TAL RUM NY SERIE I GYMNASIEMATEMATIK

Storlek: px
Starta visningen från sidan:

Download "TAL RUM NY SERIE I GYMNASIEMATEMATIK"

Transkript

1 TAL RUM & NY SERIE I GYMNASIEMATEMATIK

2 TAL & RUM NY SERIE I MATEMATIK FÖR DE STUDIEFÖRBEREDANDE PROGRAMMEN Under våren 2007 kommer Liber med en ny gymnasieserie i matematik för de studieförberedande programmen på gymnasiet. Bokserien kommer i två varianter: dels för Natur/Teknik, dels för Samhällsprogrammet (passar även för t.ex. Estetiska programmet). Varför ett nytt läromedelskoncept från Liber? Forskning och erfarenhet tyder på att dagens dominerande metod att lära sig matematik inte ger ett långsiktigt gott resultat. Att ensidigt träna på att lösa många standardiserade uppgifter enligt förelagda exempel passar inte med matematikämnets kumulativa och generella karaktär: Matematiken har utvecklats steg för steg där nya nivåer ständigt bygger på tidigare nivåer. För att studier på nästa nivå ska bli effektiva måste man behärska grunderna mer på djupet. Matematikämnet utmärks av att det hänger samman på ett enastående sätt, men om eleverna inte får se sammanhanget kan de utveckla en känsla av att hela ämnet är i grunden obegripligt. De matematiska verktygen är användbara långt utöver vad som visas i en samling exempel men för att kunna utnyttja denna generella användbarhet måste man förstå själva verktygen och inte bara exemplen. Många högskoleutbildningar, inte bara naturvetenskapliga/tekniska och ekonomiska, kräver matematiska färdigheter. För att ge högre kvalitet i lärandet på gymnasiet och bättre förberedelse inför högskolestudier presenterar Liber år 2007 det nya matematikläromedlet Tal & Rum. Först ut är en A+B-bok för NT och en A-bok för samhällspåret. De bärande idéerna i Tal & Rum är: Övningar på addition och multiplikation Bokstäver står för positiva heltal i samtliga övningar nedan Beräkna och (2 + 4) Utför multiplikationerna och förenkla. a) 3(k + 2) b) a(6 + b) c) (2a + b)(c + 1) d) (9 + k) 9 a) m(200 + n) b) addition, t.ex. 4 6 = a) Skriv uttrycket 3(n + 5) som en upprepad addition av tre termer. b) Förenkla uttrycket från a-uppgiften. c) Använd distributiva lagen på uttrycket från a-uppgiften och jämför med b-uppgiften Utför multiplikationerna och förenkla Multiplikation kan ju tolkas som upprepad BEGREPP 2.26 Förenkla (2 + 3) 4 till PLUS OCH GÅNGER MED POSITIVA HELTAL 2.28 Vad skiljer termer från faktorer? Exempli- m = 2. För vart och ett av följande påståenden, finn ett värde på m så att påståendet är a) en ren produkt b) en ren summa sant. a) = 3 + m b) m + m + 2 = 3m a) = 3 3 b) x + 2 = 2 + x c) m + m + n + n = 3m d) 4m = 3 4 c) = d)1 + 8 = e) 3 n = n + n + n f) x y 2 = 2yx g) ax + ay = ya + xa h) 4 3 = kan anta om man sätter in i) az = z a j) 37 = 73 parenteser på olika sätt. k) x = 2 + x + 5 och 20 kr/vuxen. En dag då det var 19 barn fiera med uttrycket fler än vuxna, fick man in 445 kr. Hur många barn var det denna dag? brukar man ofta göra det. I vilka av följande uttryck man kan utelämna gångertecknet? dessa kan sex personer sitta, vid de övriga a) 5 1/3 b) 1,04 k kan två personer sitta. Som mest kan restaurangen ta 110 gäster. Hur många bord av c) 7 6 d)8 (2 + x) varje sort finns det i restaurangen? 2.27 Vilka av följande påståenden är sanna? 2.29 När det är möjligt att utelämna gångertecken RESONEMANG 2.30 Förklara hur distributiva och kommutativa lagarna ger att (a + b)(a + b) =a a + 2ab + b b a) a + 0 = a b) a 0 = Noll står för ingenting. Förklara varför 2.32 Utnyttja figurerna av klossar för att förklara det inte spelar någon roll i vilken ordning man multiplicerar flera faktorer: (a b) c = a (b c) PROBLEM 2.33 Fem vuxna och fem barn ska gå på tivoli. Det kostar 90 kr/vuxen och 40 kr/barn. a) Skriv två olika uttryck för den totala kostnaden. b) Beskriv med ord vad uttrycken står för Påståendet m + 2 = m 2 är bara sant om 2.35 Finn alla möjliga värden som uttrycket 2.36 På en amatörteater var biljettpriset 5 kr/barn 2.37 En restaurang har 29 bord. Vid en del av 2.38 Bestäm arean av den röda rektangeln. 7 Att förmedla en syn på matematik som något som hänger ihop i ett logiskt och begripligt sammanhang, genom resonerande text, väl formulerade definitioner, satser och ibland bevis och ständig poängtering av sammanhang med tidigare material och speciellt sammanhanget mellan aritmetik, algebra och geometri Att erbjuda ett träningsprogram som innehåller en mångfald av uppgiftstyper: Metodräkning, Begrepp, Resonemang och Problemlösning inkl modellering. Uppgifterna är genomtänkta och utvalda för att i stigande svårighetsgrad belysa och träna både begreppsbildning, tankeförmåga och färdighet. Där finns en uppsjö av uppgifter både inifrån matematiken och utifrån med såväl allmänbildande som programspecifika tilllämpningar. På Libers Webb för Tal & Rum finns dessutom flera fördjupningsavsnitt för intresserade elever. 2

