cirka 1800 m 2. För transport inom vindkraftsanläggningen används dieseldrivna betongmoppar. Tvättning av fordon sker i slutet av dagen efter sista gjutning och rengöringsgropen pumpas ur med pumpbil, varvid restavfall tas om hand. Efter att ett fundament är byggt lämnas det i cirka en månad för att härda. Därefter följer besiktning innan montage av vindkraftverket kan påbörjas. Figur 7. (Foto) Armering av gravitationsfundament. Foto: NORDISK VINDKRAFT Figur 8. (Foto) Gjutning av gravitationsfundament, Kyrkberget. Betongen pumpas från en pumpbil genom en kranarm och sprids i fundamentet. Foto: NORDISK VINDKRAFT 12

13 3.5 Kranuppställningsplatser Vidare krävs etableringsytor invid varje vindkraftverk, nedan kallad kranuppställningsplats. Kranuppställningsplatsen består av en hårdgjord yta av grus som fungerar som uppställningsplats för mobilkran, se Figur 10, och hjälpkran vid byggnation. Kranuppställningsplatsernas storlek varierar med storleken på vindkraftverken och även utformningen av ytorna kan komma att ha olika utseende beroende på verksleverantör samt möjlig anpassning till terräng och naturförhållanden. Förutom vid resning av vindkraftverken kommer kranuppställningsytorna att nyttjas i samband med underhålls- och reparationsarbeten under drifttiden. För ett vindkraftverk med en totalhöjd på cirka 200 meter krävs en kranuppställningsplats i storleksordningen cirka 1 ha. Slänterna ner från grusplanen avverkas under byggfasen men tillåts växa upp igen under driftsfasen. I Figur 9 visas en principskiss över en kranuppställningsplats. En beräkning av kranuppställningsplatsernas totala ytbehov redovisas i avsnitt 3.3. Figur 9. Principskiss över en kranuppställningsplats. 13

14 Figur 10. (Foto) Kran för byggnation av verk, Håcksta. Foto: NORDISK VINDKRAFT 3.6. Övriga uppställningsytor Med övriga uppställningsytor avses de ytor som måste anläggas för de kringverksamheter som vindkraftanläggningen ger upphov till; servicebyggnader och ställverksstation, platskontor, uppställningsytor, temporära lagringsytor, rotormonteringsytor, master etc. Vindkraftanläggningen kommer att innefatta en servicebyggnad med tillhörande ställverksstation som utgör kopplingspunkt. Byggnaden kan komma att användas till service och underhåll, kopplingsstation för nätanslutningen, personalutrymmen och liknande. Byggnader kommer att uppföras enligt gällande föreskrifter och regelverk. Det kommer även att behövas uppställningsplatser för byggbaracker, fordon och liknande. Uppställningsytan kommer att anläggas enligt samma princip som byggnation av väg och kranuppställningsplatser men ytan kommer att vara permanent. Ytan kommer att användas som serviceyta under parkens livslängd och användas för till exempel evakuering med helikopter. Figur 10 visar en principskiss över en etablerings yta för kontor och serviceutrymmen. Skissen är preliminär och detaljutformningen kan variera, det permanenta markanspråket redovisas i tabell 4 uppställningsplats. 14

15 Figur 10. Principskiss över uppställningsplats för byggbaracker, fordonsparkering. En beräkning av det totala ytbehovet för de övriga uppställningsytorna redovisas i avsnitt Vägar Vindkraftverken kommer att transporteras till området i ett antal sektioner varefter de monteras på plats. Det ställs stora krav på vägens bärighet och geometri för att klara av de långa och tunga transporterna. I aktuellt fall sker vindkraftetableringen i ett område med produktionsskog där det redan finns befintliga skogsbilvägar anpassade för tunga timmertransporter. Dessa vägar kommer att nyttjas i största möjliga utsträckning samt breddas och förstärkas där det är nödvändigt. Nyetablering av väg kommer dock att ske fram till respektive verksplats. Med nyetablering av väg avses de vägsträckningar som måste nyanläggas och med uppgradering av väg avses förstärkning och breddning av redan befintliga vägar. En geoteknisk undersökning görs normalt för att bestämma utformningen och grundläggningen av vägarna. Generellt kommer vägarna att byggas cirka 5 meter breda. Beroende på valet av mobilkran för resning av vindkraftverken kan vägarnas bredd behöva uppgraderas till cirka 6 meter, för att möjliggöra en säker förflyttning av kranen inom vindkraftparken. Det kommer även att finnas ett behov av att bredda vägarna inom vindkraftparken för att möjliggöra en god framkomlighet för bladfordon (transporterna med rotorbladen kan vara upp till 65 meter 15

16 långa, se Figur 11) och andra skrymmande transporter. Där det föreligger behov för breddning, till exempel i kurvor, kan vägens bredd uppgå till cirka 10 meter. Figur 11. Transport av rotorblad. Havsnäs Vindkraftanläggning. FOTO: NORDISK VINDKRAFT Röjning av träd krävs på båda sidor av vägen. Bredden på den röjda korridoren varierar beroende på terräng och vägsträckning med mera. Vid nyetablering av väg trädfälls en korridor om maximalt 30 meter (inklusive körbana), för att möjliggöra en framkomlighet för transporter. Vid uppgradering av väg trädfälls ett område om maximalt 18 meter (inklusive körbana). Korridoren krävs för att möjliggöra snöröjning, breda transporter samt för att tillfälligt lägga upp det ytskikt som schaktas av och som sedan används till bl.a. släntning. Under drifttiden tillåts vegetation växa upp i hela eller delar av skogsgatan. Se även Figur 12. Figur 12. Principskiss över nya och befintliga(uppgraderade) vägkorridorer/vägsektion. 16

17 Utformningen av de nyetablerade vägsträckningarna kommer att variera beroende av markförhållandena och topografin. För vägbyggnationen används i så stor utsträckning som möjligt återvunnet fyllnadsmaterial samt konventionellt krossmaterial. Vägarna kommer att byggas enligt Skogsstyrelsens anvisningar för projektering och byggnation. Någon asfaltering bedöms normalt inte behövas såvida inte redan asfalterad väg förstärks. Vid förstärkning och breddning av befintlig väg kommer den befintliga vägkroppen att bibehållas och överdelen förstärkas med nya bärlager medan breddningen konstrueras av nytillfört material. Vägbyggnation och hydrologiska förhållanden Vägbyggnationen kommer att ske enligt Skogsstyrelsens anvisningar. Utöver detta vidtas även ett flertal skyddsåtgärder för att minimera anläggningens påverkan på hydrologin. För vägens funktion och stabilitet är det viktigt att vägkroppen dräneras och att vatten avleds från vägområdet. Yt- och grundvatten kan orsaka erosion och andra skador på vägarna. Vägtrummor ska således placeras genom vägkroppen med jämna mellanrum. Vid breddning av befintlig väg byts vid behov även eventuella trummor ut och ersätts av, i första hand, plasttrummor med minst samma diameter som har funnits tidigare. Om det föreligger behov av att öka trummans diameter för att inte förorsaka dämning uppströms väljs en större trumma. Vid nyanläggning av väg över dike, vattendrag eller naturlig lågpunkt i terrängen förläggs trumma i erforderlig storlek för att möjliggöra naturlig avrinning och undvika dämning. Mindre trumma än 300 mm används inte eftersom sådana kan ge dålig självrensningseffekt. Vägtrummor kontrolleras efter byggnationen och eventuella skador repareras. 3.8 Vägnät inom vindkraftanläggningen Inom projektområdet finns ett väl utbyggt vägnät med skogsbilvägar av olika standard. Nordisk Vindkraft har utrett framkomlighet och möjliga transportvägar samt tagit fram ett preliminärt vägoch kabelnät utifrån anläggningens huvudlayout. Vid utformningen har man utgått ifrån att det befintliga vägnätet ska användas i så stor utsträckning som möjligt samt att våtmarker, sjöar och vattendrag ska undvikas i möjligaste mån för att påverkan på områdets hydrologi, natur- och kulturmiljövärden ska minimeras. Vägsträckning som presenteras i föreliggande handlingar ska ses som det i dagsläget föredragna alternativet. Ändringar kan komma att göras i förhållande till de tekniska krav som ställs för transport av det vindkraftverk som slutligen upphandlas. Den slutgiltiga vägsträckningen kommer att beslutas i samråd med tillsynsmyndigheten. Preliminärt vägnät inom projektområdet visas i Bilaga A. 17

