fördjupning inom induktion och elektromagnetism

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "fördjupning inom induktion och elektromagnetism"

Transkript

1 9 fördjupning inom induktion och elektromagnetism Innehåll 12 Matematiska samband i RL-kretsen 9:2 13 Magnetisk energi 9:3 14 Elektrisk svängningskrets 9:5 15 Kvantitativ behandling av svängningskretsen 9:6 16 Elektromagnetisk vågrörelse 9:9 Svar till kontrolluppgifter 9:13 induktion 9:1

2 12 Matematiska samband i RL-kretsen Inkopplingsförlopp Fig 27. I figurerna är ström och spänningar i RL-kretsen markerade omedelbart efter inkoppling resp kortslutning av spänningen U. All resistans i kretsen förutsätts samlad i resistorn. Små bokstäver används för att markera tidsberoende värden. (a) Inkopplingsförloppet (b) Kortslutningsförloppet Den seriekopplade kretsen i fig 27 består av en resistor med resistansen R, en spole med induktansen L och med försumbar resistans samt en spänningskälla med polspänning U som kan kortslutas. Vi gör en potentialvandring medurs i den s k RL-kretsen vid en tidpunkt då strömmen ökar (fig 27a): U Ri L = 0 eller U = Ri + L Summan Ri + L är tydligen konstant. Det ger oss en kvalitativ förklaring till strömkurvans utseende i fig 16 efter inkopplingen av spänningen. Kurvans lutning,, är stor i början så länge strömmen och därmed termen Ri är liten, men lutningen avtar efter hand som i ökar. Slutligen blir lutningen noll, och induktionen upphör. Då har strömmen vuxit till sitt fulla värde, I = U/R. Vilken funktion i av tiden t är det som satisfierar den ekvation vi nyss ställt upp, och som samtigt ger i = 0 för t = 0 och i = U/R för t =? Följande exponentialfunktion uppfyller alla tre kraven och är följaktligen den funktion vi söker. U R t i = (1 e L R ) Man kan enkelt visa att funktionen är en lösning genom att derivera den och sätta in i ekvationen U Ri L = 0 9:2 induktion

3 Kortslutningsförlopp Potentialvandring medurs i den krets som bildas då spänningskällan kortsluts så att U blir noll ger (fig 27 b): Ri + e = 0 I ekvationen ska e ha ett positivt värde. Strömmen avtar emellertid under detta skede, och derivatan är därför negativ. För att kompensera för detta måste vi skriva e = L. Alltså: Ri L = 0 eller Ri + L = 0 De slutsatser vi kan dra av detta samband stämmer med utseendet hos strömkurvan i fig 16 efter att spänningen växlat från U till noll. I växlingsögonblicket har strömmen och därmed termen Ri sitt största värde. Kurvans lutning, /, måste då ha sitt största negativa värde. Vi söker en strömfunktion som dels satisfierar den ekvation vi ställt upp, dels ger i = U/R för t = 0 och i = 0 för t =. Lösningen är: i = U R e R t L Graferna till de två strömfunktionerna återges i i-t-agrammet i fig Magnetisk energi När spänningskällan i fig 27 kortsluts, upphör omedelbart all tillförsel av energi från spänningskällan till kretsen. I stället tar den inducerade spänningen över och fortsätter att under en stund driva ström genom kretsen. Även den strömmen innebär naturligtvis värmeutveckling i resistorn. Varifrån kommer den energi som omsätts i kretsen sedan energileveransen från spänningskällan slutat? Svaret är att den kommer från spolens magnetfält. Vi möter här en ny form av energi magnetisk energi i ett magnetfält. Under strömmens uppbyggnadsskede övergår en del av den elektriska energi som skapas i spänningskällan till magnetisk energi i spolens magnetfält. Det är denna lagrade magnetiska energi som efter spänningskällans urkoppling omvandlas till elenergi genom induktionen. induktion 9:3

4 Vi ska härleda ett uttryck för den energimängd som finns lagrad i en strömförande spoles magnetfält. Vi börjar med en potentialvandring runt RL-kretsen i fig 17a i en tidpunkt under strömmens uppbyggnadsskede: i U Ri L = 0 t eller i U = Ri + L t Multiplikation med strömmen i och det korta tidsintervallet t ger termerna energimension: Ui t = Ri 2 i t + Li t t Termen Ui t är den energi spänningskällan levererar till kretsen under tiden t. Den energin omsätts i kretsen på två sätt. Ri 2 t är värmeutvecklingen i resistorn, och Li t måste vara den energi som matas in i t i magnetfältet. Uttrycket för den magnetiska energin kan förenklas: i Li t = Li i t Detta är ökningen av den magnetiska energin i spolen vid en liten strömökning i. Den totala magnetiska energin E m vid en ström I är summan av alla sådana bidrag under det att strömmen ändras från 0 till I. Den summan innebär matematiskt en integral: I Li E m = Li = [ 2 ] I LI = Den magnetiska energi som finns lagrad i en spole med induktansen L och strömmen I är alltså: E m = LI 2 2 KONTROLL 1 En ström på 2,0 A går igenom en 1200-varvs spole med induktansen 22 mh. Hur stor magnetisk energi finns lagrad i spolens magnetfält? 9:4 induktion