3 0 Att visa på matematikens användbarhet genom att sist i varje kursbok ha med ett speciellt kapitel om Tillämpad matematik. Här finns i NT-boken för kurs A och B bl.a. avsnitt om privatekonomi, samhällsekonomi, spel och risk och ett avsnitt om rörelse. Dessa avsnitt erbjuder tillämpningar och viss fördjupning av det stoff som behandlas i tidigare kapitel. Ett motsvarande tillämpningskapitel finns i samhällsboken för kurs A. Att med tillhörande IKT-material, den så kallade Matteboxen, ge ökade möjligheter till variation och individualisering av studierna. I rätt sammanhang är datorer och moderna räknare fantastiska hjälpmedel. Man kan arbeta snabbare och utföra mer omfattande beräkningar än vad som annars vore möjligt. Att t.ex. grafiskt åskådliggöra effekten av olika värden på parametrarna i den linjära funktionen y = kx + m ökar den matematiska intuitionen och det kan vara både roligare och nyttigare att med dator kunna undersöka riktiga statistiska datamaterial (såsom åldersfördelningen inom partierna hos de 349 folkvalda i riksdagen) än att vara begränsad till små tabeller i läroboken. Matteboxen är ett i Europa väl utprövat programpaket med ett antal moduler inom områdena grafer/funktioner, derivator/integraler, statistik och sannolikhetslära. Här finns bl.a. ett antal träningsmoduler och ett stort antal simuleringar/experiment. I läroböckerna ger vi en del exempel på hur matteboxen kan användas. Det mesta materialet (datafiler, arbetsövningar, laborationer mm) kommer på Libers Webb för Tal&Rum. Läs mer om matteboxen på Allt det här innebär att vår ambition är att göra matematiken i gymnasiet mer omväxlande och rolig. Det gäller inte längre bara att räkna, man måste tänka också! Icke likformig sannolikhet Tejpa ihop tre tiokronorsmynt till ett supertjockt mynt. Om man singlar detta mynt finns tre tänkbara utfall: utöver att visa valör eller gubbe kan myntet landa på högkant. Det finns ingen anledning till att landning på högkant skulle vara precis lika sannolikt som landning på en viss sida. Sannolikheten är inte likformig. Alltså kan vi inte säga att varje utfall har sannolikhet 1/3. Hur får vi då reda på sannolikheten? Genom att skaffa oss erfarenhet, dvs. singla slanten många gånger. När Kimmo singlade slanten hundra gånger blev resultatet så här: efter 10 kast efter 20 kast efter 50 kast efter 100 kast andel högkant 1/10 = 0,10 3/20 = 0,15 6/50 = 0,12 14/100 = 0,14 andel gubbe 6/10 = 0,60 10/20 = 0,50 24/50 = 0,48 42/100 = 0,42 andel valör 3/10 = 0,30 7/20 = 0,35 20/50 = 0,40 44/100 = 0,44 Som man förväntar sig verkar man få ungefär lika många valör som gubbe: drygt 40 procent av varje. Högkant är inte alls lika vanligt, bara 14 procent av de första hundra kasten. Men vi vet därför inte att sannolikheten att få högkant är precis 14 procent. Vi ser i tabellen att andelen skiftar mellan olika delar av kastserien, och så fungerar slumpen. En graf visar det ännu tydligare. Efter hundra kast gör vi uppskattningen att P(högkant) 14 %. Genom att singla slanten ännu fler gånger kan vi göra en ännu säkrare uppskattning. 0,3 0,25 0,2 0,15 0,1 0,05 relativ frekvens av högkant LIKFORMIG SANNOLIKHET Valör uppåt antal kast I Programmet Stathuset finns ett antal olika simuleringar som handlar om slumpförsök. En av modulerna demonstrerar hur den relativa frekvensen stabiliserar sig om man gör många kast med ett mynt. 7 Matematik är en mäktig medhjälpare när man ska lösa problem i verkliga livet, och gymnasiekursen ska hjälpa eleverna att ta makten över matematiken. 3