18 3.9 Transportväg till projektområdet Nordisk Vindkraft har utrett möjliga transportvägar från hamn till projektområdet, se figur 13. Huvudalternativet innebär att transporterna anländer till Göteborg eller Varbergs hamn med fartyg. Från Göteborgs/Varbergs hamn transporteras vindkraftverken sedan via E6 och E20 mot Alingsås. Från Alingsås går transporterna mot nordöst på väg E20 via Mariestad, därefter nordväst mot Laxå. En del av transporterna går sedan via väg 507 väster in i området, men majoriteten av dem kommer att gå via Laxå och väg 205 från öster in på området. Figur 13. Preliminär transportväg från Göteborg eller Varberg hamn till projektområdet. Källa: NORDISK VINDKRAFT 3.10 Materialtransporter I detta avsnitt görs en uppskattning av de mängder material som förväntas användas och den mängd transporter till och från området detta kommer att kräva. Uppskattningen bygger på schablonvärden och omfattar planerad vindkraftanläggning med 47 vindkraftverk. Transport av vindkraftverk Varje vindkraftverk transporteras i sektioner med cirka 10 fordon. Sammanlagt innebär detta att cirka 470 lastbilstransporter med vindkraftverkens sektioner kommer att krävas. De kranar som 18

19 används för resning av vindkraftverken transporteras med cirka 30 fordon för att sedan monteras på plats. Transport av krossmaterial Material för byggnation av väg, kranuppställningsplatser samt övriga uppställningsplatser innefattar huvudsakligen krossat berg i olika fraktioner, men även bra moränmaterial för grundläggning av ovan nämnda ytor. Vid vägbyggnationen kan det av tekniska och ekonomiska skäl bli oundvikligt att företa vissa sprängningsarbeten för att kunna bereda plats för väg. Sprängmassorna kommer att användas inom projektområdet för vägbyggnation samt vid anläggning av kran- och övriga uppställningsplatser. I aktuellt fall kommer fyllnadsmaterial från sprängning i området till viss del att täcka behovet av massor, vilket innebär att behovet av massor från sidotag och täkter minskar. De massor som uppstår till följd av anläggningsarbetena bedöms dock inte som tillräcklig. För att tillgodose behovet av material kan befintliga grus- och/eller bergtäkter nyttjas alternativt kan det bli aktuellt att etablera en ny täkt. Detta har ännu inte fastslagits. I det fall det blir aktuellt med nyetablering av täkt kommer den att omfattas av en separat tillståndsansökan och prövning. Antalet transportrörelser med krossmaterial kommer således att bero på vilka möjligheter som finns att använda befintliga täkter och/eller möjligheten att anlägga en ny täkt i området. Transport av betong För byggnation av gravitationsfundament krävs armering och betong. Totalt beräknas cirka 600 m 3 betong att krävas per fundament, vilket innebär sammanlagt cirka m 3 betong. En betongbil lastar cirka 7,5 m 3 om den ska trafikera vägar med bärighetsklass 1 (BK1), vilket innebär cirka 3760 transportrörelser. Som tidigare nämnts planerar Nordisk Vindkraft att ha betongtillverkning med en mobil betongstation som anläggs temporärt i utredningsområdet. På så vis minskas miljöbelastningen då transporterna effektiviseras. Detta ger således mindre miljöpåverkan från transporter än användandet av befintliga betongstationer samtidigt som transportkostnaderna minskas Resning av vindkraftverken Som ovan nämndes transporteras vindkraftverken i sektioner till området och reses därefter med hjälp av en specialkran, en s.k. mobilkran. Även mobilkranen transporteras till området i sektioner och monteras på plats. Vid montering av mobilkranens bom krävs ett antal mindre hjälpkranar som lyfter bommens sektioner på plats. För att bommen till mobilkranen ska få plats krävs att en yta avverkas intill vägen. För att kunna montera bommen projekteras vägen rak de sista metrarna fram till montageplatsen, med syfte att undvika att ytterligare skog eller mark måste tas i anspråk för kranmontage. Bottendelen av tornet monteras till fundamentet varefter resterande tornsektioner och nacellen sätts på plats, se Figur 14. Rotorbladen monteras ihop antingen på marken eller också var och en för sig direkt uppe vid navet. 19

20 Resningen av ett vindkraftverk brukar genomföras på ett par dagar, under förutsättning att vindförhållandena är gynnsamma och tillåter lyftarbeten. Med anledning av vindkraftanläggningens storlek kommer vindkraftverken att driftsättas sektionsvis, vilket innebär att driftsättningen av hela vindkraftanläggningen kan ta flera månader. Figur 14. (Foto) Montering av ett vindkraftverk i Håcksta Vindkraftanläggning, med hjälp av en stor mobilkran (röd) och en mindre hjälpkran (gul). Foto: NORDISK VINDKRAFT 3.12 Elanslutning Det svenska elnätet Sveriges elnät är indelat i tre nivåer; nationellt stamnät, regionala nät och lokala nät. Det nationella stamnätet löper genom hela Sverige och ägs av staten. Det är Svenska Kraftnät som har till uppgift att förvalta och driva det svenska stamnätet och de statligt ägda utlandsförbindelserna. Vidare är Svenska Kraftnät systemansvarig myndighet enligt Ellagen och har det övergripande ansvaret för att balans mellan produktion och förbrukning av el upprätthålls inom hela landet. Regionnäten ägs av ett fåtal företag och länkar samman stamnätets högre spänningsnivåer med de lägre spänningsnivåerna som tillämpas på lokalnäten. Även de lokala näten ägs av dessa företag till- sammans med kommunala energibolag. Enligt Ellagen 2 kap 1 får en elektrisk starkströmsledning inte byggas eller användas utan tillstånd (nätkoncession). Koncessionsprövningen finns för att elnätet ska få en lämplig utformning ur samhällsekonomisk synpunkt och att prövning ska ske gentemot miljövärden och motstående intressen. Energimarknadsinspektionen prövar tillståndsansökningar gällande nätkoncessioner. Vindkraftanläggningens anslutning till elnätet ingår således inte i den aktuella tillståndsansökan om 20

21 Tillstånd enligt miljöbalken. Bedömning av elanslutningens miljökonsekvenser görs i aktuellt fall därför endast vad gäller det interna, icke koncessionspliktiga, elnätet inom projektområdet. Anslutningsledningar från projektområdet till anslutningspunkt med överliggande gande elnät redovisas endast översiktligt. Anslutning av vindkraftanläggningen Den planerade vindkraftanläggningen ligger inom Fortum Distribution AB:s (Fortums) koncessionsområde. Då vindkraftparkens planerade effekt är för stor att ansluta till lokalnätet planeras vindkraftanläggningen anslutas till regionnätet som också ägs av Fortum. Regionnätet i området har en spänning på 130 kv. Norr om vindkraftanläggningen finns en 130 kv luftledning som går i öst-västlig riktning. På den är en 130 kv luftledning ansluten som går söderut, öster om parken ner till Mon. I figur 15 visas ett översiktligt förslag till nätanslutning av planerad vindkraftanläggning. Den östra delen av vindkraftanläggningen planeras att anslutas till Mon med en cirka fyra kilometer lång 130 kv luftledning. Den norra och södra delen av vindkraftanläggningen planeras att anslutas till 130 kv luftledningen som går norr om vindkraftparken. Det planeras att göras med en cirka 8 km lång luftledning, varav största delen troligtvis kommer gå parallellt med den befintliga iga luftledningen. I samband med det planeras det att byggas ett nytt ställverk för att koppla ihop luftledningarna. Den norra och södra delen planeras att förbindas med en markförlagd kabel. Exakt sträckning för anslutningsledningarna och anslutningskabeln n har ännu inte utretts. En separat ansökan om nätkoncession för vindkraftanläggningens elanslutning kommer att göras. Figur 15. Förslag till elanslutning, endast indikativ. 21

