I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn.

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn."

Transkript

1 Komponentfysik Övning 4 VT-10 Utredande uppgifter: I: Beskriv strömmarna i en npn-transistor i normal mod i de neutrala delarna av transistorn. II: Beskriv de fyra arbetsmoderna för en npn-transistor. III: Vad är orsaken till strömförstärkningen i normal mod? IV: Definiera övergångsfrekvensen och beskriv vilka parametrar som påverkar den. Vilken av dessa parametrar har störst påverkan på övergångsfrekvensen. V: Rita följande diagram för en npn-transistor: a) Kollektorströmmen som funktion av spänningen mellan bas och emitter. b) Kollektorströmmen som funktion av spänningen mellan kollektor och emitter för olika spänningar mellan bas och emitter (= olika basströmmar). Beräkningsuppgifter: 1: Betrakta en bipolär npn-transistor av kisel med en emitterarea på 10x10 μm 2. Basen är dopad med N A =1, m -3 med en utsträckning W B =1,0 μm. Strömförstärkningen ß=300, kollektorn är dopad med N D =1, m -3 och en utsträckning W C =10,0μm. Emittern är dopad med N D =1, m -3. a) Beräkna utsträckningen av emittern, W E. b) För att minska basresistansen i transistorn ökas dopningskoncentrationen i basen med en faktor 5. Hur stor blir strömförstärkningen i detta fall? c) Hur stor är basresistansen i (a) och (b)? d) För att bibehålla förstärkningen från (a) med dopningen i (b) kan man ändra t.ex. utsträckningen av emittern. Beräkna utsträckningen på emittern i detta fall. e) Vad är mekanismen bakom den ändrade förstärkningen i (d) jämfört med (b)? 2: Om man gör en pnp-transistor med motsvarande geometri och dopning som i uppgift 1(a). Hur stor är förstärkningen nu? Vad beror eventuella skillnader på? 3: Om man råkar koppla transistorn i uppgift 1(a) fel så att man har blandat ihop emitter och kollektor. Hur stor är strömförstärkningen i detta fall? 4: En npn-transistor har en strömförstärkning, ß=450. Vilken operationsmod arbetar den i om den är kopplad med gemensam emitter om: a) U BE = 0,7V och U CE =5,2V? b) U BE = 0,7V och U CE =0,2V? c) U BE = 0,8V och U BC =0,3V? d) U BE = 0,8V och U BC =-0,7V? e) U BE = -0,8V och U BC =0,7V? f) U BE = -0,1V och U BC =-10V? g) I C = 455mA och I B =1mA? h) I C = 455mA och I E =502mA? Uppdaterad: Anders Gustafsson

2 Komponentfysik Övning 4 VT-10 5: Betrakta en bipolär npn-transistor av kisel med en emitterarea på 1,0x1,0 mm 2. Basen är dopad med N A = 1, m -3 med en utsträckning på W B =1,0 μm. Kollektorn är dopad med N D = 1, m -3 med en utsträckning på W C =3,0μm. Dopningskoncentrationen i emittern är N D = 1, m -3 och W E =2,0 μm för emittern. U BE =0,65V och U BC = - 4,0V. a) Beräkna emitter-, bas- och kollektorströmmarna. b) Beräkna förstärkningen (). c) Beräkna diffusionskapacitansen i emitter-basövergången. d) Beräkna den inbyggda spänningen i emitter-basövergången. e) Beräkna utsträckningen av emitter-basövergången. f) Beräkna utarmningskapacitansen i emitter-basövergången. g) Beräkna den inbyggda spänningen i kollektor-basövergången. h) Beräkna utsträckningen av kollektor-basövergången. i) Beräkna utarmningskapacitansen i kollektor-basövergången. j) Beräkna den totala kapacitansen, d.v.s. summan av alla kapacitanser. k) Bestäm transkonduktansen. l) Hur stor är övergångsfrekvensen på transistorn? m) Hur beror övergångsfrekvensen på arean för givna spänningar, U BE och U BC? Uppdaterad: Anders Gustafsson

3 Facit till Övning 4 1: a) W E = 1,0 μm b) ß = 60 ggr c) R B = 4,6k respektive 0,9 k d) W E = 5,0 μm e) Basströmmen beror på hål som injiceras i emittern från basen och hur stor diffusionsströmmen p.g.a. dessa hål är. Den strömmen beror på emitterns utsträckning, W E, där en kortare emitter ger en större gradient och en högre ström. Kollektorströmmen beror på elektroner som injiceras i basen från emittern. P.s.s. styrs den av basens utsträckning, W B. 2: ß = 33 ggr Ett av bidragen till förstärkningen i transistorn är kvoten mellan rörligheterna för minoritetsladdningsbärarna i basen och emittern. Normalt är rörligheten högre för elektroner än för hål (3 ggr i exemplet med kisel). Om det är det enda som skiljer transistorerna åt är skillnaden i dopningstyp så ändras förstärkning med kvadraten på kvoten mellan rörligheterna. I exemplet ger det en 9 ggr mindre förstärkning för pnp-transistorn jämfört med npn-transistorn. 3: ß = 3 ggr 4: a) Aktiv mod. b) Bottnad mod. c) Bottnad mod. d) Aktiv mod. e) Inverterad mod. f) Strypt mod. g) Aktiv mod. h) Bottnad mod. 5: a) I B = 0,74 ma, I C = 44 ma och I E = 45 ma b) ß = 60 ggr c) C diff = 0,25 nf d) U bibe = 0,89 V e) d totbe = 62 nm f) C je = 1,7 nf g) U bibc = 0,78 V h) d totbc = 0,87μm i) C je = 0,12 nf j) C tot = 2,0 nf k) g m = 1,7 A/V l) f t = 130 MHz m) Oberoende av arean Anders Gustafsson 3 (11) Uppdaterad