4 På de följande sidorna finns smakprov ur NT-boken på sidor ur de kapitel som beskrivs nedan. Vi har valt sidor så att ni ska få en bra uppfattning om hur våra böcker är upplagda. Bland annat kan ni se den uppdelning på uppgiftstyper vi genomgående har i läromedlet.varje kapitel avslutas med ett antal repetitionsövningar följt av ett avsnitt med blandad problemlösning. I några kapitel finns fördjupningsavsnitt. Sist böckerna finns svar till alla övningar med mycket utförliga kommentarer. kapitel1 kapitel3 kapitel2 4 I gymnasiet blir matematikämnet mer omväxlande och roligt. Det gäller inte längre bara att räkna, du måste tänka också! Matematik är en mäktig medhjälpare när man ska lösa problem i verkliga livet, och gymnasiekursen ska hjälpa dig att ta makten över matematiken. Men vad är matematik? Det ska vi försöka besvara här i kapitel 1. Läs noga! Här läggs grunden till gymnasiekursen. Från grundskolan känner du till olika sorters tal och räknesätt. Med dem kan man bilda uttryck som t.ex. (6 5/4) Samband mellan uttryck kallas ekvationer, t.ex. x 10. För att kunna förenkla uttryck och lösa ekvationer måste man förstå hur räknesätten hänger ihop. I det här kapitlet förklarar vi hela sammanhanget, från addition av enkla heltal till potenser med allmänna exponenter. Viktigast är att du förstår och kan utnyttja omvända räknesätt: minus är omvändningen till plus delat med är omvändningen till gånger rötter är omvändningen till upphöjt till Numerisk räkning är helt enkelt att räkna med siffror. Och siffror är makt! Har du siffror på det, eller är det bara snack? Med siffror kan man övertyga andra, så det gäller att vara vän med siffrorna och kunna räkna numeriskt. Då är det väl bara att slå in på räknare och skriva upp vad den visar? Nej, nästan aldrig! Det finns många sätt att skriva tal på, och samma siffror kan betyda olika saker i olika sammanhang. I numerisk räkning måste man utnyttja sitt eget omdöme för att tolka, behandla och uttrycka tal på bästa sätt.