22 Elnätet inom anläggningen Vindkraftverkets generator genererar elenergi från 690 V (matningsspänning). I vindkraftverkens torn finns en transformator som omvandlar generatorspänningen till cirka 33 kv (matningsspänning). Beroende på verksmodell är denna transformering placerad inne i vindkraftverket eller i en mindre transformatorkiosk invid vindkraftverket. Härifrån leds producerad elenergi via ett kabelnät till det anslutande elnätet. I figur 16 visas en schematisk principskiss för en elanslutning. Härutöver kommer en servicebyggnad med tillhörande transformatorstation att anläggas inom etableringsområdet, se beskrivning i avsnitt 3.6. Figur 16. Schematisk principskiss över elanslutning av en vindkraftetablering. Nedläggning av el- och optisk kabel Vidare kommer även ett optiskt kommunikationsnät förläggas mellan vindkraftverken och vidare ut till transformatorstationerna. Detta kommer att användas för styrning, optimering och driftuppföljning av anläggningen. Kabelnätet, d.v.s. elnätet och det optiska kommunikationsnätet inom anläggningen, förläggs i regel under markytan och i största utsträckning längs det interna vägnätet, se exempel i figur 18. På så vis begränsas ianspråktagen mark. Vilken sida av vägen som väljs beror på markförhållanden och att branta slänter ska undvikas. Förläggning av kabel kan med fördel göras vid byggnationen av ny väg eller vid breddning och förstärkning av befintlig väg. Sprängning kan komma att bli aktuell för kabelläggning, vilket kommer att undersökas vidare vid detaljprojektering. Kablarna förläggs i enlighet med gällande föreskrifter om markförläggning av kabel, d.v.s. avseende djup och isolering etc. En principskiss för kabelgrav visas i figur 17. Om förhållandena är speciella kan även luftledning vara ett alternativ för sträckor inom parken. Högspänningskablaget förläggs från respektive vindkraftverk till lämpligt placerad transformatorstation. Tillsammans utgör detta det s.k. uppsamlingsnätet. 22

23 Figur 17. Principskiss av en kabelgrav för enkelt kabelförband. Figur 18. Kabelgrävning längs befintlig väg 3.13 Drift av vindkraftanläggningen Genom vindkraftverkens övervakning av driftkriterier och styrsystem kommer driften huvudsakligen att skötas på distans. Enklare driftstopp kan oftast åtgärdas på distans, men större driftstopp måste åtgärdas på plats. Regelbunden service av vindkraftverken sker årligen för att säkerställa säkerhet och vindkraftverkens drift. Vid vindhastigheter på cirka 25 m/s stängs vindkraftverken av säkerhetsskäl automatiskt av för att inte utsättas för alltför stora påfrestningar. Vindkraftverken är också utrustade med ett övervakningssystem som stänger av vindkraftverken om temperaturen i turbinen blir för hög. 23

24 Vid vindar som är så hårda att vindkraftverket riskeras att skadas vinklas vindkraftverkets rotorblad med hjälp av automatiserad mekanik så att en större andel vindenergi släpps förbi. Därmed blir krafterna på rotorn mindre. Vid vindhastigheter på över m/s vinklas rotorbladen så att all vind släpps förbi. På så sätt undviks att skadliga laster från vinden uppkommer på vindkraftverkets rotor och därav minskas risken för haveri. Vidare görs alltid beräkningar på vilka extrema vindstyrkor som kan uppkomma vid respektive projektområde så att man kan säkerställa att rätt typ av vindkraftverk väljs. Inom områden där större risk för extremvindar föreligger väljs ett vindkraftverk som kan klara av större laster utifrån ett klassificeringssystem. Denna klassning sker utifrån ett standardiserat system utvecklat av IEC (International Electrotechnical Commission). Med anledning av den planerade vindkraftanläggningens storlek kommer sannolikt en servicebyggnad att anläggas i anslutning till anläggningen där servicetekniker är stationerade under drifttiden. Det förekommer även transporter kopplade till drift och underhåll av vindkraftverken Hinderbelysning Nuvarande lagstiftning gällande hinderbelysning (TSFS 2013:9) Vindkraftverken kommer att förses med hindermarkering i enlighet med Transportstyrelsens vid var tid gällande föreskrifter. Nedan anges de regler för hindermarkering som gäller i dagsläget, vilka är beroende av vindkraftverkens totalhöjd. Vindkraftverk som överstiger 150 meter totalhöjd ska förses med högintensivt vitt blinkande ljus dagtid, med lägre styrka under gryning, mörker och skymning. I mörker ska hinderbelysningen enligt aktuella föreskrifter ha en ljusstyrka på 2000 candela (cd) +/- 25 procent och avge blinkningar per minut. Candela är ett mått på hur mycket ljus en ljuskälla avger i en angiven vinkel. Högintensiva ljus som installeras på nivån 150 meter eller lägre över mark- eller vattenytan ska riktas uppåt för att minska störningar för omgivande bebyggelse. Ljusets riktning ska vara: 1. 0º om ljusen installeras på en nivå över 151 meter, 2. 1º om ljusen installeras på en nivå av meter, 3. 2º om ljusen installeras på en nivå av meter, och 4. 3º om ljusen installeras på en nivå lägre än 92 meter. I en vindkraftpark kan de vindkraftverk som ej utgör parkens yttre gräns istället förses med fast rött lågintensivt ljus, såvida inte Transportstyrelsen beslutar om ytterligare markering Demontering och återställning Den tekniska livslängden för ett vindkraftverk är år. Verksamhetsutövaren ansvarar för demontering och avveckling. Vid nedmontering och återställande av platsen kommer, liksom vid byggnation, transporter och nedmonteringsarbete att ske. 24

25 Det vägnät som har anlagts lämnas vanligtvis kvar och kan användas som transportvägar för skogsbruket där detta är applicerbart. På anläggningsytorna planteras skog. Återvinning av vindkraftverkets delar är att föredra i största möjliga mån, både ur ett miljömässigt och ekonomiskt perspektiv. Vindkraftverken monteras ned och stål, järn och koppar i vindkraftverken kan återvinnas. Kompositmaterialet i rotorbladen kan i dagsläget inte återvinnas, men försök på detta pågår. Vid skrotning tas kemikalierna tillvara genom tillbörligt förfarande. Fundamenten tas vanligtvis bort till 30 cm under markytan eller täcks med ett jordlager med 30 cm djup. Elkablar som framledes inte kommer att brukas klipps av och lämnas kvar i marken. Resurser för återställande fonderas och redovisas i tillståndsansökan för vindkraftanläggningen. Bilagor Bilaga A Trysslinge infrastruktur 25

Bilaga 3. Teknisk beskrivning

Bilaga 3. Teknisk beskrivning Bilaga 3 Teknisk beskrivning Teknisk Beskrivning Teknisk Data Den planerade vindparken kommer att bestå av maximalt 6 stycken vindkraftverk med en enskild effekt om cirka 2,0 3,5 MW. Vindkraftverkens navhöjd

Läs mer

Teknisk beskrivning Vestas V112. Foto Vestas

Teknisk beskrivning Vestas V112. Foto Vestas Teknisk beskrivning Vestas V112 Foto Vestas Vestas V112 Driftdata Märkeffekt 3 000 kw Inkopplingsvind 3 m/s Märkvind 12 m/s Urkopplingsvind 25 m/s Ljudnivå 7 m/s 100 db(a) 8 m/s 102,8 db(a) 10 m/s 106,5

Läs mer

Vindkraftprojekt Äskåsen. Samrådsunderlag

Vindkraftprojekt Äskåsen. Samrådsunderlag Vindkraftprojekt Äskåsen Samrådsunderlag 2010-08-31 Innehåll 1 INLEDNING...3 1.1 Bakgrund... 3 2 BESKRIVNING AV VINDKRAFTPROJEKT ÄSKÅSEN...4 2.1 Lokalisering... 4 2.2 Utformning... 5 2.3 Byggnation...