4 I Det finns i huvudsak två flöden av laddningsbärare i en bipolär npn-transistor. Dels rör sig elektroner från emittern till kollektorn och dels rör sig hål från basen till emittern. I kollektorn har vi en elektronström som beror på ett svagt elektriskt fält eftersom en liten del av U BC ligger över den neutrala delen av kollektorn. Det är en driftström. Motsvarande (drift-)hålström i kollektorn är försumbar eftersom p << n. I basen har vi en elektronström som beror på en koncentrationsgradient p.g.a. injektionen av elektroner från emittern, en diffusionsström. Vi har också en hålström orsakad av ett svagt elektriskt fält, en driftström. Motsvarande (drift-)elektronström är försumbar. I emittern har vi en elektronström som beror på ett svagt elektriskt fält, en driftström. Motsvarande (drift-)hålström är försumbar Vi har också en hålström orsakad av en koncentrationsgradient p.g.a. injektionen av hål från basen, en diffusionsström. II I normal arbetsmod är bas-emitterövergången framspänd och bas-kollektorövergången backspänd. Basströmmen består av hål som injiceras från basen till emittern. Kollektorströmmen består av elektroner som injiceras i basen från emittern och som sedan tar sig över till kollektorn. I inverterad arbetsmod är bas-emitterövergången backspänd och bas-kollektorövergången framspänd. Basströmmen består av hål som injiceras från basen till kollektorn. Emitterströmmen består av elektroner som injiceras i basen från kollektorn och som sen tar sig över till emittern. I strypt arbetsmod är bas-emitterövergången backspänd och bas-kollektorövergången backspänd. Eftersom båda övergångarna är backspända så går det i princip inga strömmar, bara backströmmar. I bottnad arbetsmod är både bas-emitterövergången och bas-kollektorövergången framspända. Basströmmen består av hål som injiceras från basen till emittern och till kollektorn. Elektronströmmen är lite mer komplicerad. Dels injiceras elektroner från emitter till bas och dels injiceras elektroner från kollektor till emitter. Beroenden på vilken av övergångarna som är mest framspänd så kommer nettoeffekten att vara elektroner att röra från emitter till kollektor (U BE >U BC ) eller i motsatt riktning (U BE <U BC ). Vid exakt lika stor framspänning går det ingen elektronström alls. III Strömförstärkningen i normal mod för en npn-transistor ges av tre parametrar, eller närmare bestämt kvoter mellan tre parametrar: i) Materialparametrarna kvoten mellan elektronrörligheten i basen och hålrörligheten i emittern. ii) Geometrin kvoten mellan utsträckningen på emittern och utsträckningen på basen. iii) Dopningskoncentrationerna Kvoten mellan dopningskoncentrationen i emittern och dopningskoncentrationen i basen. IV Övergångsfrekvensen är den frekvens när en transistor, med kortsluten utgång ger en förstärkning på ett. Under den frekvensen så är förstärkningen större än ett och över den frekvensen är förstärkningen mindre än ett, d.v.s. en förminskning. Det är alltså frekvens där man går från att ha en förstärkning till att ha en förminskning av signalen. Övergångsfrekvensen beror i huvudsak på summan av de tre kapacitanserna i transistorn (ju större kapacitans desto lägre övergångsfrekvens) och kollektorströmmen (ju högre ström desto högre övergångsfrekvens). Normalt är det diffusionskapacitansen i den framspända basemitterövergången som är den största av de tre. Eftersom diffusionskapacitansen skalar linjärt med kollektorströmmen, så är övergångsfrekvensen i det närmaste oberoende av kollektorströmmen. Anders Gustafsson 4 (11) Uppdaterad

5 V: Kollektorströmmen som funktion av spänningen mellan bas och emitter: b) Kollektorströmmen som funktion av spänningen mellan kollektor och emitter för olika spänningar mellan bas och emitter. Anders Gustafsson 5 (11) Uppdaterad

6 1a) Förstärkningen i en npn-transistorn ges av diffusionskonstanterna för minoritetsladdningsbärarna i emittern och i basen, dopningskoncentrationerna i bas och emitter och utsträckningen på bas och emitter: = μ n N D E W E. För att få fram μ p N AB W B utsträckningen på emittern ur givna data måste vi skriva om formeln lite: W E = μ p N A B W B. μ n N DE Vilket ger: W E = 300 0, , = 1, m = 1,0 μm A=10x10 μm 2 = m 2 L=B=10 μm=1,010-5 m N DE =1, m -3 N AB =1, m -3 N DC =1, m -3 W B =1,0 μm= 1,010-6 m W C =10,0μm= 1,010-5 m μ p =0,135 m 2 /Vs μ n =0,045 m 2 /Vs ß=300 ggr U t =0,0259 V e = 1, As b) Om vi ökar dopningskoncentrationen i basen med en faktor fem kan vi använda ursprungsformeln för förstärkningen, vilket ger: = 0, , = 60 ggr D.v.s. förstärkningen är en femtedel. c) Resistansen vi är ute efter är för basströmmen, som i en npn-transistor består uteslutande av hålström. Det ger en resistans på: L R B = 3 W B B e μ p N AB I ursprungsfallet N AB = ( m 3 ) ger det: R B = , , = 4, = 4,6 k I det modifierade fallet N AB = ( m 3 ) ger det: R B = , , = 9, = 0,9 k Som förväntat har den femdubblade dopningskoncentrationen resulterat i en femtedel av basresistansen. d) Den nya utsträckningen på emittern ges på samma sätt som i (a), men med en högre dopningskoncentration i basen: W E = 300 0, , = 5, m = 5,0 μm Anders Gustafsson 6 (11) Uppdaterad

7 e) Basströmmen beror på hål som injiceras i emittern från basen och hur stor diffusionsströmmen p.g.a. dessa hål är. Basströmmen beror på emitterns utsträckning, W E, där en kortare emitter ger en större gradient och en högre ström. Kollektorströmmen beror på elektroner som injiceras i basen från emittern. P.s.s. beror den på koncentrationsgradienten av elektroner i basen, vilket ger upphov till en diffusionsström, vars storlek beror på basens utsträckning, W B : Om man gör en pnp-transistor med motsvarande geometri och dopning som i uppgift 1(a) måste vi skriva om formeln för förstärkningen. Vi behöver byta typ av dopning och framför allt byta typ av rörligheter: pnp = μ p N A E W E μ n N DB W B pnp = 0, , = 33,3333 = 33 ggr W B =1,0 μm= 1,010-6 m W E =2,5 μm= 2,510-6 m N DB =1, m -3 N AE =1, m -3 μ p =0,045 m 2 /Vs μ n =0,135 m 2 /Vs Att jämföra med 300 ggr för motsvarande npn-transistor. Ett av bidragen till förstärkningen i transistorn är kvoten mellan rörligheterna för minoritets laddningsbärarna i basen och emittern. Normalt är rörligheten högre för elektroner än för hål (3 ggr i exemplet med kisel). Om det är det enda som skiljer transistorerna åt är skillnaden i förstärkning kvadraten på kvoten. I exemplet ger det en 9 ggr lägre förstärkning för pnp-transistorn jämfört med npn-transistorn : Om man råkar koppla transistorn i uppgift 1(a) fel så att man har blandat ihop emitter och kollektor får vi också modifiera formeln för förstärkningen. Nu behöver vi byta ut allt som har med emittern att göra mot det som har med kollektorn att göra: felvänd = μ n N D C W C μ p N AB W B = 0, , = 3 ggr W B = 1,0 μm = 1,010-6 m W C = 10μm = 1,010-5 m μ n = 0,135 m 2 /Vs μ p = 0,045 m 2 /Vs N AB = 1, m -3 N DC = 1, m -3 Strömförstärkningen räddas av att kollektorn är längre än emittern (x10) och att elektroner är mer lättrörliga än hål (x3) trots att dopningskoncentrationerna förstör förstärkningen (/10) Anders Gustafsson 7 (11) Uppdaterad