5 NT-boken för A- och B-kursen innehåller följande kapitel: 1 Vad är matematik? en introduktion till gymnasiematematiken. Här finns bl.a. avsnitt om hur man beskriver tal och rum i matematiken. Mer än 100 olika övningar inom de fyra kategorierna. 2 Tal och räknesätt 3 Numerisk räkning 4 Geometri 5 Samband i matematiken Rita och tolka grafer, introduktion till begreppet funktion 6 Statistik 7 Algebra 8 Funktioner 9 Klassisk geometri 10 Sannolikhet 11 Statistiska undersökningar 12 Tillämpad matematik bonuskapitelet dit man kan gå för att tillämpa sina kunskaper på matematik i den verkliga verkligheten. S-boken för A-kursen innehåller följande kapitel: 1 Vad är matematik? en introduktion till gymnasiematematiken. Här finns bl.a. avsnitt om hur man beskriver tal och rum i matematiken. Mer än 100 olika övningar inom de fyra kategorierna. 2 Tal och räknesätt 3 Numerisk räkning 4 Geometri 5 Samband i matematiken Rita och tolka grafer, introduktion till begreppet funktion 6 Statistik 7 Tillämpad matematik bonuskapitelet dit man kan gå för att tillämpa sina kunskaper på matematik i den verkliga verkligheten. kapitel6 kapitel10 kapitel12 Naturvetenskap och samhällsvetenskap grundar sig på observationer av världen. Resultat av observationer t.ex. mätvärden eller enkätsvar, kallas för data. För att presentera och dra slutsatser från data använder man statistik. I det här kapitlet får du lära dig att använda de grundläggande verktygen för att sammanställa och presentera data. Kommer aktiemarknaden att gå upp eller ned? Är det värt att springa till bussen och hoppas på att den inte ska ha gått än, trots att jag är sent ute? Borde familjen budgetera för den nästan obefintliga risken att bilen, kylen, frysen och diskmaskinen går sönder på samma gång? Världen är full av osäkerhet. För att räkna på osäkerhet använder man Tillämpad matematik kallas det när man använder matematik för att säga något om verkligheten. I det här kapitlet ska vi studera ekonomiska och fysikaliska tillämpningar. De ekonomiska tillämpningarna är lån, investeringar, index och spel. Utöver de fyra räknesätten tillämpas här procenträkning, potenser, ekvationslösning och sannolikhetslära. I fördjupningsavsnitt på webben till Tal & Rum introducerar vi också en del ny matematik. 5

6 KAPITEL 1 VAD ÄR MATEMATIK? VAD ÄR EN METOD? Många räknemoment behöver man utföra ofta, såsom att multiplicera tal. Då vill man ha en effektiv metod, dvs. ett beprövat recept att följa för att enkelt och korrekt få fram svaret. Metoder och begrepp är matematiska verktyg. Lär dig att använda dem! DU VET VÄL ATT en matematisk metod också kallas för en algoritm? Ordet kommer från namnet på den arabiska matematikern al-khwarizmi som levde på 800-talet Metoder (och även begrepp, se nästa avsnitt) kan man se som matematiska verktyg som underlättar tankearbetet. Under tusentals år har människor fyllt på en matematisk verktygslåda med bra metoder och begrepp. Med de rätta verktygen blir det matematiska arbetet lättare och tankekraft frigörs för svårare frågor på en högre nivå. Att själv komma på en bra metod är inte lätt. Man måste därför lära sig färdiga metoder för olika sorters uppgifter. En del metoder har du lärt dig i grundskolan. Som exempel ska vi repetera algoritmen för multiplikation. För de gamla romarna var det ju en rejäl utmaning att multiplicera stora tal, men i decimalsystemet går det ganska enkelt om man vet hur man ska göra. Förkunskapskrav: multiplikationstabellen Eftersom tal byggs upp av siffror från 0 till 9 krävs det till att börja med att man kan multiplicera dessa byggstenar. Därför får barn i alla världsdelar lära sig multiplikationstabellen. Har du tänkt på att det räcker att lära sig halva tabellen? Multiplikationstabellen är symmetrisk kring diagonalen, så den undre triangeln är bara en spegling av den övre. EXEMPEL Multiplikationstabellen Det räcker att lära sig halva multiplikationstabellen Vad är 7 gånger 6? I tabellen ser vi att 6 7 = 42. Då är även 7 6 = 42. Kan du ge en förklaring? Se övning