Läs mer

Elanslutning Inom parkområdet: Markförlagda kablar Längs väg Anslutning till regionala elnätet Utreds

Elanslutning Inom parkområdet: Markförlagda kablar Längs väg Anslutning till regionala elnätet Utreds Transporter till vindparken Stora/långa/tunga transporter: Rotorblad upp till 60 m långa Maskinhus upp emot 100 ton Torndelar över 4 m diameter Transport från hamn på allmänna vägar med följebil Nära till

Läs mer

Samrådsmöte Vindkraftpark Finnåberget enligt Miljöbalken (6 kap.) 2015-06-09 INFOGA BILD FRÅN FOTOMONTAGE

Samrådsmöte Vindkraftpark Finnåberget enligt Miljöbalken (6 kap.) 2015-06-09 INFOGA BILD FRÅN FOTOMONTAGE Samrådsmöte Vindkraftpark Finnåberget enligt Miljöbalken (6 kap.) 2015-06-09 INFOGA BILD FRÅN FOTOMONTAGE Agenda 18:00-21:00 Syfte med samrådet Om Kraftö AB Allmänt om vindkraft Val av lokalisering Presentation

Läs mer

Vindpark Älgkullen Teknisk beskrivning

Vindpark Älgkullen Teknisk beskrivning Vindpark Älgkullen Teknisk beskrivning 2015-04-07 MEDVERKANDE BESTÄLLARE Stena Renewable AB Box 7123 402 33 Göteborg Besöksadress: Rosenlundsgatan 3 KONTAKTPERSONER Pia Hjalmarsson Tel: +46 31 85 53 96

Läs mer

Storåsen Vindkraftspark

Storåsen Vindkraftspark Storåsen Vindkraftspark TEKNISK BESKRIVNING NV NORDISK VINDKRAFT AB 2017-11-27 NV Nordisk Vindkraft AB Lilla Bommen 1 SE- 411 04 Göteborg T +46 31 339 59 60 www.nordiskvindkraft.se Innehåll 1. FÖRORD...

Läs mer

FJÄLLBERG VINDKRAFTANLÄGGNING. Teknisk Beskrivning

FJÄLLBERG VINDKRAFTANLÄGGNING. Teknisk Beskrivning FJÄLLBERG VINDKRAFTANLÄGGNING Teknisk Beskrivning 2013-02-08 Medverkande Beställare: NV Nordisk Vindkraft AB Konsult: WSP Environmental, Göteborg Uppdragsansvarig: Christian Peterson, 031-727 27 91, Christian.Peterson@WSPGroup.se

Läs mer

Bilaga 12 till MKB Ha lsingeskogens vindkraftpark

Bilaga 12 till MKB Ha lsingeskogens vindkraftpark Pöyry SwedPower AB Sida 1 Bilaga 12 till MKB Ha lsingeskogens vindkraftpark Teknisk beskrivning (Pöyry SwedPower AB) Pöyry SwedPower AB Box 24015 (Valhallavägen 211) 104 50 Stockholm Sverige E-Post: swedpower@poyry.com

Läs mer

Bilaga 19 Dok.nr. 331017400_00

Bilaga 19 Dok.nr. 331017400_00 Bilaga 19 Dok.nr. 331017400_00 TEKNISK BESKRIVNING 1 VINDKRAFTVERK Ett vindkraftverk består av huvuddelarna turbin, maskinhus och torn. Turbinen har tre blad av armerad plast fästa vid ett nav som i sin

Läs mer

TEKNISK BESKRIVNING VINDPARK GRÄVLINGKULLARNA

TEKNISK BESKRIVNING VINDPARK GRÄVLINGKULLARNA Bilaga B Stena Renewable AB [Type text] Titel Författare Teknisk beskrivning, Vindpark Grävlingkullarna Johnny Carlberg, Gabriella Nilsson & Hulda Pettersson, Sweco Uppdragsnummer 546 8506 000 Sweco Energuide

Läs mer

Hjuleberg Vindkraftpark

Hjuleberg Vindkraftpark Hjuleberg Vindkraftpark Hjuleberg vindkraftpark Hjuleberg vindkraftpark byggdes under 2013-2014 och ligger i Falkenbergs kommun i Hallands län. Vindkraftparken består av tolv Siemens turbiner med en effekt

Läs mer

Teknisk Beskrivning. Vindpark Tribbhult. Västerviks kommun

Teknisk Beskrivning. Vindpark Tribbhult. Västerviks kommun Teknisk Beskrivning Vindpark Tribbhult Västerviks kommun December 2014 Medverkande Beställare: Statkraft Södra Vindkraft AB Konsult: WSP Sverige AB (WSP Environmental, Malmö) Allmänt kartmaterial: Lantmäteriet

Läs mer

Storflohöjden Bräcke kommun. Projektbeskrivning för etablering av vindkraftverk. Bygglovshandlingar

Storflohöjden Bräcke kommun. Projektbeskrivning för etablering av vindkraftverk. Bygglovshandlingar Storflohöjden Bräcke kommun Projektbeskrivning för etablering av vindkraftverk Bygglovshandlingar Mars 2011 www.jamtvind.se 1 Innehållsförteckning Innehåll Inledning 3 Lokalisering 3 Vägar 4 Vindförutsättningar

Läs mer

Högkölens vindpark. Projektbeskrivning

Högkölens vindpark. Projektbeskrivning Högkölens vindpark Projektbeskrivning PROJEKTBESKRIVNING HÖGKÖLEN 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen

Läs mer

Vindpark Boge. Sammanfattning av ansökan. 2012-07-19 Boge Vindbruk AB. Boge Vindbruk AB org nr: 556812-8796

Vindpark Boge. Sammanfattning av ansökan. 2012-07-19 Boge Vindbruk AB. Boge Vindbruk AB org nr: 556812-8796 Vindpark Boge Fotomontage. Utsikt från Kalbrottet i Slite. Vindkraftverket i förgrund är det befintliga verket Tornsvalan. De sju verken i Vindpark Boge syns i bakgrunden. Sammanfattning av ansökan 2012-07-19

Läs mer

Säliträdbergets vindpark. Projektbeskrivning

Säliträdbergets vindpark. Projektbeskrivning Säliträdbergets vindpark Projektbeskrivning PROJEKTBESKRIVNING SÄLITRÄDBERGET 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver

Läs mer

Högkölens vindpark. Projektbeskrivning

Högkölens vindpark. Projektbeskrivning Högkölens vindpark Projektbeskrivning PROJEKTBESKRIVNING HÖGKÖLEN 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen

Läs mer

Vindkraftsprojektet. Vindkraftprojekt. Dals Ed. Midsommarberget. Samrådsunderlag - myndighetssamråd Samrådsunderlag V

Vindkraftsprojektet. Vindkraftprojekt. Dals Ed. Midsommarberget. Samrådsunderlag - myndighetssamråd Samrådsunderlag V Vindkraftsprojektet Vindkraftprojekt Dals Ed Midsommarberget Samrådsunderlag - myndighetssamråd 2011-09-20 Samrådsunderlag 2010-08-14 V-1109-13 Innehåll 1 INLEDNING... 3 2 PROJEKTBESKRIVNING... 3 3 UTFORMNING...

Läs mer

Röbergsfjällets vindpark. Projektbeskrivning

Röbergsfjällets vindpark. Projektbeskrivning Röbergsfjällets vindpark Projektbeskrivning PROJEKTBESKRIVNING RÖBERGSFJÄLLET 2/6 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver

Läs mer

Bilaga 14. Miljökonsekvensbeskrivning. Radarstyrd hinderbelysning Vindpark Ljungbyholm

Bilaga 14. Miljökonsekvensbeskrivning. Radarstyrd hinderbelysning Vindpark Ljungbyholm Bilaga 14 Miljökonsekvensbeskrivning Radarstyrd hinderbelysning Vindpark Ljungbyholm Utredning av tekniska och ekonomiska möjligheter för radarstyrd hinderbelysning Vindpark Ljungbyholm Innehåll 1. INLEDNING

Läs mer

Bilaga C. Teknisk Beskrivning. Vindpark Östra Frölunda

Bilaga C. Teknisk Beskrivning. Vindpark Östra Frölunda Bilaga C Miljötillståndsansökan Teknisk Beskrivning Vindpark Östra Frölunda Teknisk beskrivning 2012-06-27 Vindpark Östra Frölunda Innehåll Inledning... 2 Vindkraftverk... 2 Fundament... 3 Kringanläggningar...