8 4: En npn-transistor jobbar i fyra moder: Aktiv mod Bas-emitterövergången är framspänd (U BE > 0) och bas-kollektorövergången är backspänd (U BC < 0). Hål flyter från basen till emittern och ger en basström från bas till emitter, elektroner flyter från emittern till basen till kollektorn och ger en kollektorström från kollektorn till basen. Kollektorströmmen adderas till basströmmen i emittern och ger en emitterström ut ur emittern. Inverterad mod Bas-emitterövergången är backspänd och bas-kollektorövergången är framspänd. Hål flyter från basen till kollektor och ger en basström från bas till kollektor, elektroner flyter från kollektorn till basen till emittern och ger en emitterström från emittern till basen. Emitterströmmen adderas till basströmmen i kollektorn och ger en kollektorrström ut ur kollektorn. Strömmen går alltså från emitter till kollektor, vilket är i fel riktning. Strömförstärkningen är generellt sämre i den här moden. Bottnad mod Bas-emitterövergången och bas-kollektorövergången är båda framspända. Hål flyter från basen till emittern och till kollektorn och ger en basström från bas till emitter och en basström från bas till kollektorn. Det gör att basströmmen är högre än i den aktiva moden. Beroende på vilken av övergångarna som är mest framspänd kommer riktingen på elektronströmmen att gå från kollektor till emitter (U BE > U BC ) eller från emitter till kollektor (U BE > U BC ). Strypt mod Bas-emitterövergången och bas-kollektorövergången är båda backspända. I princip flyter inga strömmar mer än backströmmar. Definition av strömriktningar: I B positiv in i basen från baskontakten. I C positiv in i kollektorn från kollektorkontakten. I E positiv ut ur emittern till emitterkontakten. Dessutom är U BC = U BE - U CE a) U BE = 0,7V och U CE =5,2V=> U BC =-4,5V Bas-emitter framspänd och bas-kollektor backspänd => Aktiv mod. b) U BE = 0,7V och U CE =0,2V=> U BC =0,5V Bas-emitter och bas-kollektor framspänd => Bottnad mod. c) U BE = 0,8V och U BC =0,3V Bas-emitter och bas-kollektor framspänd => Bottnad mod. d) U BE = 0,8V och U BC =-0,7V Bas-emitter framspänd och bas-kollektor backspänd => Aktiv mod. e) U BE = -0,8V och U BC =0,7V Bas-emitter backspänd och bas-kollektor framspänd => Inverterad mod. f) U BE = -0,1V och V BC =-10V Bas-emitter backspänd och bas-kollektor backspänd => Strypt mod. g) I C = 455mA och I B =1mA Kollektorströmmen stämmer väl överens med förstärkningen, d.v.s. transistorn jobbar i Aktiv mod. h) I C = 455mA och I E =502mA => I B =47mA. Kollektorströmmen är långt ifrån vad vi kan förvänta med förstärkningen 450. Vi hade förväntat oss en kollektorström på 4500,047 = 21 A. Alternativt så borde basströmmen vara 1mA för den givna kollektorströmmen. Transistorn är därför i Bottnad mod Anders Gustafsson 8 (11) Uppdaterad

9 5a) Basströmmen i en npn-transistor ges av: I B = e A U t μ p n i 2 W E N DE e U BE U t 0,0259 I B = 1, ,0259 0, e 0, = 7, A = 0,74 ma Kollektorströmmen ges av: I C = e A U t μ n n i 2 W B N AB e U BE U t 0,0259 I C = 1, ,0259 0, e 0, = 4, A = 44 ma U BE =0,65 V U BC =-4,0 V A=1,0x1,0 mm 2 =110-6 m 2 L=B=10 μm=1,010-5 m W E =2,0μm= 2,010-6 m W B =1,0 μm= 1,010-6 m W C =3,0μm= 3,010-6 m N AB =1, m -3 N DC =1, m -3 N DE =1, m -3 μ n =0,135 m 2 /Vs μ p =0,045 m 2 /Vs U t =0,0259 V r =11,8 0 =8, F/m e =1, As n i = m -3 Emitterströmmen ges av: I E = I B + I C = 0, = 45,16 = 45 ma b) DC-förstärkningen () ges av: = I C = μ n N D E W E I B μ p N AB W B Alternativ 1: = 44,4 44 = 60,000 ggr eller = 0,740 0,74 strömmarna från (a). = 59,456 ggr, beroende på hur noga vi anger värdet på Alternativ 2: = 0, , = 60 ggr Alternativ 2 ger ett bättre resultat eftersom vi inte använder oss av avrundade värden på strömmarna. c) Diffusionskapacitansen i bas-emitterövergången ges av: C diff = I 2 C 2 U W B t 2 μ n 6 ( ) 2 44, C diff = 0, ,135 =2, F = 0,25 nf d) Den inbyggda spänningen i bas-emitterövergången ges av: U bibe = U t ln N A B N D E 2 n i Anders Gustafsson 9 (11) Uppdaterad

10 U bibe = 0,0259 ln = 0,89455 = 0,89 V e) Utsträckningen av emitter-basövergången, som i princip är en n + p-övergång ges av: d pbe = 2 r 0 (U bibe U BE ) e N AB d pbe = 211,8 8, (0,894 0,65) 1, = 5, m = 56 nm Eftersom N AB bara är 10 gånger mindre än N DE är inte d n BE försumbar utan: d n BE = N A B N DE d pbe d n BE = ,46 = 5,6 nm 110 d totbe = d n BE + d pbe = 56,46 + 5,64 = 62,112 = 62 nm f) Utarmningskapacitansen i bas emitterövergången ges av dielektricitetskonstanten, arean och utarmningsområdets utsträckning: C je = r 0 A d tot BE. C je = 11,8 8, , = 1, F = 1,7 nf g) Den inbyggda spänningen i bas-kollektorövergången ges på samma sätt som i (d) av dopningskoncentrationerna: U bibc = U t ln N A B N DC 2 n i U bibc = 0,0259 ln = 0,7752 = 0,78 V h) Utsträckningen av bas-kollektorövergången ges på samma sätt som i (e), med den skillnaden att det nu handlar om en p + n-övergång som är backspänd: d n BC = ( ) 1, = 7, m = 0,79 μm 211,8 8, (0,775 4,0 EftersomN AB bara är 10 gånger större än N DC är inte d pbc försumbar utan: d pbc = N D C d N A n BC = ,789 = 0,0789 μm = 79 nm B 110 d totbc = d pbc + d nbc = 0, ,0789 = 0,867 = 0,87 μm Anders Gustafsson 10 (11) Uppdaterad