5 14 Elektrisk svängningskrets Fig 28. När strömställaren i kretsen sluts, omvandlas kondensatorns elektriska lägesenergi till värme i lampans glöråd. En laddad kondensator innehåller elektrisk lägesenergi. Ansluter vi den till en lampa (fig 28), börjar en ström, begränsad av lampans resistans, flyta genom kretsen. Kondensatorns energi omsätts till värme i lampan. När kondensatorn urladdats, har all elektrisk energi omvandlats till värme, och strömmen har upphört. Helt annorlunda blir det, om vi ansluter en laddad kondensator till en spole (fig 29a). Även om spolens resistans är praktiskt taget noll kan urladdningsströmmen inte plötsligt rusa i höjden, eftersom den bromsas av en inducerad spänning u L (fig 29 b). I stället växer den efter hand och bygger under tiden upp ett magnetfält i spolen. Förloppet innebär att elektrisk energi i kondensatorn överförs till magnetisk energi i spolen. Den magnetiska energin, och därmed strömmen, slutar att växa först när kondensatorn urladdats och förlorat all sin energi (fig 29 c). (a) (b) (c) (d) (e) Fig 29. Då kretsen i (a) sluts, börjar spänningen mellan plattorna driva en ström genom spolen, och kondensatorn urladdas (b). När strömmen vuxit till sitt största värde, har kondensatorns energi omvandlats till magnetisk energi (c). När magnetfältet sedan avtar, börjar självinduktionen att mata ström i samma riktning som tigare, och kondensatorn laddas igen (d och e). Vad händer nu när kondensatorspänningen är noll och kondensatorn inte längre kan fungera som spänningskälla? Strömmen och det magnetiska fältet kan inte försvinna plötsligt. Så fort de tenderar att avta, växlar den inducerade spänningen u L polaritet och driver strömmen vidare i samma riktning som förut (fig 29 d). Det betyder att kondensatorn laddas på nytt, och att spolens magnetiska energi återgår till elektrisk energi hos kondensatorn. När all magnetisk energi blivit elektrisk energi igen, är strömmen noll och situationen likadan som vid starten, bortsett från att plattorna har bytt laddning (fig 29 e). Det betyder att förloppet startar om och upprepas med motsatta riktningar hos ström och magnetfält. När kondensatorn omladdats på nytt är kretsen tillbaka i det ursprungliga tillståndet (fig 29 a). En hel svängning är fullbordad. Vi får alltså en växelström i kretsen och en stäng växling mellan elektrisk och magne- induktion 9:5

6 En spole och en kondensator bildar tillsammans en elektrisk svängningskrets. tisk energi. Kondensatorn och spolen utgör tillsammans en elektrisk svängningskrets. En krets som svänger odämpat, dvs utan energiförluster, kan jämföras med en mekanisk pendel, som svänger fram och tillbaka utan att amplituden minskar. Även här är det en kontinuerlig växling mellan två energiformer. I vändlägena uppträder all svängningsenergi som lägesenergi, i jämviktsläget som rörelseenergi. Pendelns lägesenergi motsvaras alltså av den elektriska lägesenergin hos kondensatorn, medan pendelns rörelseenergi kan jämföras med den magnetiska energi ledningselektronernas rörelse i spolvarven ger upphov till. Innan det här avsnittet studeras, är det lämpligt att repetera avsnitten 9 i kap 7 och 7 i kap 9 om kondensator och självinduktion. + q C q u C = q C Fig 30. Ström och spänningar i en odämpad svängningskrets vid en tidpunkt, då kondensatorn håller på att laddas upp. i L + e 15 Kvantitativ behandling av svängningskretsen Svängningstid vid odämpade svängningar Tiden för en hel svängning betecknas T. Vilka faktorer inverkar på den? Byter vi till en spole med större induktans L, får självinduktionen en större inverkan än förut. Eftersom den inducerade spänningen hela tiden bromsar strömändringarna i spolen, bör det nu ta längre tid för strömmen att nå sitt toppvärde och att återgå till noll. Svängningstiden bör öka, om spolens induktans ökar. Även kondensatorns kapacitans C bör inverka. Ju större kapacitansen är, desto mera laddning rymmer kondensatorn vid en viss spänning, och desto längre tid bör omladdningarna ta. Det verkar sannolikt att svängningstiden ökar med kondensatorns kapacitans. Kan vi komma åt sambandet mellan T, L och C? Fig 30 visar ström och spänningar i en svängningskrets med försumbar resistans i ett skede när kondensatorn laddas upp och strömmen avtar. Jfr fig 29 d. En inducerad spänning över spolen med beloppet e = L driver uppladdningen. Potentialvandring ett varv moturs ger: e u C = 0 eller q e = 0 C Vid potentialvandringen räknade vi den inducerade spänningen e positiv. När vi nu sätter in uttrycket för e måste vi skriva L, eftersom strömmen avtar under det aktuella skedet och derivatan därför är negativ. Alltså: 9:6 induktion

7 q 1 L = 0 eller + q = 0 C LC jämviktsläge Fig 31. Vid harmonisk svängning är den återförande resulterande kraften proportionell mot elongationen och riktad mot jämviktsläget. Den odämpade elektriska svängningen är sinusformad och har svängningstiden T = 2π ÖLØØ C. ØØØØ dq dq d Men i =. (q växer och är positiv.) Derivering ger = 2 q, 2 och vi kan skriva: d 2 q 1 + q = 0 2 LC eller 1 q + q = 0 (1) LC En ekvation av denna typ har vi träffat på tigare när vi behandlade harmoniska svängningar. Ett föremål med massan m, som utför harmoniska svängningar i en fjäder med fjäderkonstanten k (fig 31), påverkas av en resulterande kraft F = ky vid utslaget y från jämviktsläget. (Minustecknet visar att kraften har motsatt riktning mot elongationen y.) Kraftekvationen F = ma ger då, eftersom accelerationen a = v (t) = = y (t): ky = my eller k y + y = 0 (2) m Likheterna mellan ekvationerna (1) och (2) är påfallande. Den tidsberoende lägefunktionen y och konstanten i den ena motsvaras av ladd- k m 1 ningsfunktionen q och konstanten i den andra. LC I avsnitt 4, kap 6, fann vi följande uttryck för svängningstiden hos den harmoniska svängningen: m T = 2π Ö k Av symmetrin mellan ekvationerna kan vi dra slutsatsen att uttrycket för svängningstiden hos den odämpade elektriska svängningen måste ha följande utseende: T = 2π ÖØ LC Kondensatorladdningen vid en odämpad elektrisk svängning är, liksom läget vid en harmonisk svängning, en sinusfunktion av tiden. Därmed har också kondensatorspänningen u C = q/c, strömmen i = dq/ och spolens spänning u L = L / ett sinusformat tidsberoende. Se fig 32a. induktion 9:7