7 KAPITEL 1 VAD ÄR MATEMATIK? VAD ÄR ETT BEGREPP? Matematiska begrepp är ord som heltal, rektangel eller udda. Bra begrepp är oumbärliga verktyg när man ska angripa verkliga problem (se avsnitt 1.7). Metoder Begrepp Matteverktyg Det är viktigt att alla som använder ett begrepp är överens om vad det betyder, annars blir det förvirring. Att specificera betydelsen kallas att definiera begreppet. Även om man har en tydlig uppfattning av vad ett begrepp innebär så kan det vara svårt att formulera en användbar definition. Vad är till exempel ett heltal? Här är ett försök till svar: Heltal är tal som är hela. En bra definition utgår från enklare begrepp. Det är ett dåligt svar, eftersom den definitionen inte är användbar om man inte redan vet vad som menas. En bra definition utgår från enklare begrepp. Om man antar att personen åtminstone vet vad ett antal är så kan man definiera heltal så här: DEFINITION av heltal Heltalen består av noll samt alla tal som är ett antal (1, 2, 3, ) eller minus ett antal ( 1, 2, 3, ). Varje begrepp definieras med andra enklare begrepp. Till slut kommer man ner till vissa grundbegrepp som man tycker får klara sig utan närmare definition. Antal och punkt är sådana grundbegrepp. 7

8 VAD ÄR ETT RESONEMANG? VAD ÄR ETT RESONEMANG? En tankekedja kallas för ett resonemang. I matematik ska man kunna motivera varje steg man gör i sina resonemang. Det är en god vana att skriva ut motiveringarna. Målet är att andra ska kunna följa med i vartenda steg. Matematikämnet ger utmärkt övning på att argumentera logiskt och tänka kritiskt, dvs. ifrågasätta allt man inte förstår. Till exempel, varför är två plus två lika med fyra? EXEMPEL Resonemang 1.70 Förklara varför 2 +2=4. Lösning: Med 2 menas följande antal: Med 4 menas följande antal: Med + menas att lägga ihop är alltså följande antal: Vi ser att är lika många som 4. PAPPANS RESONEMANG Vi är fyra personer i familjen. Alla brukar vilja ha var sin kotlett. Om dottern säger att det räcker med tre betyder det att hon inte vill ha någon. Alltså äter hon någon annanstans. När hon inte äter hos oss brukar hon vara hos sin bästis Rebecka. Att = 4 har ingen bestämt! Det följer logiskt ur definitionerna av begreppen två, fyra, plus och lika med. 8