11 i) Utarmningskapacitansen i bas-kollektorövergången ges på samma sätt som i (f) C jc = 11,8 8, , = 1, F = 0,12 nf j) Om man kortsluter utgången så hamnar alla tre kapacitanserna parallellt. Kapacitansen för parallellkopplade kondensatorer ges av summan av kapacitanserna. Den totala kapacitansen med kortsluten utgång ges därför av summan av de tre kapacitanserna: C tot = C diff + C jbe + C jbc. C tot = 0, , , = 2, F = 2,0 nf k) Transkonduktansen talar om hur mycket utströmmen (I C ) ändras när inspänningen ändras, d.v.s. det är derivatan på kollektorströmmen med avseende på bas-emitterspänningen, som ges av: g m = I C U t g m = 4, = 1,7150 A/V= 1,7 A/V 0,0259 l) Övergångsfrekvensen, f t, på en transistor definieras som den frekvens där man vid kortsluten utgång har en strömförstärkning på 1. Under den frekvensen har man förstärkning och över den frekvensen har man dämpning av inströmmen. Den ges av: g m f t = 2( C je + C jc + C diff ) 1,715 f t = 2( 24, ,131+12,030 )110 9 = 1, Hz = 130 MHz m) Övergångsfrekvensen har fyra komponenter i sig, tre kapacitanser och transkonduktansen. Hur ändras då dessa med arean? Transkonduktansen beror linjärt på kollektorströmmen, som skalar linjärt med arean för en given bas-emitterspänning. Utarmningskapacitanserna skalar linjärt med arean. Diffusionskapacitansen beror linjärt på strömmen som enligt ovan skalar linjärt med arean. Det betyder att både täljaren och nämnaren skalar linjärt med arean och resultatet är att övergångsfrekvensen är oberoende av arean för givna spänningar på transistorn. Anders Gustafsson 11 (11) Uppdaterad

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090 011-01-10 08 00-13 00 Tentamen i Komponentfysik ESS030, ETI40/0601 och FFF090 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat

Läs mer

Föreläsning 9 Bipolära Transistorer II

Föreläsning 9 Bipolära Transistorer II Föreläsning 9 Bipolära Transistorer II Funktion bipolär transistor Småsignal-modell Hybrid-p 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser Optokomponenter pn-övergång:

Läs mer

Komponentfysik ESS030. Den bipolära transistorn

Komponentfysik ESS030. Den bipolära transistorn Komponentfysik ESS030 Den bipolära transistorn T- 2016 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken i en bipolär transistor. Det fundamentala byggblocket

Läs mer

Om inget annat anges så gäller det kisel och rumstemperatur (300K)

Om inget annat anges så gäller det kisel och rumstemperatur (300K) Komponentfysik Övning 3 VT-0 Om inget annat anges så gäller det kisel och rumstemperatur (300K) Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.

Läs mer

Föreläsning 11 Bipolära Transistorer I. BJT Bipolar JuncDon Transistor. FunkDon bipolär transistor. DC operadon, strömförstärkning

Föreläsning 11 Bipolära Transistorer I. BJT Bipolar JuncDon Transistor. FunkDon bipolär transistor. DC operadon, strömförstärkning Föreläsning 11 ipolära ransistorer J ipolar JuncDon ransistor FunkDon bipolär transistor Geometri npn D operadon, strömförstärkning OperaDonsmoder Early- effekten pnp transistor G. alla 1 deal transistor

Läs mer

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen. Komponentfysik Uppgifter pn del 1 VT-15 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i a), men

Läs mer

Föreläsning 9 Bipolära Transistorer II

Föreläsning 9 Bipolära Transistorer II Föreläsning 9 ipolära Transistorer Funktion bipolär transistor Småsignal-modell Hybrid-p Designparametrar 1 Komponentfysik - Kursöversikt ipolära Transistorer pn-övergång: kapacitanser Optokomponenter

Läs mer

Lösningar Tenta

Lösningar Tenta Lösningar Tenta 110525 1) a) Driftström: Elektriskt laddade partiklar (elektroner och hål) rör sig i ett elektriskt fält. Detta ger upphov till en ström som följer ohms lag. Diffusion: Elektroner / hål

Läs mer

Moment 1 - Analog elektronik. Föreläsning 1 Transistorn del 1

Moment 1 - Analog elektronik. Föreläsning 1 Transistorn del 1 Moment 1 - Analog elektronik Föreläsning 1 Transistorn del 1 Jan Thim 1 F1: Transistorn del 1 Innehåll: Historia Funktion Karakteristikor och parametrar Transistorn som förstärkare Transistorn som switch

Läs mer

Den bipolä rä tränsistorn

Den bipolä rä tränsistorn Komponentfysik ESS3 Laborationshandledning av: Martin Berg Elvedin Memišević Den bipolä rä tränsistorn VT-213 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken

Läs mer

Föreläsning 8 Bipolära Transistorer I

Föreläsning 8 Bipolära Transistorer I Föreläsning 8 iolära ransistorer Funktion biolär transistor Geometri nn D oeration, strömförstärkning Oerationsmoder Early-effekten n transistor G. alla 1 Komonentfysik - Kursöversikt iolära ransistorer

Läs mer

Föreläsning 13 Fälteffekttransistor III

Föreläsning 13 Fälteffekttransistor III Föreläsning 13 Fälteffekttransistor III pmo måsignal FET A, f t MO-Kondensator 014-05-19 Föreläsning 13, Komponentfysik 014 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

Föreläsning 9 Transistorn och OP-förstärkaren

Föreläsning 9 Transistorn och OP-förstärkaren Föreläsning 9 Transistorn och OP-förstärkaren /Krister Hammarling 1 Transistorn Innehåll: Historia Funktion Karakteristikor och parametrar Transistorn som förstärkare Transistorn som switch Felsökning

Läs mer

Rättade inlämningsuppgifter hämtas på Kents kontor Föreläsning 4 Må 11.00-11.30, 12.30-13.15 Kent Palmkvist To 11.00-11.30, 12.30-13.

Rättade inlämningsuppgifter hämtas på Kents kontor Föreläsning 4 Må 11.00-11.30, 12.30-13.15 Kent Palmkvist To 11.00-11.30, 12.30-13. /5/14 15:56 Praktisk info, forts. Löst uppgift Fyll i ett konvolut (återanvänds tills uppgiften godkänd TTE Elektronik Konvolut hittas ovanpå den svarta brevlåda som svar lämnas i vart brevlåda placerad

Läs mer

KAPITEL 2 MTU AB

KAPITEL 2 MTU AB KAPITEL 2 MTU AB 2007 29 HALVLEDARE De komponenter som vi hittills behandlat är motstånd av olika slag, lampor samt batterier. Det kan diskuteras om batteriet ska kallas komponent. Motstånd är den komponent

Läs mer

Halvledare. Transistorer, Förstärkare

Halvledare. Transistorer, Förstärkare Halvledare Transistorer, Förstärkare Om man har en två-ports krets v in (t) ~ v ut (t) R v ut (t) = A v in (t) A är en konstant: Om A är mindre än 1 så kallas kretsen för en dämpare Om A är större än 1

Läs mer

Föreläsning 11 Fälteffekttransistor II

Föreläsning 11 Fälteffekttransistor II Föreläsning 11 Fälteffekttransistor Fälteffekt Tröskelspänning Beräkning av strömmen Storsignal, D Kanallängdsmodulation Flatband-shift pmosfet 013-05-03 Föreläsning 11, Komponentfysik 013 1 Komponentfysik

Läs mer

Laboration: pn-övergången

Laboration: pn-övergången LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: pn-övergången Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer

Läs mer

Videoförstärkare med bipolära transistorer

Videoförstärkare med bipolära transistorer Videoförstärkare med bipolära transistorer IE1202 Analog elektronik - Joel Nilsson joelni at kth.se Innehåll i 1 Första försöket 1 1.1 Beräkningar....................................... 1 1.1.1 Dimensionering

Läs mer

För att skydda ett spänningsaggregat mot överbelastning kan man förse det med ett kortslutningsskydd som begränsar strömmen ut från aggregatet.