8 Dämpade svängningar En pendel slutar så småningom svänga. Svängningsenergin övergår till värme genom oundviklig friktion. Inte heller de elektriska svängningarna i en svängningskrets kan fortsätta hur länge som helst. Det finns alltid någon resistans i kretsen, varför en viss värmeutveckling blir ofrånkomlig då elektronerna rör sig fram och tillbaka. Vid varje omladdning av kondensatorn förbrukas därför en del av energin, och den maximala laddningen på plattorna blir mindre än förut. Svängningarna dämpas och dör så småningom ut. För att demonstrera dämpade elektriska svängningar ansluter vi ett s k minnesoscilloskop till en svängningskrets (fig 32 b). Genom att välja en lämplig svephastighet kan vi studera spänningen över kondensatorn under hela den tid svängningarna varar. Ett foto av oscilloskopskärmen efter ett sådant experiment visas i fig 32 c. Vi ser hur svängningarna tämligen snabbt dämpas, men att svängningstiden inte märkbart beror av amplituden utan hela tiden upptar en och en halv ruta i sidled. (b) (a) (c) Fig 32. Genom att ansluta ett oscilloskop till en svängningskrets kan man studera svängningar. Fotona av oscilloskopskärmen visar, hur kondensatorspänningen u eller kondensatorladdningen q = Cu varierar med tiden. (a) Odämpad svängning. (b) Med denna anslutning kan man studera en dämpad svängning. (c) Dämpad svängning. 9:8 induktion

9 Om vi varierar induktansen L resp kapacitansen C i svängningskretsen i fig 32, finner vi att svängningstiden inom mätnoggrannheten ges av sambandet T = 2π ÖLC, trots att svängningen här är dämpad. Dämpningen ökar med resistansen hos kretsen. Inom tekniken har man stor användning av elektriska svängningskretsar eller oscillatorer, där ny energi stängt matas in för att förhindra att svängningarna dämpas. Sådana kretsar ingår exempelvis i raosändare och raomottagare. KONTROLL 2 Vilken är svängningstiden resp frekvensen hos en odämpad svängningskrets, där induktansen är 35 mh och kapacitansen 0,12 µf? 16 Elektromagnetisk vågrörelse I fig 33 ser vi en svängningskrets som är induktivt kopplad till en oscillator. Kopplingen innebär att svängningskretsens spole placeras så att den känner det magnetfält som oscillatorströmmen alstrar i en annan spole. I svängningskretsen uppstår då tvungna svängningar med samma frekvens som i oscillatorkretsen. Resonans uppkommer om oscillatorfrekvensen sammanfaller med LC-kretsens egenfrekvens, och strömmen i svängningskretsen får då maximal amplitud. oscillator Fig 33. Med en oscillator kan man åstadkomma tvungna svängningar i en svängningskrets. Hittills har vi studerat en sluten svängningskrets, där det magnetiska fältet i huvudsak varit koncentrerat till spolen och det elektriska till mellanrummet mellan kondensatorplattorna. Vi antar nu att vi ändrar en svängningskrets genom att successivt minska spolens varvtal och kondensatorplattornas storlek, samtigt som vi ökar plattavståndet (fig 34). Kretsen förvandlas slutligen till en enda rak ledare, en öppen svängningskrets eller en antenn. induktion 9:9

10 Fig 34. Omvandling av en sluten svängningskrets till en öppen. Fig 35. Tvungna svängningar i en öppen svängningskrets. På grund av förändringarna avtar både induktansen L och kapacitansen C kraftigt, och den öppna kretsens egenfrekvens 1 f= = T 1 2π ÖLC är därför hög, kanske av storleksordningen GHz. En oscillator som, på samma sätt som i fig 33, ska driva svängningarna i den öppna kretsen, måste därför vara högfrekvent för att resonansvillkoret ska vara uppfyllt. I den öppna svängningskretsen i fig 35 pendlar laddningar fram och tillbaka precis som i den slutna kretsen. Under ena halvperioden är antennens övre ände positiv och den nedre negativ. En halvperiod senare har laddningarna bytt plats. Mellan antennens ändpunkter uppträder en växelspänning, och i antennen flyter en växelström. När spänningen har sitt största värde, är den elektriska fältstyrkan intill antennen maximal (fig 36 a). I det ögonblicket är strömmen noll. En fjärdedels period senare är spänningen noll, men i stället har strömmen vuxit till maximum, och det elektriska fältet har bytts ut mot ett magnetiskt, (fig 36 b). Under nästa kvartsperiod byggs ett elektriskt fält upp på nytt, motriktat det ursprungliga, och det magnetiska fältet försvinner. Intill antennen sker en stäng växling mellan elektriska och magnetiska fält som är vinkelräta mot varandra. (a) (b) e Fig 36. Kring den öppna svängningskretsen utbildas omväxlande elektriska fält (a) och magnetiska fält (b). 9:10 induktion

11 Elektromagnetisk strålning Vad händer med de fält som kontinuerligt ska ersättas med andra? De innehåller energi och kan därför inte utan vidare försvinna. En del av energin återgår till antennen, men delar av fälten utbreder sig bort från den (fig 37). Ju högre frekvensen är, desto större del av energin sänds på detta sätt ut från antennen. Elektromagnetiska vågor eller elektromagnetisk strålning rör sig bort ifrån antennen. Strålningen uppför sig som en transversell vågrörelse, där vågorna utgörs av mot varandra vinkelräta elektriska och magnetiska fält. Inga partikelsvängningar behövs för att fortplanta de elektromagnetiska vågorna, och därför utbreder de sig obehindrat i vakuum. Fig 37. Förändringar hos det elektriska fältet under svängningarna i antennen. (a) (b) Fig 38. Ögonblicksbilder av det elektriska fältet i papperets plan och av det magnetiska fältet i ett plan vinkelrätt mot papperet (b). e Fig 39. Fältstyrkan E och flödestätheten B i en punkt ett stycke ut från antennen, som funktion av tiden. Från och med några våglängders avstånd är E och B i fas, trots att de intill antennen är fasförskjutna i förhållande till varandra. induktion 9:11