9 VAD ÄR PROBLEMLÖSNING OCH MODELLERING? VAD ÄR PROBLEMLÖSNING OCH MODELLERING? Matematikens verktyg är väldigt allmängiltiga. Det går inte att i förväg förutse alla sammanhang när matematik kan användas. Därför ställs man ofta inför uppgifter som man inte har lärt sig en färdig metod för. Sådana uppgifter kallas problem. När man ställs inför ett problem krävs dels påhittighet, dels förmåga att utvärdera olika uppslag. Genom träning ökar man snabbt sin problemlösningsförmåga, och därför ingår många problem bland övningarna i denna bok. Här ska vi ta upp två viktiga problemlösningstekniker: Införa variabler och ställa upp en ekvation. Hitta ett mönster. En bokstav, t.ex. x, som man räknar med kallas variabel. EXEMPEL Ekvationslösning 1.89 För sjutton år sedan var Charlotte dubbelt så gammal som sin syster Caroline. Det skiljer sex år mellan systrarna. Hur gamla är de nu? Lösning: Kalla Charlottes nuvarande ålder för x år. Då är Caroline x 6 år. För sjutton år sedan var Charlotte var x 17 år och Caroline (x 6) 17 = x 23 år. Charlotte var då dubbelt så gammal som Caroline, dvs. x 17 = 2 (x 23). Genom att lösa ekvationen får i svaret: x 17 = 2 (x 23) x x 6 Förenkla: x 17 = 2x 46 Flytta över : = 2x x Förenkla: 29 = x Charlotte är alltså 29 år och Caroline är 29 6 = 23 år. Ekvationslösning tränas i kap 2. I kapitel 2 kommer vi att träna mer på ekvationer. 9

10 SUBTRAKTION OCH NEGATIVA TAL SUBTRAKTION OCH NEGATIVA TAL Lisa och Olle har tillsammans nio äpplen. Lisa har fem äpplen. Hur många äpplen har Olle? Svaret kan man förstås räkna ut som 9 5. Olles äpplen är de som återstår när vi har tagit bort Lisas 5 äpplen från de 9 äpplen som finns totalt, och operationen att ta bort betecknas med minus. DEFINITION (subtraktion) a b är det tal man får om man har a och tar bort b. Talen a och b kallas termer och hela uttrycket är en differens. 123 Om man tar bort mer än man har, vad händer då? Ett exempel är om temperaturen är tre grader och sedan sjunker fem grader. Då måste vi införa nya tal som är ännu mindre än noll: de negativa talen som finns till vänster om noll på tallinjen. Temperatursänkningen är en rörelse fem steg åt vänster från 3 till 2. Att ta bort är omvändningen till att lägga till. Minus är alltså omvändningen (även kallat inversen) till plus. DEFINITION Negativa tal Minus är omvändningen till plus. b är det tal som uppfyller b + b = 0. PRIORITERINGS- REGEL och + har samma prioritet EXEMPEL Varför minus minus är plus 2.60 Varför är ( 4) = 4? Förklara på tre olika sätt! Lösning 1: Minus ger omvänd riktning på tallinjen. 4 ligger fyra steg till vänster om noll. ( 4) ligger då fyra steg till höger om noll. Lösning 2: ( 4) är det tal som uppfyller ( 4) + ( 4) = 0. Den egenskapen har uppenbarligen talet 4. Lösning 3: 4 kr är en skuld. Att ta bort en skuld på 4 kr gör oss 4 kr rikare, dvs. ( 4) = 4. Minus ger omvänd riktning på tallinjen. Minus är inversen till plus. Minus är att ta bort, även skulder! 10

11 KAPITEL 2 TAL OCH RÄKNESÄTT EXEMPEL Multiplikation med negativa tal 2.61 Beskriv på tallinjen multiplikationerna a) 3 ( 2) b) ( 3) ( 2) Lösning: a) 3 ( 2) är 3 st ( 2)-steg på tallinjen, dvs. 3 2 steg åt vänster på tallinjen. b) ( 3) ( 2) är omvändningen till 3 2 steg åt vänster, dvs. 3 2 steg åt höger. Vi har sett att man kan tänka på minus på flera olika sätt. Hur man än ser på minus kommer man fram till samma räkneregler. De kan sammanfattas i att minus ger teckenändring (från + till och från till +). RÄKNEREGLER för minus a + ( b) = a b t.ex. 5 + ( 2) = 5 2 a ( b) = a + b t.ex. 5 ( 2) = (a + b) = a b t.ex. (5 + 2) = 5 2 ( a) b ab ( a) ( b) ab ( a) ( b) ( c) abc,etc. Lägga till negativt betyder dra ifrån. Dra bort negativt betyder lägga till. Minus framför summa byter tecken på varje term. I produkt ger varje minus teckenändring. EXEMPEL Summa med negativa tal 2.62 Förenkla 1 + ( 2) 5 (3 + ( 4)). Lösning: 1+( 2 ) 5 ( 3 ( 4 ) 1 10 ( 1) EXEMPEL Produkt med negativa tal INSER DU att udda antal minus ger minus, medan jämnt antal minus ger plus? 2.63 Beräkna ( 2y) 3y ( 5) ( 10). Lösning: Det är tre minustecken i produkten, så tecknet växlar ett udda antal gånger och slutar då på minus: ( 2y) 3y ( 5) ( 10) = = y 2 = 300y 2. 11