För att skydda ett spänningsaggregat mot överbelastning kan man förse det med ett kortslutningsskydd som begränsar strömmen ut från aggregatet. Kortslutningsskydd För att skydda ett spänningsaggregat mot överbelastning kan man förse det med ett kortslutningsskydd som begränsar strömmen ut från aggregatet. Utströmmen passerar R4, ett lågohmigt

Läs mer

TSTE20 Elektronik 01/31/ :24. Nodanalys metod. Nodanalys, exempel. Dagens föreläsning. 0. Förenkla schemat 1. Eliminera ensamma spänningskällor

TSTE20 Elektronik 01/31/ :24. Nodanalys metod. Nodanalys, exempel. Dagens föreläsning. 0. Förenkla schemat 1. Eliminera ensamma spänningskällor 0/3/204 0:24 Nodanalys metod 0. Förenkla schemat. liminera ensamma TST20 lektronik 2. Jorda en nod 3. nför nodpotentialer 4. nför referensriktningar på strömmarna i nätet 5. Sätt upp ekvation för varje

Läs mer

SM Serien Strömförsörjning. Transistorn

SM Serien Strömförsörjning. Transistorn Transistorn Transistorn är en av de viktigaste uppfinningar som gjorts under modern tid. Utan denna skulle varken rymdfärder eller PC-datorer vara möjliga. Transistorn ingår som komponent i Integrerade

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt

Läs mer

Definition av kraftelektronik

Definition av kraftelektronik F1: Introduktion till Kraftelektronik Definition av kraftelektronik Den enegelska motsvarigheten till kraft elektronik är Power electronics. På Wikipedia kan man hitta följande definition: Power electronics

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Bo Tannfors Transistorswitchen. Laboration E25 ELEKTRO

UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Bo Tannfors Transistorswitchen. Laboration E25 ELEKTRO UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Bo Tannfors 1997-01-14 Transistorswitchen Laboration E25 ELEKTRO Laboration E25 Transistorswitchen 2 Nyckelord Switch, bottnad- och strypt

Läs mer

Föreläsning 7 Fälteffek1ransistor IV

Föreläsning 7 Fälteffek1ransistor IV Föreläsning 7 Fälteffek1ransistor IV PMOS Småsignal FET A, f t MOS- Kondensator D/MOS- kamera Flash- minne 1 PMOS U Gate U - 0.V 1.0V 0.4V Source Isolator SiO Drain U - 1V P ++ N- typ semiconductor P ++

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer

Läs mer

Laboration 2: Likström samt upp och urladdningsförlopp

Laboration 2: Likström samt upp och urladdningsförlopp TSTE20 Elektronik Laboration 2: Likström samt upp och urladdningsförlopp v0.5 Kent Palmkvist, ISY, LiU Laboranter Namn Personnummer Godkänd Översikt I denna labb kommer ni bygga en strömkälla, och mäta

Läs mer

Tentamen i Elektronik fk 5hp

Tentamen i Elektronik fk 5hp Tentamen i Elektronik fk 5hp Tid: kl 9.13. Måndagen den 16 Mars 29 Sal: Bingo Hjälpmedel: formelsamling elektronik (14 sidor), formelsamling ellära samt valfri räknare. Maxpoäng: 3 Betyg: 12p3:a, 18p4:a

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

Elektroteknikens grunder Laboration 3. OP-förstärkare

Elektroteknikens grunder Laboration 3. OP-förstärkare Elektroteknikens grunder Laboration 3 OPförstärkare Elektroteknikens grunder Laboration 3 Mål Du ska i denna laboration studera tre olika användningsområden för OPförstärkare. Den ska användas som komparator,

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

Grindar och transistorer

Grindar och transistorer Föreläsningsanteckningar Föreläsning 17 - Digitalteknik I boken: nns ej med Grindar och transistorer Vi ska kort beskriva lite om hur vi kan bygga upp olika typer av grindar med hjälp av transistorer.

Läs mer

Laboration N o 1 TRANSISTORER

Laboration N o 1 TRANSISTORER Institutionen för tillämpad fysik och elektronik Umeå universitet Patrik Eriksson 22/10 2004 Analog elektronik 2 Laboration N o 1 TRANSISTORER namn: datum: åtgärda: godkänd: Målsättning: Denna laboration

Läs mer

Modifieringsförslag till Moody Boost

Modifieringsförslag till Moody Boost Modifieringsförslag till Moody Boost Moody Boost (MB) är en mycket enkel krets, en transistor och ett fåtal passiva komponenter- Trots det finns det flera justeringar som du kan göra för att få pedalen

Läs mer

Moment 1 - Analog elektronik. Föreläsning 3 Transistorförstärkare

Moment 1 - Analog elektronik. Föreläsning 3 Transistorförstärkare Moment 1 - Analog elektronik Föreläsning 3 Transistorförstärkare Jan Thim 1 F3: Transistorförstärkare Innehåll: Introduktion GE-steget EF-steget GB-steget Flerstegsförstärkare Felsökning 2 1 Förstärkare

Läs mer

TSTE20 Elektronik Lab5 : Enkla förstärkarsteg

TSTE20 Elektronik Lab5 : Enkla förstärkarsteg TSTE20 Elektronik Lab5 : Enkla förstärkarsteg Version 0.3 Mikael Olofsson Kent Palmkvist Prakash Harikumar 18 mars 2014 Laborant Personnummer Datum Godkänd 1 1 Introduktion I denna laboration kommer ni

Läs mer

4:8 Transistorn och transistorförstärkaren.

4:8 Transistorn och transistorförstärkaren. 4:8 Transistorn och transistorförstärkaren. Inledning I kapitlet om halvledare lärde vi oss att en P-ledare har positiva laddningsbärare, och en N-ledare har negativa laddningsbärare. Om vi sammanfogar

Läs mer

Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007.

Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007. Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007. Uppgifterna i tentamen ger totalt

Läs mer

Föreläsning 7 Fälteffek1ransistor IV

Föreläsning 7 Fälteffek1ransistor IV Föreläsning 7 Fälteffek1ransistor IV måsignal FET A, f t MO- Kondensator D/MO- kamera Flash- minne 1 måsignalmodell A kapacitanser i mä1nadsmod δu Isolator io 2 D N ++ N ++ P- typ halvledare δ Q δu >>

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik Cederlöf Tentamen i Grundläggande ellära och digitalteknik ETA 03 för D 2000-05-03 Tentamen omfattar 40 poäng, 2 poäng för varje uppgift. 20 poäng ger godkänd tentamen. Tillåtet hjälpmedel är

Läs mer

Induktiv beröringsfri närvarogivare/detektor med oscillator, (Proximity switch)

Induktiv beröringsfri närvarogivare/detektor med oscillator, (Proximity switch) Induktiv beröringsfri närvarogivare/detektor med oscillator, (Proximity switch) Om spolar och resonanskretsar Pot Core Såväl motstånd som kondensatorer kan vi oftast betrakta som ideala, det vill säga

Läs mer

Du har följande material: 1 Kopplingsdäck 2 LM339 4 komparatorer i vardera kapsel. ( ELFA art.nr datablad finns )

Du har följande material: 1 Kopplingsdäck 2 LM339 4 komparatorer i vardera kapsel. ( ELFA art.nr datablad finns ) Projektuppgift Digital elektronik CEL08 Syfte: Det här lilla projektet har som syfte att visa hur man kan konverterar en analog signal till en digital. Här visas endast en metod, flash-omvandlare. Uppgift:

Läs mer

FFY616. Halvledarteknik. Laboration 4 DIODER

FFY616. Halvledarteknik. Laboration 4 DIODER Halvledarteknik Laboration 4 DIODER Målet med denna laboration är att du skall lära dig hur olika typer av dioder fungerar och hur man kan använda dem Laborant: Godkänt den.. av. M. K. Friesel, I. Albinsson

Läs mer

Laboration II Elektronik

Laboration II Elektronik 817/Thomas Munther IDE-sektionen Halmstad Högskola Laboration II Elektronik Transistor- och diodkopplingar Switchande dioder, D1N4148 Zenerdiod, BZX55/C3V3, BZX55/C9V1 Lysdioder, Grön, Gul, Röd, Vit och

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser Dan Flavin 2014-04-02 Föreläsning 6, Komponentfysik 2014 1 Komponentfysik

Läs mer

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum Laboration 6 A/D- och D/A-omvandling A/D-omvandlare Digitala Utgång V fs 3R/2 Analog Sample R R D E C O D E R P/S Skiftregister R/2 2 N-1 Komparatorer Digital elektronik Halvledare, Logiska grindar Digital

Läs mer

Förstärkning Large Signal Voltage Gain A VOL här uttryckt som 8.0 V/μV. Lägg märke till att förstärkningen är beroende av belastningsresistans.

Förstärkning Large Signal Voltage Gain A VOL här uttryckt som 8.0 V/μV. Lägg märke till att förstärkningen är beroende av belastningsresistans. Föreläsning 3 20071105 Lambda CEL205 Analoga System Genomgång av operationsförstärkarens egenskaper. Utdelat material: Några sidor ur datablad för LT1014 LT1013. Sidorna 1,2,3 och 8. Hela dokumentet (

Läs mer

Repetition: Nätanalys för AC. Repetition: Elektricitetslära. Repetition: Halvledarkomponenterna

Repetition: Nätanalys för AC. Repetition: Elektricitetslära. Repetition: Halvledarkomponenterna FÖRELÄSNING 2 Repetition: Nätanalys för AC Repetition: Elektricitetslära Repetition: Halvledarkomponenterna Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 1(49) Repetition: Nätanalys

Läs mer

1.2 Två resistorer är märkta 220 ohm 0,5 W respektive 330 ohm 0,25 W. vilken är den största spänning som kan anslutas till:

1.2 Två resistorer är märkta 220 ohm 0,5 W respektive 330 ohm 0,25 W. vilken är den största spänning som kan anslutas till: Passiva komponenter. Vilken resistans och tolerans har en resistor märkt: a) röd, violett, gul, guld b) blå, grå, blå, silver c) brun, svart, svart, guld d) orange, vit, brun, röd, mellanrum, brun e) grön,

Läs mer

TRANSISTORER. Umeå universitet Institutionen för tillämpad. fysik och elektronik. Patrik Eriksson

TRANSISTORER. Umeå universitet Institutionen för tillämpad. fysik och elektronik. Patrik Eriksson Institutionen för tillämpad 2013-09-05 fysik och elektronik Umeå universitet Patrik Eriksson Redigerad av Agneta Bränberg Redigerad av Johan Haake Redigerad av Nils Lundgren TRANSISTORER Målsättning: Denna

Läs mer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer

Komponentfysik Introduktion. Kursöversikt. Varför Komponentfysik? Hålltider --- Ellära, Elektriska fält och potentialer Komponentfysik 2012 Introduktion Kursöversikt Varför Komponentfysik? Hålltider Ellära, Elektriska fält och potentialer 1 Lite om mig själv Erik Lind (Erik.Lind@eit.lth.se) Civ. Ing. i Teknisk Fysik Doktorerade

Läs mer

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0] Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:

Läs mer

Mätningar på transistorkopplingar

Mätningar på transistorkopplingar Ellab015A Mätningar på transistorkopplingar Namn Datum Handledarens sign. Laboration Varför denna laboration? Transistorn är en av de allra viktigaste komponenterna inom elektroniken. I den här laborationen

Läs mer

3.9. Övergångar... (forts: Halvledare i kontakt)

3.9. Övergångar... (forts: Halvledare i kontakt) 3.9. Övergångar... (forts: Halvledare i kontakt) [Understanding Physics: 20.9-20.12] Utjämningen av Ferminivåerna för två ledare i kontakt med varandra gäller också för två halvledare i kontakt med varandra.

Läs mer

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01 Elektro och Informationsteknik LTH Laboration 3 R- och RL-nät i tidsplanet Elektronik för D ETIA01??? Telmo Santos Anders J Johansson Lund Februari 2008 Laboration 3 Mål Efter laborationen vill vi att

Läs mer

Elektronik. MOS-transistorn. Översikt. Då och nu. MOS-teknologi. Lite historik nmosfet Arbetsområden pmosfet CMOS-inverterare NOR- och NAND-grindar

Elektronik. MOS-transistorn. Översikt. Då och nu. MOS-teknologi. Lite historik nmosfet Arbetsområden pmosfet CMOS-inverterare NOR- och NAND-grindar Översikt Pietro Andreani Institutionen för elektro- och informationsteknik unds universitet ite historik nmofet Arbetsområden pmofet CMO-inverterare NOR- och NAN-grindar MO-teknologi å och nu Metal-e-silicon

Läs mer

Batteri. Lampa. Strömbrytare. Tungelement. Motstånd. Potentiometer. Fotomotstånd. Kondensator. Lysdiod. Transistor. Motor. Mikrofon.