12 I vågen som utsänds från en vertikal antenn är det elektriska fältet vertikalt och det magnetiska horisontellt (fig 38 och 39). Den elektriska fältstyrkan är omväxlande riktad uppåt och nedåt, och den magnetiska fältvektorn pekar ömsom åt höger och ömsom åt vänster, sett i vågens rörelseriktning. När de båda fälten får verka på ledningselektronerna i en metall, t ex i en mottagarantenn, tvingas dessa utföra en vertikal svängningsrörelse. (De båda fälten samarbetar i detta fall. I fortsättningen behöver vi bara tala om det elektriska fältet.) Svängningen blir kraftigast om mottagarantennen är parallell med sändarantennen, men obetydlig om antennerna står i rät vinkel mot varandra. I det senare fallet är ju ledningselektronernas rörelseutrymme starkt begränsat. När det sägs om en rao- eller TV-sändning att den har vertikal polarisation, innebär detta att det elektriska fältet från sändarantennen är vertikalt, vilket har betydelse då man monterar upp sin mottagande antenn. Vi har tigare sett att ljus kan polariseras (avsnitt 6, kap 3). Med hjälp av en experimentutrustning för mikrovågor kan vi få en inblick i hur detta går till när man använder de polaroider som nämndes i avsnittet. Utrustningen består av en sändare och en mottagare för elektromagnetiska vågor med några få cm våglängd. Mellan en mikrovågssändare S och en mikrovågmottagare M, med inbördes parallella antenner, placeras ett trådgaller vinkelrätt mot linjen SM (fig 40). När gallrets trådar är parallella med antennerna (fig 40 a) hejdas mikrovågorna praktiskt taget helt. Vrids nu gallret kring axeln SM, inkerar M en våg, vars styrka växer till ett maximum då gallrets trådar står i rät vinkel mot antennerna (fig 40 b). (a) (b) Fig 40. 9:12 induktion

13 Fig 40 c. I det senare fallet har vågens fält mycket liten möjlighet att framkalla elektronsvängningar i gallret. Vågen går igenom gallret med i stort sett oförminskad energi. När trådarna i gallret är parallella med det elektriska fältet, omsätts emellertid vågens energi till strömvärme i gallertrådarna, och vågens energi reduceras kraftigt. Fig 40 c visar vad som händer om gallret har samma orientering som i (b), men sändarantennen vrids från sitt ursprungliga läge. En svagare våg når mottagaren, eftersom den elektriska fältstyrkan nu har en komposant parallell med gallrets trådar. Det måste medföra att vågens energi minskar. Oberoende av sändarantennens orientering är den våg som kommer igenom gallret planpolariserad, vinkelrätt mot gallertrådarna. Gallret verkar som en polarisator. Vi kan nu få en uppfattning om hur en polaroid kan polarisera ljuset från en glödlampa. I glödlampsljuset förekommer svängningar av alla riktningar ljuset är opolariserat. Polaroidens parallella kedjor av långsträckta kristaller innehåller lättrörliga elektroner. Dessa kedjor spelar samma roll som trådarna i gallret som påverkade mikrovågorna. När opolariserat ljus passerar en polaroid, släcks alla elektriska svängningskomposanter som är parallella med molekylkedjorna ut, och alla svängningar i det genomgående ljuset är parallella dvs ljuset är planpolariserat. Svar till kontrolluppgifter K 1 K 2 44 mj T = 0,41 ms, f = 2,5 khz induktion 9:13

4. Elektromagnetisk svängningskrets

4. Elektromagnetisk svängningskrets 4. Elektromagnetisk svängningskrets L 15 4.1 Resonans, resonansfrekvens En RLC krets kan betraktas som en harmonisk oscillator; den har en egenfrekvens. Då energi tillförs kretsen med denna egenfrekvens

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10) Sammanfattning av kursen ETIA0 Elektronik för D, Del (föreläsning -0) Kapitel : sid 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd q mäts

Läs mer

Sammanfattning av likströmsläran

Sammanfattning av likströmsläran Innehåll Sammanfattning av likströmsläran... Testa-dig-själv-likströmsläran...9 Felsökning.11 Mätinstrument...13 Varför har vi växelström..17 Växelspännings- och växelströmsbegrepp..18 Vektorräknig..0

Läs mer

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0] Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:

Läs mer

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade.

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade. 2.7 Virvelströmmar L8 Induktionsfenomenet uppträder för alla metaller. Ett föränderligt magnetfält inducerar en spänning, som i sin tur åstadkommer en ström. Detta kan leda till problem,men det kan också

Läs mer

Fysik 1 kapitel 6 och framåt, olika begrepp.

Fysik 1 kapitel 6 och framåt, olika begrepp. Fysik 1 kapitel 6 och framåt, olika begrepp. Pronpimol Pompom Khumkhong TE12C Laddningar som repellerar varandra Samma sorters laddningar stöter bort varandra detta innebär att de repellerar varandra.

Läs mer

1. Mekanisk svängningsrörelse

1. Mekanisk svängningsrörelse 1. Mekanisk svängningsrörelse Olika typer av mekaniska svängningar och vågrörelser möter oss överallt i vardagen allt från svajande höghus till telefoner med vibrationen påslagen hör till denna kategori.