Läs mer

Brännlidens vindpark. Projektbeskrivning

Brännlidens vindpark. Projektbeskrivning Brännlidens vindpark Projektbeskrivning PROJEKTBESKRIVNING BRÄNNLIDEN 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen

Läs mer

Energi för framtiden Vindkraftparken Rödsand 2

Energi för framtiden Vindkraftparken Rödsand 2 Energi för framtiden Vindkraftparken Rödsand 2 Radie: 46,5 m Rotordiameter: 93 m Fakta Rotorn: 60 ton Nacellen (maskinhuset): 82 ton Torn: 100 ton Fundamentent: 1900 ton Startvind 4 m/s och stoppvind 25

Läs mer

Korpfjällets vindpark. Projektbeskrivning Etapp I

Korpfjällets vindpark. Projektbeskrivning Etapp I Korpfjällets vindpark Projektbeskrivning Etapp I PROJEKTBESKRIVNING KORPFJÄLLET I 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver

Läs mer

Bilaga 8. PM om regelverket för hindermarkering av vindkraftverk

Bilaga 8. PM om regelverket för hindermarkering av vindkraftverk Bilaga 8. PM om regelverket för hindermarkering av vindkraftverk PM - Regler för hindermarkering av vindkraftverk Scanergy, december 2016 Sammanfattning Från och med TSFS 2013:9 är skrivningen om att,

Läs mer

Tönsen vindpark. Projektbeskrivning

Tönsen vindpark. Projektbeskrivning Tönsen vindpark Projektbeskrivning PROJEKTBESKRIVNING TÖNSEN 2/6 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen mot

Läs mer

Så här byggdes Torkkola vindkraftspark

Så här byggdes Torkkola vindkraftspark Så här byggdes Torkkola vindkraftspark Merikartvägen N Torkkola Lillkyro 7 Torkkola vindkraftspark finns i Vasa längs med Merikartvägen, söder om Kyrö älv. Yta: ca 1 000 hektar Skiften: över 200 Markägare:

Läs mer

Bygglovsansökan för vindkraftanläggning Jonsbo

Bygglovsansökan för vindkraftanläggning Jonsbo Hylte kommun Samhällsbyggnadskontoret Storgatan 8 314 80 Hyltebruk Bygglovsansökan för vindkraftanläggning Jonsbo 1 Administrativa uppgifter Fastighetsbeteckningar: Sökande och byggherre: Kontaktperson:

Läs mer

Storrun. Trondheim. Östersund. Oslo. Stockholm. Faktaruta. Antal vindkraftverk 12. Total installerad effekt Förväntad årlig elproduktion

Storrun. Trondheim. Östersund. Oslo. Stockholm. Faktaruta. Antal vindkraftverk 12. Total installerad effekt Förväntad årlig elproduktion storrun vindkraft Storrun Trondheim Östersund Oslo Stockholm Faktaruta Antal vindkraftverk 12 Typ nordex N90 2,5 MW Rotordiameter 90 m Totalhöjd 125 m Total installerad effekt 30 MW Förväntad årlig elproduktion

Läs mer

STATKRAFT SCA VIND AB

STATKRAFT SCA VIND AB STATKRAFT SCA VIND AB Strömsund - Vindkraftdialogen 2008 2008-09-24 AGENDA Statkraft SCA Vind AB Projektets omfattning Projektets Tidplan Påverkan Lokalt Näringsliv STATKRAFT SVERIGE Kraftproduktion övertar

Läs mer

Samrådsunderlag. Fortsatt drift av vindkraftverk pa fastigheterna Nedra Vannborga 1:1 och Ö vra Vannborga 13:1, Borgholms kommun

Samrådsunderlag. Fortsatt drift av vindkraftverk pa fastigheterna Nedra Vannborga 1:1 och Ö vra Vannborga 13:1, Borgholms kommun Samrådsunderlag Fortsatt drift av vindkraftverk pa fastigheterna Nedra Vannborga 1:1 och Ö vra Vannborga 13:1, Borgholms kommun Ärende Kalmarsund Vind driver två vindkraftverk på fastigheterna Nedra Vannborga

Läs mer

EKONOMISK SÄKERHET - AVVECKLINGSKOSTNAD

EKONOMISK SÄKERHET - AVVECKLINGSKOSTNAD BILAGA 8 EKONOMISK SÄKERTHET - GRÖNHULT VINDKRAFTPARK 2014-05-19 EKONOMISK SÄKERHET - AVVECKLINGSKOSTNAD Grönhult Vindkraftpark 2 1 INLEDNING Vattenfall utreder möjligheten att etablera en vindkraftanläggning

Läs mer

Projektspecifikationer

Projektspecifikationer Projektspecifikationer Lantmäteriet Medgivande I2013/00189 Antal verk: Upp till 8 st. Installerad effekt per verk: 2,5-4 MW Total installerad effekt: 20-32 MW Totalhöjd: Max 200 m. Tornhöjd: Ca 94-144

Läs mer

D 0211 Generell information om fundamentanläggning

D 0211 Generell information om fundamentanläggning D 0211 Generell information om fundamentanläggning VINDKRAFTFUNDAMENT Vindkraftverk förankras i marken med någon typ av fundament. Det finns olika metoder för utförandet. Fundamentens utformning beror

Läs mer

STATKRAFT SCA VIND AB

STATKRAFT SCA VIND AB STATKRAFT SCA VIND AB NÄRINGSLIVSPÅVERKAN 2008-08-27 Agenda Statkraft SCA Vind AB Projektets omfattning Näringslivspåverkan Projekt Smöla 150 MW, 68 vindkraftverk (Film) STATKRAFT SVERIGE Kraftproduktion

Läs mer

MILJÖKONSEKVENSBESKRIVNING ÄNDRINGS- TILLSTÅND FÖR MUNKFLOHÖGEN VINDKRAFTPARK, ÖSTERSUNDS KOMMUN

MILJÖKONSEKVENSBESKRIVNING ÄNDRINGS- TILLSTÅND FÖR MUNKFLOHÖGEN VINDKRAFTPARK, ÖSTERSUNDS KOMMUN MILJÖKONSEKVENSBESKRIVNING ÄNDRINGS- TILLSTÅND FÖR VINDKRAFTPARK, ÖSTERSUNDS KOMMUN Munkflohögen AB 2013-10-10 1 (12) INNEHÅLLSFÖRTECKNING 1 INLEDNING OCH BAKGRUND 3 2 ADMINISTRATIVA UPPGIFTER 3 3 TILLSTÅND

Läs mer

Kompletterande samråd med särskilt berörda i samband med förprojektering av vindkraftverk vid Skäftesfall i Vetlanda kommun

Kompletterande samråd med särskilt berörda i samband med förprojektering av vindkraftverk vid Skäftesfall i Vetlanda kommun Tjänsteställe, handläggare Datum Beteckning Södra Statkraft Vindkraft Utveckling AB Ted Kransby 2010-05-10 Kompletterande samråd Till berörda fastighetsägare och boende i närområdet till Skäftesfall vindbruksanläggning

Läs mer

2014-06-16 Samhällsbyggnadskontoret Sollefteå kommun Djupövägen 3 881 80 Sollefteå

2014-06-16 Samhällsbyggnadskontoret Sollefteå kommun Djupövägen 3 881 80 Sollefteå 2014-06-16 Samhällsbyggnadskontoret Sollefteå kommun Djupövägen 3 881 80 Sollefteå BYGGLOVSANSÖKAN ENLIGT PBL FÖR UPPFÖRANDE OCH DRIFTEN AV 4 VINDKRAFTVERK PÅ FASTIGHETERNA Lungsjön 2:20, Lungsjön 2:4

Läs mer

Åmot-Lingbo vindpark. Projektbeskrivning

Åmot-Lingbo vindpark. Projektbeskrivning Åmot-Lingbo vindpark Projektbeskrivning PROJEKTBESKRIVNING ÅMOT-LINGBO 2/6 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen

Läs mer

Tönsen vindpark. Projektbeskrivning

Tönsen vindpark. Projektbeskrivning Tönsen vindpark Projektbeskrivning PROJEKTBESKRIVNING TÖNSEN 2/6 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen mot

Läs mer

Korpfjällets vindpark. Projektbeskrivning Etapp II

Korpfjällets vindpark. Projektbeskrivning Etapp II Korpfjällets vindpark Projektbeskrivning Etapp II PROJEKTBESKRIVNING KORPFJÄLLET II 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver

Läs mer

Vindpark Töftedalsfjället

Vindpark Töftedalsfjället Vindpark Töftedalsfjället En förnybar energikälla På Töftedalsfjället omvandlas vindenergi till el. Genom att utnyttja en av jordens förnybara energikällor kan vi ta ytterligare ett steg bort från användandet

Läs mer

Fallåsbergets vindpark. Projektbeskrivning

Fallåsbergets vindpark. Projektbeskrivning Fallåsbergets vindpark Projektbeskrivning PROJEKTBESKRIVNING FALLÅSBERGET 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen

Läs mer

Markbygden Etapp 2 - Elanslutning

Markbygden Etapp 2 - Elanslutning Bilaga A Markbygden Etapp 2 - Elanslutning Samrådsredogörelse 2015-03-19 Tidigare samråd Bolaget har tidigare genomfört samråd enligt 6 kap 4 miljöbalken för hela projektet Vindkraft i Markbygden i samband

Läs mer

Vindkraftsprojekt Brattmyrliden. Samrådsunderlag samråd med allmänhet. Dnr: V-1105-08

Vindkraftsprojekt Brattmyrliden. Samrådsunderlag samråd med allmänhet. Dnr: V-1105-08 Vindkraftsprojekt Brattmyrliden Samrådsunderlag samråd med allmänhet Dnr: V-1105-08 Innehåll 1 BAKGRUND... 3 2 PROJEKTBESKRIVNING... 3 3 UTFORMNING... 5 3.1 Vindkraftverk... 5 3.2 Tillfartsvägar... 5 3.3

Läs mer

Luongastunturis vindpark. Projektbeskrivning

Luongastunturis vindpark. Projektbeskrivning Luongastunturis vindpark Projektbeskrivning PROJEKTBESKRIVNING LUONGASTUNTURI 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver

Läs mer

STATKRAFT SCA VIND AB

STATKRAFT SCA VIND AB STATKRAFT SCA VIND AB 2009-09-25 Presentation av projektet i samarbete med Vindkraftssamordning i Jämtlands län och dess näringsliv Henrik Berglund, Statkraft 1 STATKRAFT SVERIGE Kraftproduktion övertar

Läs mer

Samrådsmöte Vindkraftpark Fjällbohög enligt Miljöbalken (6 kap.) 2015-06-08 INFOGA BILD FRÅN FOTOMONTAGE

Samrådsmöte Vindkraftpark Fjällbohög enligt Miljöbalken (6 kap.) 2015-06-08 INFOGA BILD FRÅN FOTOMONTAGE Samrådsmöte Vindkraftpark Fjällbohög enligt Miljöbalken (6 kap.) 2015-06-08 INFOGA BILD FRÅN FOTOMONTAGE Agenda 18:00-21:00 Syfte med samrådet Om Kraftö AB Allmänt om vindkraft Val av lokalisering Presentation

Läs mer

TEKNISK BESKRIVNING

TEKNISK BESKRIVNING 2011-09-08 TEKNISK BESKRIVNING VINDPARK Moskogen Administrativa uppgifter Sökandes namn: Adress: JP Vind AB Box 380, 831 25 Östersund Telefonnummer: 063-14 94 00 Telefax: 063-57 41 24 Kontaktperson: e-post:

Läs mer

E.ON Vind Sverige AB Vindkraftprojekt Gröninge

E.ON Vind Sverige AB Vindkraftprojekt Gröninge E.ON Vind Sverige AB Vindkraftprojekt Gröninge Underlag till samrådsmöte 17/1 2012 enligt miljöbalken 6 kap 4 2011-12-09 Dnr: V-1112-04 Innehåll 1 INLEDNING... 3 1.1 Bakgrund... 4 2 BESKRIVNING AV VINDKRAFTPROJEKT

Läs mer

Maevaara vindpark. Projektbeskrivning Etapp I

Maevaara vindpark. Projektbeskrivning Etapp I Maevaara vindpark Projektbeskrivning Etapp I PROJEKTBESKRIVNING MAEVAARA I 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen

Läs mer

Maevaara vindpark. Projektbeskrivning Etapp I

Maevaara vindpark. Projektbeskrivning Etapp I Maevaara vindpark Projektbeskrivning Etapp I PROJEKTBESKRIVNING MAEVAARA I 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen

Läs mer

Vindkraftprojekt Högklippen. Samrådsunderlag 2009-10-14

Vindkraftprojekt Högklippen. Samrådsunderlag 2009-10-14 Vindkraftprojekt Högklippen Samrådsunderlag 2009-10-14 Innehåll 1 INLEDNING...3 1.1 Bakgrund... 3 2 BESKRIVNING AV VINDKRAFTPROJEKT HÖGKLIPPEN...4 2.1 Lokalisering... 4 2.2 Utformning... 5 2.3 Byggnation...

Läs mer

Vindprojekt Länsterhöjden & Storflötten

Vindprojekt Länsterhöjden & Storflötten Vindprojekt Länsterhöjden & Storflötten 56 TURBINER PÅ TOTALHÖJDER OM 220 METER I ETT AV DE HÖGST BELÄGNA SKOGSOMRÅDENA I ÅNGE KOMMUN TURINGE ENERGI Områdesinformation 2017-07-18 2 Huvudpunkter Projektöversikt

Läs mer

Bilaga 13 till MKB Ha lsingeskogens vindkraftpark

Bilaga 13 till MKB Ha lsingeskogens vindkraftpark Pöyry SwedPower AB Sida 1 Bilaga 13 till MKB Ha lsingeskogens vindkraftpark Förstudie väg- och anläggningsarbeten samt framkomlighetsanalys (Pöyry SwedPower AB) 2013-06-20 323024800_00 Bilaga 13 till

Läs mer

Samråd enligt miljöbalen kap 6 4 Vindkraftprojekt Gröninge. Anders Wallin, E.ON Vind Sverige AB 2012-01-17

Samråd enligt miljöbalen kap 6 4 Vindkraftprojekt Gröninge. Anders Wallin, E.ON Vind Sverige AB 2012-01-17 Samråd enligt miljöbalen kap 6 4 Vindkraftprojekt Gröninge Anders Wallin, E.ON Vind Sverige AB 2012-01-17 Agenda Varför är vi här idag? Tillståndsprocessen Presentation av Gröningeprojektet Närliggande

Läs mer

Samrådsunderlag gällande luftledning för anslutning av Markbygdens vindkraftpark, etapp 2

Samrådsunderlag gällande luftledning för anslutning av Markbygdens vindkraftpark, etapp 2 Samråd luftledning Dubblabergen - Trolltjärn, Markbygden etapp 2 2014-12-09 Samrådsunderlag gällande luftledning för anslutning av Markbygdens vindkraftpark, etapp 2 Följande är ett underlag för samråd,

Läs mer

BYGGLOVSANSÖKAN ENLIGT PBL FÖR UPPFÖRANDE OCH DRIFTEN AV 2 VINDKRAFTVERK PÅ FASTIGHETERNA Lungsjön 2:20, Lungsjön 1:6/2:20 i Sollefteå kommun

BYGGLOVSANSÖKAN ENLIGT PBL FÖR UPPFÖRANDE OCH DRIFTEN AV 2 VINDKRAFTVERK PÅ FASTIGHETERNA Lungsjön 2:20, Lungsjön 1:6/2:20 i Sollefteå kommun 2013-01-16 Samhällsbyggnadskontoret Sollefteå kommun Djupövägen 3 881 80 Sollefteå BYGGLOVSANSÖKAN ENLIGT PBL FÖR UPPFÖRANDE OCH DRIFTEN AV 2 VINDKRAFTVERK PÅ FASTIGHETERNA Lungsjön 2:20, Lungsjön 1:6/2:20

Läs mer

MILJÖKONSEKVENSBESKRIVNING ÄNDRINGS- TILLSTÅND FÖR GÅXSJÖ-RAFTSJÖHÖJDEN VINDKRAFTPARK, STRÖMSUNDS KOMMUN

MILJÖKONSEKVENSBESKRIVNING ÄNDRINGS- TILLSTÅND FÖR GÅXSJÖ-RAFTSJÖHÖJDEN VINDKRAFTPARK, STRÖMSUNDS KOMMUN MILJÖKONSEKVENSBESKRIVNING ÄNDRINGS- TILLSTÅND FÖR GÅXSJÖ-RAFTSJÖHÖJDEN VINDKRAFTPARK, STRÖMSUNDS KOMMUN Raftsjö Vind AB 2013-10-17 1 (12) INNEHÅLLSFÖRTECKNING 1 INLEDNING OCH BAKGRUND 3 2 ADMINISTRATIVA

Läs mer

Samrådsunderlag Vindkraft Rågåkra

Samrådsunderlag Vindkraft Rågåkra Samrådsunderlag Vindkraft Rågåkra Samrådsunderlag 2010-11-23 Innehållsförteckning 1 Administrativa uppgifter... 3 1.1 Sökande... 3 1.2 Kontaktuppgifter... 3 1.3 Konsult...3 1.4 Verksamhetsuppgifter...