Batteri. Lampa. Strömbrytare. Tungelement. Motstånd. Potentiometer. Fotomotstånd. Kondensator. Lysdiod. Transistor. Motor. Mikrofon. Batteri Lampa Strömbrytare Tungelement Motstånd Potentiometer Fotomotstånd Kondensator Lysdiod Transistor Motor Mikrofon Högtalare Ampèremeter 1 1. Koppla upp kretsen. Se till att motorns plus och minuspol

Läs mer

Signalbehandling, förstärkare och filter F9, MF1016

Signalbehandling, förstärkare och filter F9, MF1016 Signalbehandling, förstärkare och filter F9, MF1016 Signalbehandling, inledning Förstärkning o Varför förstärkning. o Modell för en förstärkare. Inresistans och utresistans o Modell för operationsförstärkaren

Läs mer

Moment 1 - Analog elektronik. Föreläsning 2 Transistorn del 2

Moment 1 - Analog elektronik. Föreläsning 2 Transistorn del 2 Moment 1 - Analog elektronik Föreläsning 2 Transistorn del 2 Jan Thim 1 F2: Transistorn del 2 Innehåll: Fälteffekttransistorn - JFET Karakteristikor och parametrar MOSFET Felsökning 2 1 Introduktion Fälteffekttransistorer

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2006

ETE115 Ellära och elektronik, tentamen oktober 2006 (2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är

Läs mer

MOSFET:ens in- och utimpedanser. Småsignalsmodeller. Spänning- och strömstyrning. Stora signaler. MOSFET:ens högfrekvensegenskaper

MOSFET:ens in- och utimpedanser. Småsignalsmodeller. Spänning- och strömstyrning. Stora signaler. MOSFET:ens högfrekvensegenskaper FÖRELÄSNING 4 MOSFET:ens in och utimpedanser Småsignalsmodeller Spänning och strömstyrning Stora signaler MOSFET:ens högfrekvensegenskaper Per LarssonEdefors, Chalmers tekniska högskola EDA351 Kretselektronik

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10) Sammanfattning av kursen ETIA0 Elektronik för D, Del (föreläsning -0) Kapitel : sid 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd q mäts

Läs mer

Antennförstärkare för UHF-bandet

Antennförstärkare för UHF-bandet Antennförstärkare för UHF-bandet Radioprojekt 2004 Elektrovetenskap, LTH Mats Rosborn Henrik Kinzel 27 Februari Referat Den här rapporten beskriver arbetet med konstruktion och utvärdering av en fungerande

Läs mer

Institutionen för tillämpad fysik och elektronik Umeå universitet. Agneta Bränberg TRANSISTORTEKNIK. Laboration.

Institutionen för tillämpad fysik och elektronik Umeå universitet. Agneta Bränberg TRANSISTORTEKNIK. Laboration. Institutionen för tillämpad fysik och elektronik Umeå universitet 2016-12-19 Agneta Bränberg Laboration TRANSISTORTEKNIK Analog II VT17 Målsättning: Denna laboration syftar till studenterna ska lära sig

Läs mer

3.4 RLC kretsen. 3.4.1 Impedans, Z

3.4 RLC kretsen. 3.4.1 Impedans, Z 3.4 RLC kretsen L 11 Växelströmskretsar kan ha olika utsende, men en av de mest använda är RLC kretsen. Den heter så eftersom den har ett motstånd, en spole och en kondensator i serie. De tre komponenterna

Läs mer

Tvåvägsomkopplaren som enkel strömbrytare

Tvåvägsomkopplaren som enkel strömbrytare Tvåvägsomkopplaren som enkel strömbrytare - Ställ omkopplaren i läge samt därefter i läge. Vad händer? - Kan du få omkopplaren att fungera på något annat sätt? 1 Seriekoppling av lampor - Skruva ur en

Läs mer

Målsättning: Utrustning och material: Denna laboration syftar till att ge studenten:

Målsättning: Utrustning och material: Denna laboration syftar till att ge studenten: Institutionen för tillämpad fysik och elektronik Umeå universitet Patrik Eriksson Redigerad av Agneta Bränberg Redigerad av Johan Haake Redigerad av Agneta Bränberg 2016-11-14 TRANSISTORER Målsättning:

Läs mer

Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska

Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska Svar och ösningar Grundläggande Ellära. Elektriska begrepp.. Svar: a) Gren b) Nod c) Slinga d) Maska e) Slinga f) Maska g) Nod h) Gren. Kretslagar.. Svar: U V och U 4 V... Svar: a) U /, A b) U / Ω..3 Svar:

Läs mer

Poler och nollställen, motkoppling och loopstabilitet. Skrivet av: Hans Beijner 2003-07-27

Poler och nollställen, motkoppling och loopstabilitet. Skrivet av: Hans Beijner 2003-07-27 Poler och nollställen, motkoppling och loopstabilitet Skrivet av: Hans Beijner 003-07-7 Inledning All text i detta dokument är skyddad enligt lagen om Copyright och får ej användas, kopieras eller citeras

Läs mer

Bygg en entransistors Booster till datorn eller MP3-spelaren

Bygg en entransistors Booster till datorn eller MP3-spelaren Bygg en entransistors Booster till datorn eller MP3-spelaren De högtalare som levereras till datorerna har oftast högst mediokra data. Men genom att kombinera lite enkel teknik från elektronikens barndom

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

Växelström och reaktans

Växelström och reaktans Växelström och reaktans Magnus Danielson 6 februari 2017 Magnus Danielson Växelström och reaktans 6 februari 2017 1 / 17 Outline 1 Växelström 2 Kondensator 3 Spolar och induktans 4 Resonanskretsar 5 Transformator

Läs mer

KAPITEL 6 MTU AB

KAPITEL 6 MTU AB KAPITEL 6 MTU AB 2007 91 KONDENSATORN Vi börjar med en kort repetition av vad som sas om kondensatorn i kapitel 3, i samband med likström. Bilden nedan illustrerar en "kondensator för vatten" och en "riktig"

Läs mer

F1:13. 2 minutersövningar 2010 F1:30 F1:22. För att inte förlora signal kan följade göras: Analog elektronik Bertil Larsson

F1:13. 2 minutersövningar 2010 F1:30 F1:22. För att inte förlora signal kan följade göras: Analog elektronik Bertil Larsson F1:13 2 minutersövningar 2010 Analog elektronik Bertil Larsson För att inte förlora signal kan följade göras: Kodning Generera sekvenser som kan lagas vid bortfall (digitalt) Använda mer bandbredd Öka

Läs mer

Kapacitansmätning av MOS-struktur

Kapacitansmätning av MOS-struktur Kapacitansmätning av MOS-struktur MOS står för Metal Oxide Semiconductor. Figur 1 beskriver den MOS vi hade på labben. Notera att figuren inte är skalenlig. I vår MOS var alltså: M: Nickel, O: hafniumoxid

Läs mer

KOMPENDIUM I RÖNTGENTEKNOLOGI

KOMPENDIUM I RÖNTGENTEKNOLOGI KOMPENDIUM I RÖNTGENTEKNOLOGI KAPITEL 1 ELLÄRA Reviderad: 20050816 Inledning Som ni vet går allt på elektricitet även röntgenapparater. Därför inleds röntgenteknikkursen med en kort presentation av ellärans

Läs mer

Emtithal Majeed, Örbyhus skola, Örbyhus www.lektion.se

Emtithal Majeed, Örbyhus skola, Örbyhus www.lektion.se Emtithal Majeed, Örbyhus skola, Örbyhus www.lektion.se * Skillnader mellan radiorör och halvledarkomponenter 1.Halvledarkomponenter är mycket mindre I storlek 2.De är mycket tåliga för slag och stötar

Läs mer

KAPITEL 3 MTU AB

KAPITEL 3 MTU AB KAPITEL 3 MTU AB 2007 47 KONDENSATORN Vi ska nu ägna uppmärksamheten åt en ny komponent, vars schemasymboler ser ut så här: Polariserad Allmän symbol Vrid kond. Trim kond. Denna komponent går under namnet