Läs mer

4:3 Passiva komponenter. Inledning

4:3 Passiva komponenter. Inledning 4:3 Passiva komponenter. Inledning I det här kapitlet skall du gå igenom de tre viktigaste passiva komponenterna, nämligen motståndet, kondensatorn och spolen. Du frågar dig säkert varför de kallas passiva

Läs mer

~ växelström. växelström 1. Heureka B Natur och Kultur 91-27-56722-2

~ växelström. växelström 1. Heureka B Natur och Kultur 91-27-56722-2 ~ växelström Det flyter växelström och inte likström i de flesta elnät världen över! Skälen är många. Hittills har det varit enklare att bygga generatorer som levererar växelspänning. Transport av elenergi

Läs mer

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( )

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( ) Inst. för Fysik och materialvetenskap Ola Hartmann Tentamen i ELEKTROMAGNETISM I 2008-10-08 Skrivtid: 5 tim. för Kand_Fy 2 och STS 3. Hjälpmedel: Physics Handbook, formelblad i Elektricitetslära, räknedosa

Läs mer

3.4 RLC kretsen. 3.4.1 Impedans, Z

3.4 RLC kretsen. 3.4.1 Impedans, Z 3.4 RLC kretsen L 11 Växelströmskretsar kan ha olika utsende, men en av de mest använda är RLC kretsen. Den heter så eftersom den har ett motstånd, en spole och en kondensator i serie. De tre komponenterna

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer

Bra tabell i ert formelblad

Bra tabell i ert formelblad Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Elektromagnetisk induktion och induktans. Emma Björk

Elektromagnetisk induktion och induktans. Emma Björk Elektromagnetisk induktion och induktans Emma Björk Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna

Läs mer

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika

Läs mer

Steget vidare. (By JaunJimenez at English Wikipedia, CC BY 3.0, https://commons.wikimedia.org/w/index.php? curid= )

Steget vidare. (By JaunJimenez at English Wikipedia, CC BY 3.0, https://commons.wikimedia.org/w/index.php? curid= ) Steget vidare I en växelström hoppar elektronerna fram och tillbaka 50 gånger per sekund i Sverige. I andra länder har man andra system. I USA hoppar elektronerna med 60Hz. Man kan även ha andra spänningar.

Läs mer

Elektroakustik Något lite om analogier

Elektroakustik Något lite om analogier Elektroakustik 2003-09-02 10.13 Något lite om analogier Svante Granqvist 2002 Något lite om analogier När man räknar på mekaniska system behöver man ofta lösa differentialekvationer och dessutom tänka

Läs mer

Motorprincipen. William Sandqvist

Motorprincipen. William Sandqvist Motorprincipen En strömförande ledare befinner sig i ett magnetfält B (längden l är den del av ledaren som befinner sig i fältet). De magnetiska kraftlinjerna får inte korsa varandra. Fältet förstärks

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2 KK4 LAB4. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2 KK4 LAB4. tentamen F330 Ellära F/Ö F/Ö4 F/Ö F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK LAB Mätning av och F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK LAB Tvåpol mät och sim F/Ö8 F/Ö9

Läs mer

Lösningar Kap 7 Elektrisk energi, spänning och ström. Andreas Josefsson. Tullängsskolan Örebro

Lösningar Kap 7 Elektrisk energi, spänning och ström. Andreas Josefsson. Tullängsskolan Örebro Lösningar Kap 7 Elektrisk energi, spänning och ström Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kap 7 7.1) Om kulan kan "falla" från A till B minskar dess potentiella elektriska

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

Tentamen i Fysik för M, TFYA72

Tentamen i Fysik för M, TFYA72 Tentamen i Fysik för M, TFYA72 Onsdag 2015-06-10 kl. 8:00-12:00 Tillåtna hjälpmedel: Bifogat formelblad Avprogrammerad räknedosa enlig IFM:s regler. Christopher Tholander kommer att besöka tentamenslokalen

Läs mer

4:2 Ellära: ström, spänning och energi. Inledning

4:2 Ellära: ström, spänning och energi. Inledning 4:2 Ellära: ström, spänning och energi. Inledning Det samhälle vi lever i hade inte utvecklats till den höga standard som vi ser nu om inte vi hade lärt oss att utnyttja elektricitet. Därför är det viktigt

Läs mer

LABKOMPENDIUM Fysik del B1

LABKOMPENDIUM Fysik del B1 LABKOMPENDIUM Fysik del B1 BFL111: Fysik för bastermin BFL122: Fysik B för tekniskt/naturvetenskapligt basår Innehåll Laboration 1: Kretsar och kondensatorer Förberedelseuppgifter 3 Del 1: Plattkondensator

Läs mer

för gymnasiet Polarisation

för gymnasiet Polarisation Chalmers tekniska högskola och November 2006 Göteborgs universitet 9 sidor + bilaga Rikard Bergman 1992 Christian Karlsson, Jan Lagerwall 2002 Emma Eriksson 2006 O4 för gymnasiet Polarisation Foton taget

Läs mer

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T.

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T. 1. En elektron rör sig med v = 100 000 m/s i ett magnetfält. Den påverkas av en kraft F = 5 10 15 N vinkelrätt mot rörelseriktningen. Rita figur och beräkna den magnetiska flödestätheten. Förslag: En laddad

Läs mer

Koppla spänningsproben till spolen.

Koppla spänningsproben till spolen. LÄRARHANDLEDNING Induktion Materiel: Utförande: Dator med programmet LoggerPro Mätinterfacet LabQuest eller LabPro spänningsprobe spolar (300, 600 och 1200 varv), stavmagnet plaströr och kopparrör (ca

Läs mer

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01 Elektro och Informationsteknik LTH Laboration 3 R- och RL-nät i tidsplanet Elektronik för D ETIA01??? Telmo Santos Anders J Johansson Lund Februari 2008 Laboration 3 Mål Efter laborationen vill vi att

Läs mer

T1-modulen Lektionerna Radioamatörkurs OH6AG Bearbetning och översättning: Thomas Anderssén, OH6NT Heikki Lahtivirta, OH2LH

T1-modulen Lektionerna Radioamatörkurs OH6AG Bearbetning och översättning: Thomas Anderssén, OH6NT Heikki Lahtivirta, OH2LH T1-modulen Lektionerna 13-15 Radioamatörkurs - 2011 Bearbetning och översättning: Thomas Anderssén, OH6NT Original: Heikki Lahtivirta, OH2LH 1 Spolar gör större motstånd ju högre strömmens frekvens är,

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för

Läs mer

Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric

Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric Chalmers Tekniska Högskola 2002 05 28 Tillämpad Fysik Igor Zoric Tentamen i Fysik för Ingenjörer 2 Elektricitet, Magnetism och Optik Tid och plats: Tisdagen den 28/5 2002 kl 8.45-12.45 i V-huset Examinator:

Läs mer

Andra ordningens kretsar

Andra ordningens kretsar Andra ordningens kretsar Svängningskretsar LCR-seriekrets U L (t) U s U c (t) U R (t) L di(t) dt + Ri(t) + 1 C R t0 i(t)dt + u c (0) = U s LCR-seriekrets För att undvika integralen i ekvationen, så deriverar

Läs mer

Q I t. Ellära 2 Elektrisk ström, kap 23. Eleonora Lorek. Ström. Ström är flöde av laddade partiklar.