Läs mer

Hornamossens vindpark. Projektbeskrivning

Hornamossens vindpark. Projektbeskrivning Hornamossens vindpark Projektbeskrivning PROJEKTBESKRIVNING HORNAMOSSEN 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen

Läs mer

Orrbergets vindpark. Projektbeskrivning

Orrbergets vindpark. Projektbeskrivning Orrbergets vindpark Projektbeskrivning PROJEKTBESKRIVNING ORRBERGET 2/6 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen

Läs mer

Förslag på dagordning

Förslag på dagordning Förslag på dagordning Syfte med detta samråd Presentation av Holmen Förutsättningar Teknik Tidplan Lagstiftning Genomgång av specifika förutsättningar för respektive delprojekt Frågestund Fika Koncernen

Läs mer

Stigshöjdens vindpark. Projektbeskrivning

Stigshöjdens vindpark. Projektbeskrivning Stigshöjdens vindpark Projektbeskrivning 2 3 Om projektet OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen mot en hållbar

Läs mer

Bilaga C:6. Lokal påverkan av vindpark Marviken

Bilaga C:6. Lokal påverkan av vindpark Marviken Bilaga C:6 Lokal påverkan av vindpark Marviken Naturmiljön påverkas temporärt under byggstadiet, vilket är oundvikligt vid alla byggföretag. Naturvärden i området är noga kartlagda. På Stora och Västra

Läs mer

PILOTPROJEKT VINDKRAFT BRUNSMO KARLSKRONA KOMMUN

PILOTPROJEKT VINDKRAFT BRUNSMO KARLSKRONA KOMMUN PILOTPROJEKT VINDKRAFT BRUNSMO KARLSKRONA KOMMUN 2010-02-13 SLUTRAPPORT Arise 2011-1205-SR 1 INNEHÅLLSFÖRTECKNING 1. Bakgrund 2. Investeringskalkyl 3. Vindpotential 4. Park design 5. Elproduktion 6. Upphandling

Läs mer

Vindenergi. Holger & Samuel

Vindenergi. Holger & Samuel Vindenergi Holger & Samuel Hur utvinns elenergi ur vinden? Ett vindkraftverk består av ett torn med rotorblad samt en generator. Vinden får rotorbladen att snurra, varpå rotationen omvandlas till el i

Läs mer

Velinga vindkraftpark

Velinga vindkraftpark Velinga vindkraftpark Samråd med allmänheten 2011.04.07 Områdesbeskrivning Området domineras av ett kuperat skogslandskap, starkt påverkat av skogsbruk. Skogen består till större delen av barrskog med

Läs mer

Projektbeskrivning. Vindkraft Täfteå Umeå kommun

Projektbeskrivning. Vindkraft Täfteå Umeå kommun Projektbeskrivning Vindkraft Täfteå Umeå kommun Innehållsförteckning Innehållsförteckning... 1 Inledning... 2 Sökanden... 2 Presentation av projektet... 3 Produktion och miljönytta... 4 Lokal nytta...

Läs mer

SAMRÅDSHANDLING. Samrådsmöte 2011-07-05 Vindkraftetablering i. MÖRTELEK med omnejd. i Uppvidinge kommun

SAMRÅDSHANDLING. Samrådsmöte 2011-07-05 Vindkraftetablering i. MÖRTELEK med omnejd. i Uppvidinge kommun SAMRÅDSHANDLING Samrådsmöte 2011-07-05 Vindkraftetablering i MÖRTELEK med omnejd i Uppvidinge kommun ADMINISTRATIVA UPPGIFTER Sökande: Billyvind AB Adress: Pistolvägen 10 226 49 LUND Telefon: 046-188 432

Läs mer

Projektbeskrivning Bliekevare vindkraftsanläggning

Projektbeskrivning Bliekevare vindkraftsanläggning Projektbeskrivning Bliekevare vindkraftsanläggning Bakgrund OX2 utvecklar, bygger, finansierar och förvaltar förnybara energianläggningar i Norden. Vi driver omställningen till en hållbar energisektor

Läs mer

Maevaara vindpark. Projektbeskrivning Etapp II

Maevaara vindpark. Projektbeskrivning Etapp II Maevaara vindpark Projektbeskrivning Etapp II 2/5 OX2 utvecklar, bygger, finansierar och förvaltar förnybara energianläggningar i Norden. Vi driver omställningen till en hållbar energisektor genom att

Läs mer

Vindkraftprojekt Palsbo, Samråd enligt 6 kap 4 miljöbalken 2011-05-10

Vindkraftprojekt Palsbo, Samråd enligt 6 kap 4 miljöbalken 2011-05-10 Vindkraftprojekt Palsbo, Vaggeryds och Gislaveds kommun Samråd enligt 6 kap 4 miljöbalken 2011-05-10 Agenda: Bakgrund Tillstånd och samråd Tidplan Vägar och markarbeten Elanslutning Natur-, kultur- och

Läs mer

SAMRÅDSUNDERLAG ÄNDRINGSTILLSTÅND FÖR GÅXSJÖ-RAFTSJÖHÖJDEN VINDKRAFTPARK

SAMRÅDSUNDERLAG ÄNDRINGSTILLSTÅND FÖR GÅXSJÖ-RAFTSJÖHÖJDEN VINDKRAFTPARK SAMRÅDSUNDERLAG ÄNDRINGSTILLSTÅND FÖR GÅXSJÖ-RAFTSJÖHÖJDEN VINDKRAFTPARK Raftsjö Vind AB 2018-11-19 1 INNEHÅLLSFÖRTECKNING 1 INLEDNING OCH BAKGRUND 3 2 ADMINISTRATIVA UPPGIFTER 3 3 GÄLLANDE TILLSTÅND,

Läs mer

1. Nybyggnadskarta och situationsritning

1. Nybyggnadskarta och situationsritning Tidaholms kommun Miljö- och byggkontoret 522 83 Tidaholm Dnr 2011-0336-4 Datum: 2011-11-04 KOMPLETTERING AV ANSÖKAN OM BYGGLOV OCH ANMÄLAN ENLIGT MILJÖBALKEN Miljö- och byggkontoret har den 24 oktober

Läs mer

TEKNISK BESKRIVNING Ansökan om tillstånd enligt 9 kap Miljöbalken

TEKNISK BESKRIVNING Ansökan om tillstånd enligt 9 kap Miljöbalken BILAGA B TEKNISK BESKRIVNING Ansökan om tillstånd enligt 9 kap Miljöbalken Vindkraftspark Mörttjärnberget Bräcke kommun Jämtlands län Statkraft SCA Vind AB Titel Teknisk Beskrivning Ansökan om tillstånd

Läs mer

Maevaara vindpark. Projektbeskrivning Etapp II

Maevaara vindpark. Projektbeskrivning Etapp II Maevaara vindpark Projektbeskrivning Etapp II 2/5 OX2 utvecklar, bygger, finansierar och förvaltar förnybara energianläggningar i Norden. Vi driver omställningen till en hållbar energisektor genom att

Läs mer

Vindkraftpark Åliden Projekt inom kursen Vindkraft Guld AB och AC-Vind AB

Vindkraftpark Åliden Projekt inom kursen Vindkraft Guld AB och AC-Vind AB UMEÅ UNIVERSITET 2007-10-29 Institutionen för tillämpad fysik och elektronik Vindkraftpark Åliden Projekt inom kursen Vindkraft Guld AB och AC-Vind AB Anders Strömberg ET03 Emma Renström ET03 Handledare:

Läs mer

Bröcklingbergets Vindkraftpark. Samråd med myndigheter 2009-12-16

Bröcklingbergets Vindkraftpark. Samråd med myndigheter 2009-12-16 Bröcklingbergets Vindkraftpark Samråd med myndigheter 2009-12-16 Ownpower Projects Projekteringsbolag för vindkraft Utvecklar projekt för egen portfölj, för andra och tillsammans med partner Konsultuppdrag