Läs mer

LTK010, vt 2017 Elektronik Laboration

LTK010, vt 2017 Elektronik Laboration Reviderad: 20 december 2016 av Jonas Enger jonas.enger@physics.gu.se Förberedelse: Du måste känna till följande Kirchoffs ström- och spänningslagar Ström- och spänningsriktig koppling vid resistansmätning

Läs mer

4:2 Ellära: ström, spänning och energi. Inledning

4:2 Ellära: ström, spänning och energi. Inledning 4:2 Ellära: ström, spänning och energi. Inledning Det samhälle vi lever i hade inte utvecklats till den höga standard som vi ser nu om inte vi hade lärt oss att utnyttja elektricitet. Därför är det viktigt

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Olika sätt att bygga förstärkare. Differentialförstärkaren (översikt) Strömspegeln. Till sist: Operationsförstärkaren

Olika sätt att bygga förstärkare. Differentialförstärkaren (översikt) Strömspegeln. Till sist: Operationsförstärkaren FÖRELÄSNING 12 Olika sätt att bygga förstärkare Differentialförstärkaren (översikt) Strömspegeln Till sist: Operationsförstärkaren Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik

Läs mer

Operationsförstärkare (OP-förstärkare) Kapitel , 8.5 (översiktligt), 15.5 (t.o.m. "The Schmitt Trigger )

Operationsförstärkare (OP-förstärkare) Kapitel , 8.5 (översiktligt), 15.5 (t.o.m. The Schmitt Trigger ) Operationsförstärkare (OP-förstärkare) Kapitel 8.1-8.2, 8.5 (öersiktligt), 15.5 (t.o.m. "The Schmitt Trigger ) Förstärkare Förstärkare Ofta handlar det om att förstärka en spänning men kan äen ara en ström

Läs mer

Tentamen i Elektronik grundkurs ETA007 för E1 och D

Tentamen i Elektronik grundkurs ETA007 för E1 och D Lars-Erik Cederlöf Tentamen i Elektronik grundkurs ETA007 för E och D 006-0-3 Tentamen omfattar poäng. 3 poäng per uppgift. 0 poäng ger godkänd tentamen. Tillåtet hjälpmedel är räknedosa. För full poäng

Läs mer

TSTE05 Elektronik och mätteknik ISY-lab 3: Enkla förstärkarsteg

TSTE05 Elektronik och mätteknik ISY-lab 3: Enkla förstärkarsteg TSTE05 Elektronik och mätteknik ISY-lab 3: Enkla förstärkarsteg Mikael Olofsson Kent Palmkvist 30 november 2017 Laborant Personnummer Datum Godkänd 1 1 Introduktion I denna laboration kommer du att studera

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6) Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6) Kapitel 1: sid 1 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd

Läs mer

TENTAMENSUPPGIFTER I ELEKTROTEKNIK

TENTAMENSUPPGIFTER I ELEKTROTEKNIK ELEKTOTEKNK MSKNKONSTKTON KTH Tentamen med lösningsförslag. En del skrivutrymme borttaget. nlämningstid Kl: TENTMENSPPGFTE ELEKTOTEKNK Elektroteknik för Media och CL. MF035 (4F4) 0 05 5 9:00 3:00 För godkänt

Läs mer

Lektion 1: Automation. 5MT001: Lektion 1 p. 1

Lektion 1: Automation. 5MT001: Lektion 1 p. 1 Lektion 1: Automation 5MT001: Lektion 1 p. 1 Lektion 1: Dagens innehåll Electricitet 5MT001: Lektion 1 p. 2 Lektion 1: Dagens innehåll Electricitet Ohms lag Ström Spänning Motstånd 5MT001: Lektion 1 p.

Läs mer

I bild 1 har vi satt R7 till 0 Ohm. Bild 1. Med R7=0 får man ett nytt maxläge.

I bild 1 har vi satt R7 till 0 Ohm. Bild 1. Med R7=0 får man ett nytt maxläge. Modifieringar Fuzz I det här dokumentet förslås en del modifieringar som kan göras till Moody Fuzz. För att ha behållning av texten bör man ha tillgång till manualen. Vi ska diskutera: 1. Noise Fuzz Fuzzen

Läs mer

Instruktion elektronikkrets till vindkraftverk

Instruktion elektronikkrets till vindkraftverk Instruktion elektronikkrets till vindkraftverk Färdig koppling D1 R2 IC1 R1 D2 R3 D3 R7 R5 T1 T2 R6 T3 R6 Uppgiften innehåller: Namn Värde Utseende Antal R1 11 kω brun, brun, svart, röd, brun 1 st R2 120

Läs mer

OP-förstärkare. Idealiska OP-förstärkare

OP-förstärkare. Idealiska OP-förstärkare Idealiska OP-förstärkare OP-förstärkare (OPerational Amplifier, OPA), är en fullt fungerande förstärkare som har tillverkats på en kisel-skiva genom att N- och P-dopa olika områden av kiselkristallen för

Läs mer

Mät resistans med en multimeter

Mät resistans med en multimeter elab003a Mät resistans med en multimeter Namn Datum Handledarens sign Laboration Resistans och hur man mäter resistans Olika ämnen har olika förmåga att leda den elektriska strömmen Om det finns gott om

Läs mer

Beskrivning elektronikkrets NOT vatten

Beskrivning elektronikkrets NOT vatten Beskrivning elektronikkrets NOT vatten Kretsen som ingår i uppgiften är en typ av rinnande ljus. Den fungerar så att lysdioderna kommer att tändas en efter en beroende på hur mycket spänning som alstras

Läs mer

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika

Läs mer

Förstärkarens högfrekvensegenskaper. Återkoppling och stabilitet. Återkoppling och förstärkning/bandbredd. Operationsförstärkare.

Förstärkarens högfrekvensegenskaper. Återkoppling och stabilitet. Återkoppling och förstärkning/bandbredd. Operationsförstärkare. FÖRELÄSNING 5 Förstärkarens högfrekvensegenskaper Återkoppling och stabilitet Återkoppling och förstärkning/bandbredd Operationsförstärkare Kaskadkoppling Per Larsson-Edefors, Chalmers tekniska högskola

Läs mer

Varvtalsstyrning av likströmsmotorer

Varvtalsstyrning av likströmsmotorer Varvtalstyrning av likströmsmotorer Föreläsning 6 Kap 3.6 Grundkretsar med transistorer, avsnitt Transistorn som switch sid 3-42. Kap. 7.6 Kraftelektronik avsnitten Systemuppbyggnad sid 7-36, Likspänningsomvandlare

Läs mer

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1

3.8. Halvledare. [Understanding Physics: 20.8-20.11] Den moderna fysikens grunder, Tom Sundius 2009 1 3.8. Halvledare [Understanding Physics: 20.8-20.11] Som framgår av fig. 20.27, kan energigapet i en halvledare uttryckas E g = E c E v, där E c är den lägsta energin i ledningsbandet och E v den högsta

Läs mer