Q I t. Ellära 2 Elektrisk ström, kap 23. Eleonora Lorek. Ström. Ström är flöde av laddade partiklar. Ellära 2 Elektrisk ström, kap 23 Eleonora Lorek Ström Ström är flöde av laddade partiklar. Om vi har en potentialskillnad, U, mellan två punkter och det finns en lämplig väg rör sig laddade partiklar i

Läs mer

Prov Fysik B Lösningsförslag

Prov Fysik B Lösningsförslag Prov Fysik B Lösningsförslag DEL I 1. Högerhandsregeln ger ett cirkulärt magnetfält med riktning medurs. Kompass D är därför korrekt. 2. Orsaken till den i spolen inducerade strömmen kan ses som stavmagnetens

Läs mer

LÄRARHANDLEDNING Harmonisk svängningsrörelse

LÄRARHANDLEDNING Harmonisk svängningsrörelse LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren

Läs mer

Föreläsning 17: Jämviktsläge för flexibla system

Föreläsning 17: Jämviktsläge för flexibla system 1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera

Läs mer

Elektricitetslära och magnetism - 1FY808

Elektricitetslära och magnetism - 1FY808 Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Laborationshäfte för kursen Elektricitetslära och magnetism - 1FY808 Ditt namn:... eftersom labhäften far runt i labsalen. 1 1. Instrumentjämförelse

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig)

Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Elektrostatik 1. Ange Faradays lag i elektrostatiken. 2. Vad är kravet för att ett vektorfält F är konservativt? 3. En låda

Läs mer

Växelström K O M P E N D I U M 2 ELEKTRO

Växelström K O M P E N D I U M 2 ELEKTRO MEÅ NIVERSITET Tillämpad fysik och elektronik Sverker Johansson Johan Pålsson 999-09- Rev.0 Växelström K O M P E N D I M ELEKTRO INNEHÅLL. ALLMÄNT OM LIK- OCH VÄXELSPÄNNINGAR.... SAMBANDET MELLAN STRÖM

Läs mer

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4 Linnéuniversitetet Institutionen för fysik och elektroteknik Elektricitetslära och magnetism - 1FY808 Lab 3 och Lab 4 Ditt namn:... eftersom labhäften far runt i labsalen. 1 Laboration 3: Likström och

Läs mer

1 Grundläggande Ellära

1 Grundläggande Ellära 1 Grundläggande Ellära 1.1 Elektriska begrepp 1.1.1 Ange för nedanstående figur om de markerade delarna av kretsen är en nod, gren, maska eller slinga. 1.2 Kretslagar 1.2.1 Beräknar spänningarna U 1 och

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

IDE-sektionen. Laboration 5 Växelströmsmätningar

IDE-sektionen. Laboration 5 Växelströmsmätningar 9428 IDEsektionen Laboration 5 Växelströmsmätningar 1 Förberedelseuppgifter laboration 4 1. Antag att vi mäter spänningen över en okänd komponent resultatet blir u(t)= 3sin(ωt) [V]. Motsvarande ström är

Läs mer

Fysik. Laboration 3. Ljusets vågnatur

Fysik. Laboration 3. Ljusets vågnatur Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall

Läs mer

Elektriska komponenter och kretsar. Emma Björk

Elektriska komponenter och kretsar. Emma Björk Elektriska komponenter och kretsar Emma Björk Elektromotorisk kraft Den mekanism som alstrar det E-fält som driver runt laddningarna i en sluten krets kallas emf(electro Motoric Force trots att det ej

Läs mer

Vågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport

Vågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågor En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågtyper Transversella Mediets partiklar rör sig vinkelrätt mot vågens riktning.

Läs mer

Uppgift 1: När går en glödlampa sönder?

Uppgift 1: När går en glödlampa sönder? Uppgift 1: När går en glödlampa sönder? Materiel: Glödlampa, strömkälla, motstånd samt dator försedd med analog/digital omvandlare och tillhörande programvara för datainsamling. Beskrivning: Kanske tycker

Läs mer

Räkneuppgifter på avsnittet Fält Tommy Andersson

Räkneuppgifter på avsnittet Fält Tommy Andersson Räkneuppgifter på avsnittet Fält Tommy Andersson 1. En negativt laddad pappersbit befinner sig nära en oladdad metallplåt. Får man attraktion, repulsion eller ingen kraftpåverkan? Motivera! 2. På ett mönsterkort

Läs mer

Ellära och Elektronik Moment AC-nät Föreläsning 4

Ellära och Elektronik Moment AC-nät Föreläsning 4 Ellära och Elektronik Moment AC-nät Föreläsning 4 Kapacitans och Indktans Uppladdning av en kondensator Medelvärde och Effektivvärde Sinsvåg över kondensator och spole Copyright 8 Börje Norlin Kondensatorer

Läs mer

RC-kretsar, transienta förlopp

RC-kretsar, transienta förlopp 13 maj 2013 Labinstruktion: RC-kretsar, magnetiska fält och induktion Ellära, 92FY21/27 1(5) RC-kretsar, transienta förlopp I den här laborationen kommer du att titta på urladdning av en RC-krets och hur

Läs mer

1.3 Uppkomsten av mekanisk vågrörelse

1.3 Uppkomsten av mekanisk vågrörelse 1.3 Uppkomsten av mekanisk vågrörelse För att en mekanisk vågrörelse skall kunna uppstå, behövs ett medium, något som rörelsen kan framskrida i. Det kan vara vatten, luft, ett bord, jordskorpan, i princip