Läs mer

Bilaga 5 Fördelar med tillstånd utan fasta positioner

Bilaga 5 Fördelar med tillstånd utan fasta positioner Bilaga 5 Fördelar med tillstånd utan fasta positioner Sammanfattning fördelar med att inte koordinatsätta Energiutbytet blir så högt som möjligt i förhållande till omgivningspåverkan - Rätt vindkraftverk

Läs mer

STORHÖGEN Östersunds kommun, Jämtlands län

STORHÖGEN Östersunds kommun, Jämtlands län Samråd enligt miljöbalken med anledning av utbyggnad av vindkraft vid STORHÖGEN Östersunds kommun, Jämtlands län STATKRAFT SCA VIND AB 2011-10-11 Dagordning Statkraft SCA Vind AB Samråd Lokalisering och

Läs mer

TILLSTÅNDSANSÖKAN. Org. nr 556543-8701

TILLSTÅNDSANSÖKAN. Org. nr 556543-8701 TILLSTÅNDSANSÖKAN Ansökan om tillstånd enligt miljöbalken avseende uppförande och drift av gruppstation för vindkraft vid Fredriksdal i Nässjö kommun, Jönköpings län Sökande: Höglandsvind AB Org. nr 556543-8701

Läs mer

Brahehus vindpark. Projektbeskrivning

Brahehus vindpark. Projektbeskrivning Brahehus vindpark Projektbeskrivning PROJEKTBESKRIVNING BRAHEHUS 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen

Läs mer

Beräkning av kostnader för nedmontering och återställande av plats för vindkraftsprojekt vid Tormoserödsfjället

Beräkning av kostnader för nedmontering och återställande av plats för vindkraftsprojekt vid Tormoserödsfjället Beräkning av kostnader för nedmontering och återställande av plats för vindkraftsprojekt vid Tormoserödsfjället Stockholm 2011-09-19 Innehållsförteckning 1. Sammanfattning... 3 2. Consortis bakgrund...

Läs mer

Vindpark Boge. Projektbeskrivning- 2012-01-03

Vindpark Boge. Projektbeskrivning- 2012-01-03 Vindpark Boge Projektbeskrivning- 2012-01-03 Boge Vindbruk AB bildades sommaren 2010 och bolaget är baserat på Gotland. Företaget avserattsökatillståndtillattbyggaenvindkraftsparkinomdetområdeibogesockenpå

Läs mer

Others 9.2 % Nordex 4.3 % Senvion (RePower) 4.3 % Frisia 5.1 % Enercon 42.6 % Siemens/ AN Bonus 11.0 % Vestas/NEG Micon 23.5 %

Others 9.2 % Nordex 4.3 % Senvion (RePower) 4.3 % Frisia 5.1 % Enercon 42.6 % Siemens/ AN Bonus 11.0 % Vestas/NEG Micon 23.5 % Informationsmöte Aldermyrberget Storklinta 2018-06-26 Vindkraftspark Aldermyrberget Agenda Om wpd Aldermyrberget - bakgrund Preliminär tidplan byggnation Utformning av vindkraftsparken inkl. vägar & andra

Läs mer

Bilaga 13. PM - Riskanalys brand Duvhällen vindpark

Bilaga 13. PM - Riskanalys brand Duvhällen vindpark Bilaga 13. - Riskanalys brand Duvhällen vindpark UPPDRAG Riskanalys_brand_Duvhallen UPPDRAGSNUMMER 5473789000 UPPDRAGSLEDARE Gabriella Nilsson UPPRÄTTAD AV Gabriella Nilsson DATUM GRANSKAD AV Martin Bjarke

Läs mer

Energi för framtiden Vindkraftparken Kårehamn

Energi för framtiden Vindkraftparken Kårehamn E.ON Vind Energi för framtiden Vindkraftparken Kårehamn Radie: 56 m Rotordiameter: 112 m Fakta Nacellen (maskinhuset): 170 ton Torn: 170 ton Ett rotorblad: 13,5 ton Fundamentent: 1800 ton utan ballast

Läs mer

Hornamossens vindpark. Projektbeskrivning

Hornamossens vindpark. Projektbeskrivning s vindpark Projektbeskrivning PROJEKTBESKRIVNING HORNAMOSSEN 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen mot

Läs mer

2012-05-09. Kattegatt Offshore. Teknisk beskrivning. Havsbaserad vindkraftspark Falkenbergs kommun, Hallands län

2012-05-09. Kattegatt Offshore. Teknisk beskrivning. Havsbaserad vindkraftspark Falkenbergs kommun, Hallands län 2012-05-09 Kattegatt Offshore Teknisk beskrivning Havsbaserad vindkraftspark Falkenbergs kommun, Hallands län Beställare: Favonius AB Konsult: Triventus Consulting AB Rapportdatum: 2012-05-09 Projektnummer:

Läs mer

Åmot-Lingbo och Tönsen. Vindkraft under byggnation

Åmot-Lingbo och Tönsen. Vindkraft under byggnation Åmot-Lingbo och Tönsen Vindkraft under byggnation 2 3 har etablerat vindkraft i över 20 år. står bakom en betydande del av den storskaliga landbaserade vindkraften i Norden. Tillsammans med lokala intressenter,

Läs mer

Vindkraftparken Vilhällan Hudiksvalls kommun

Vindkraftparken Vilhällan Hudiksvalls kommun Vindkraftteknik Daniel Johannesson, Johan Bäckström och Katarina Sjöström Kajoda AB presenterar Vindkraftparken Vilhällan Hudiksvalls kommun Underlag till miljökonsekvensbeskrivning Sammanfattning Kajoda

Läs mer

Rödstahöjdens vindpark. Projektbeskrivning

Rödstahöjdens vindpark. Projektbeskrivning Rödstahöjdens vindpark Projektbeskrivning PROJEKTBESKRIVNING RÖDSTAHÖJDEN 2/5 OX2 utvecklar, bygger, finansierar och förvaltar anläggningar som producerar förnybar energi i norra Europa. Vi driver omställningen

Läs mer

Åmot-Lingbo vindpark. Projektbeskrivning

Åmot-Lingbo vindpark. Projektbeskrivning Åmot-Lingbo vindpark Projektbeskrivning 2 projektbeskrivning tönsen projektbeskrivning åmot-lingbo 3 Åmot - Lingbo Om projektet Åmot - Lingbo OX2 utvecklar, bygger, finansierar och förvaltar anläggningar

Läs mer

Mänsklig påverkan Landskap/fotomontage Ljud Skugga Säkerhet

Mänsklig påverkan Landskap/fotomontage Ljud Skugga Säkerhet Välkomna Utformning Lokalisering och placering Vindförutsättningar Vindkraftverk Fundament, väg och elnät Områdesbeskrivning Naturområden Djur och växter Inventeringar Kultur Mänsklig påverkan Landskap/fotomontage

Läs mer

Vattenfalls vindkraftprojekt

Vattenfalls vindkraftprojekt Vattenfalls vindkraftprojekt Kort om Vattenfall Vattenfall är en av Europas största elproducenter och den största producenten av fjärrvärme. Netto försäljning 2011: 181,040 miljarder kronor 7.7 miljoner

Läs mer

PILOTPROJEKT HAVSNÄS FÖRST AV DE STORA

PILOTPROJEKT HAVSNÄS FÖRST AV DE STORA PILOTPROJEKT HAVSNÄS FÖRST AV DE STORA ROLAND LORD PROJEKTCHEF 2010-02-04 1 VINDKRAFT I KALLT KLIMAT FÖRETAGET Helägt dotterbolag till RES Bildades 2002 Säte i Göteborg, lokalkontor i Östersund Cirka 30

Läs mer

Allmänna anvisningar: Del A och B: För att påskynda rättningen skall nytt blad användas till varje ny del.

Allmänna anvisningar: Del A och B: För att påskynda rättningen skall nytt blad användas till varje ny del. Vindkraftteknik Provmoment: Ladokkod: Tentamen ges för: tentamen 41No1B En2, En3 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-03-14 Tid: 9-13 Hjälpmedel:

Läs mer

Sveriges målsättning. Elcertifikatsystemet. Miljönytta

Sveriges målsättning. Elcertifikatsystemet. Miljönytta Sveriges målsättning 50 % av Sveriges totala energianvändning ska komma från förnybara energikällor till år 2020. Produktionen från förnyelsebara energikällor ska år 2020 vara 25 TWh. Det ska finnas planeringsförutsättningar

Läs mer