Läs mer

LABORATION 3. Växelström

LABORATION 3. Växelström Chalmers Tekniska Högskola november 01 Fysik 14 sidor Kurs: Elektrisk mätteknik och vågfysik. FFY616 LABORATION 3 Växelström Växelströmskretsar (seriekoppling), Serieresonans. Förberedelse: i) Läs noggrant

Läs mer

Magnetfält och magnetiska krafter. Emma Björk

Magnetfält och magnetiska krafter. Emma Björk Magnetfält och magnetiska krafter Emma Björk Magnetfält och magnetiska krafter Beskriva permanentmagneters beteende Samband magnetism-laddning i rörelse Ta fram uttryck för magnetisk kraft på laddning

Läs mer

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005 Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara

Läs mer

Repetitionsuppgifter i vågrörelselära

Repetitionsuppgifter i vågrörelselära Repetitionsuppgifter i vågrörelselära 1. En harmonisk vågrörelse med frekvensen 6, Hz och utbredningshastigheten 1 m/s har amplituden a. I en viss punkt och vid en viss tid är elongationen +,5a. Hur stor

Läs mer

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2# n. x j, KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------

Läs mer

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt

Läs mer

Sensorer och elektronik. Grundläggande ellära

Sensorer och elektronik. Grundläggande ellära Sensorer och elektronik Grundläggande ellära Innehåll Grundläggande begrepp inom mekanik Elektriskt fält och elektrisk potential Dielektrika och kapacitans Ström och strömtäthet Ohms lag och resistans

Läs mer

Kaströrelse. 3,3 m. 1,1 m

Kaströrelse. 3,3 m. 1,1 m Kaströrelse 1. En liten kula, som vi kallar kula 1, släpps ifrån en höjd över marken. Exakt samtidigt skjuts kula 2 parallellt med marken ifrån samma höjd som kula 1. Luftmotståndet som verkar på kulorna

Läs mer

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända!

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen den 10/6 2015 Räknestuga Förra veckan kapitel

Läs mer

Lektion 1: Automation. 5MT001: Lektion 1 p. 1

Lektion 1: Automation. 5MT001: Lektion 1 p. 1 Lektion 1: Automation 5MT001: Lektion 1 p. 1 Lektion 1: Dagens innehåll Electricitet 5MT001: Lektion 1 p. 2 Lektion 1: Dagens innehåll Electricitet Ohms lag Ström Spänning Motstånd 5MT001: Lektion 1 p.

Läs mer

Laboration 2 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH)

Laboration 2 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH) Laboration 2 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH) Växelspänningsexperiment Namn: Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska

Läs mer

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

Sammanfattning: Fysik A Del 2

Sammanfattning: Fysik A Del 2 Sammanfattning: Fysik A Del 2 Optik Reflektion Linser Syn Ellära Laddningar Elektriska kretsar Värme Optik Reflektionslagen Ljus utbreder sig rätlinjigt. En blank yta ger upphov till spegling eller reflektion.

Läs mer

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik E06 nbyggd Elektronik F F3 F4 F Ö Ö P-block Dokumentation, Seriecom Pulsgivare,,, P, serie och parallell KK AB Pulsgivare, Menyprogram Start för programmeringsgruppuppgift Kirchhoffs lagar Nodanalys Tvåpolsatsen

Läs mer

Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9

Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9 Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9 Skrivtid: kl. 14:15-17:15 Hjälpmedel: Formelsamling, grafritande miniräknare, linjal Lärare: ASJ, HPN, JFA, LEN, MEN, NSC Möjliga poäng: 20 E-poäng + 12 C-poäng

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 10. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 2008, Kai Nordlund 10.1 10.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska

Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska Svar och ösningar Grundläggande Ellära. Elektriska begrepp.. Svar: a) Gren b) Nod c) Slinga d) Maska e) Slinga f) Maska g) Nod h) Gren. Kretslagar.. Svar: U V och U 4 V... Svar: a) U /, A b) U / Ω..3 Svar:

Läs mer

Tentamen i Fysik för K1, 000818

Tentamen i Fysik för K1, 000818 Tentamen i Fysik för K1, 000818 TID: 8.00-13.00. HJÄLPMEDEL: LÄROBÖCKER (3 ST), RÄKNETABELL, GODKÄND RÄKNARE. ANTAL UPPGIFTER: VÅGLÄRA OCH OPTIK: 5 ST, ELLÄRA: 3 ST. LÖSNINGAR: LÖSNINGARNA SKA VARA MOTIVERADE

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 213, Kai Nordlund 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

Laborationsrapport. Kurs Elinstallation, begränsad behörighet. Lab nr 2. Laborationens namn Växelströmskretsar. Kommentarer. Utförd den.

Laborationsrapport. Kurs Elinstallation, begränsad behörighet. Lab nr 2. Laborationens namn Växelströmskretsar. Kommentarer. Utförd den. Laborationsrapport Kurs Elinstallation, begränsad behörighet Lab nr 2 version 3.1 Laborationens namn Växelströmskretsar Namn Kommentarer Utförd den Godkänd den Sign 1 Inledning I denna laboration skall

Läs mer

Kandidatprogrammet FK VT09 DEMONSTRATIONER INDUKTION I. Induktion med magnet Elektriska stolen Självinduktans Thomsons ring

Kandidatprogrammet FK VT09 DEMONSTRATIONER INDUKTION I. Induktion med magnet Elektriska stolen Självinduktans Thomsons ring DEMONSTRATIONER INDUKTION I Induktion med magnet Elektriska stolen Självinduktans Thomsons ring Introduktion I litteraturen och framför allt på webben kan du enkelt hitta ett stort antal experiment som

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2014-08-20 Sal (1) Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som

Läs mer

Tentamen i fysik B2 för tekniskt basår/termin VT 2014

Tentamen i fysik B2 för tekniskt basår/termin VT 2014 Tentamen i fysik B för tekniskt basår/termin VT 04 04-0-4 En sinusformad växelspänning u har amplituden,5 V. Det tar 50 μs från det att u har värdet 0,0 V till dess att u har antagit värdet,5 V. Vilken

Läs mer

LABORATION 2 MAGNETISKA FÄLT

LABORATION 2 MAGNETISKA FÄLT Fysikum FK4010 - Elektromagnetism Laborationsinstruktion (15 november 2013) LABORATION 2 MAGNETISKA FÄLT Mål I denna laboration skall du studera sambandet mellan B- och H- fälten i en toroidformad järnkärna

Läs mer

Tentamen eem076 Elektriska Kretsar och Fält, D1

Tentamen eem076 Elektriska Kretsar och Fält, D1 Tentamen eem076 Elektriska Kretsar och Fält, D1 Examinator: Ants R. Silberberg 21 maj 2012 kl. 08.30-12.30, sal: M Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås tisdagen den 22 maj på institutionens

Läs mer

Solar cells. 2.0 Inledning. Utrustning som används i detta experiment visas i Fig. 2.1.

Solar cells. 2.0 Inledning. Utrustning som används i detta experiment visas i Fig. 2.1. Solar cells 2.0 Inledning Utrustning som används i detta experiment visas i Fig. 2.1. Figure 2.1 Utrustning som används i experiment E2. Utrustningslista (se Fig. 2.1): A, B: Två solceller C: Svart plastlåda

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2006

ETE115 Ellära och elektronik, tentamen oktober 2006 (2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är

Läs mer

Induktiv beröringsfri närvarogivare/detektor med oscillator, (Proximity switch)

Induktiv beröringsfri närvarogivare/detektor med oscillator, (Proximity switch) Induktiv beröringsfri närvarogivare/detektor med oscillator, (Proximity switch) Om spolar och resonanskretsar Pot Core Såväl motstånd som kondensatorer kan vi oftast betrakta som ideala, det vill säga

Läs mer

Föreläsning 5, clickers

Föreläsning 5, clickers Föreläsning 5, clickers Gungbrädan 1 kg 2 kg A. Kommer att tippa åt höger B. Kommer att tippa åt vänster ⱱ C. Väger jämnt I en kastparabel A. är accelerationen störst alldeles efter uppkastet B. är accelerationen

Läs mer

attraktiv repellerande

attraktiv repellerande Magnetism, kap. 24 Eleonora Lorek Magnetism, introduktion Magnetism ordet kommer från Magnesia, ett område i antika Grekland där man hittade konstiga stenar som kunde lyfta upp järn. Idag är magnetism

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Att fjärrstyra fysiska experiment över nätet.

Att fjärrstyra fysiska experiment över nätet. 2012-05-11 Att fjärrstyra fysiska experiment över nätet. Komponenter, t ex resistorer Fjärrstyrd labmiljö med experiment som utförs i realtid Kablar Likspänningskälla Lena Claesson, Katedralskolan/BTH

Läs mer

Introduktion. Torsionspendel

Introduktion. Torsionspendel Chalmers Tekniska Högskola och Göteborgs Universitet November 00 Fysik och teknisk fysik Kristian Gustafsson och Maj Hanson (Anpassat för I1 av Göran Niklasson) Svängningar Introduktion I mekanikkursen

Läs mer

Extra kursmaterial om. Elektriska Kretsar. Lasse Alfredsson. Linköpings universitet November 2015

Extra kursmaterial om. Elektriska Kretsar. Lasse Alfredsson. Linköpings universitet November 2015 Extra kursmaterial om Elektriska Kretsar asse lfredsson inköpings universitet asse.lfredsson@liu.se November 205 Får kopieras fritt av ith-studenter för användning i kurserna TSDT8 Signaler & System och

Läs mer

Laboration Svängningar

Laboration Svängningar Laboration Svängningar Laboranter: Fredrik Olsen Roger Persson Utförande datum: 2007-11-22 Inlämningsdatum: 2007-11-29 Fjäder Högtalarmembran Stativ Fjäder Ultraljudssensor Försökets avsikt Syftet med

Läs mer

Föreläsning 29/11. Transienter. Hambley avsnitt

Föreläsning 29/11. Transienter. Hambley avsnitt 1 Föreläsning 9/11 Hambley avsnitt 4.1 4.4 Transienter Transienter inom elektroniken är signaler som har kort varaktighet. Transienterna avtar ofta exponentiellt med tiden. I detta avsnitt studerar vi

Läs mer

Magnetism och EL. Prov v 49

Magnetism och EL. Prov v 49 Magnetism och EL Prov v 49 Magnetism Veta något om hur fasta magneter fungerar och används Förstå elektromagnetism Veta hur en elmotor arbetar Förstå hur vi kan få elektrisk ström av en rörelse Veta vad

Läs mer

Hur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet

Hur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet Elektromagnetiska vågor (Kap. 32) Hur elektromagnetiska vågor uppstår Laddning i vila:symmetriskt radiellt fält, Konstant hastighet: osymmetriskt radiellt fält samt ett magnetfält. Konstant acceleration:

Läs mer

Laborationsrapport. Kurs El- och styrteknik för tekniker ET1015. Lab nr. Laborationens namn Lik- och växelström. Kommentarer. Utförd den.

Laborationsrapport. Kurs El- och styrteknik för tekniker ET1015. Lab nr. Laborationens namn Lik- och växelström. Kommentarer. Utförd den. Laborationsrapport Kurs El- och styrteknik för tekniker ET1015 Lab nr 1 version 1.2 Laborationens namn Lik- och växelström Namn Kommentarer Utförd den Godkänd den Sign 1 Inledning I denna laboration skall

Läs mer

Laboration 2: Konstruktion av asynkronmotor

Laboration 2: Konstruktion av asynkronmotor Laboration 2: Konstruktion av asynkronmotor Laboranter: Henrik Bergman, Henrik Bergvall Berglund, William Sjöström, Georgios Davakos Plats och datum: Uppsala 2016-11-09 Kurs: Elektromagnetism 2 Handledare:

Läs mer

Elektromagnetiska vågor (Ljus)

Elektromagnetiska vågor (Ljus) Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet (fylls i av ansvarig) Datum för tentamen 110326 Sal TER1 Tid 8-12 Kurskod Provkod BFL122 TEN1 Kursnamn/benämning Fysik B för tekniskt basår,

Läs mer