12 DIVISION OCH RATIONELLA TAL Övningar på division 2.83 Bråk som är större än 1 skrivs ibland på blandad form med en heltalsdel och en bråkdel, t.ex. 2 ½ istället för 5/2. Beräkna och svara dels på bråkform, dels på blandad form. a) b) 3 7 c) Förenkla till ett enkelt bråk. a) 1 2 b) Förenkla till ett bråkstreck. a) b) c) Förenkla a) d) b) y 2y Ange de bråktal som illustreras nedan. Förkorta så långt det går Hur många mil kan man köra på en full tank om tanken rymmer 45 liter och bilen drar 3/4 liter bensin per mil? 2.87 Finn värden på x så att sambanden gäller: a) 6x =2 b) x/6 = 2 c) 6/x = Förkorta följande bråk så långt som möjligt. 4 a) b) 14 x 10 21x c) 14 / 3 d) 2 2 y 6 3yz 2.89 Förkorta följande bråk så långt som möjligt. 3 2 a) b) a 4( 32) 4 7 a 2.90 Ange det rödmarkerade området som ett bråktal på två olika sätt. BEGREPP 2.93 Skriv följande bråktal i storleksordning med det minsta talet först. 5 2, 5 7, 5 11, 5 8, Ange vilka av följande tal som är större än , 5 4, 99/100, 0 7, 1 05, 12

13 KAPITEL 2 TAL OCH RÄKNESÄTT 2.95 Avgör vilka av följande tal som grovt räknat är ungefär lika med en halv: 5 9, , 5 11, , 4 13, x x 2 x a/b är ett bråk av positiva tal. Om man gör täljaren större blir värdet av bråket större. Hur ska man ändra nämnaren för att göra bråket större? PROBLEM Guldhalt anges i karat. 1 karat = 1/24 av vikten. Tre guldringar ligger på ett bord. En ring väger 32 g och är av 18 karat. En annan ring väger också 32 g men är av 15 karat och en tredje ring som är av 12 karat väger 38 g. Hur mycket rent guld ligger där på bordet? 2.97 Beräkna summan, differensen, produkten och kvoten av talen 1/15 och 3/ Ulla har kokat 8 liter sylt. Då hon hällde över sylten i småburkar gick det åt exakt 30 stycken. Hur mycket rymde en burk? Ange svaret i bråkform. RESONEMANG 2.99 Förklara genom att multiplicera med nämnaren varför a) , b) , c) 1 2 / 5 5/ Har du tänkt på att 1/2 < 2/3 < 3/4 etc.? Förklara varför m m 1 alltid måste n n 1 gälla för positiva tal där m < n Division definieras som att a/b är det tal som uppfyller b a/b = a, dvs. delat med är omvändningen till gånger. Använd multiplikation till att förklara följande räkneregler. a) a / b a 1 Tips: Multiplicera båda b led med b. b) n b m b c) a c a b c b d) a b n m b a b Tips: Multiplicera båda led med b. Tips: Multiplicera båda led med b c. Tips: b = ( 1) b A, B och C spelar på tips tillsammans. Vid ett tillfälle då de vunnit 3600 kr hade A satsat 20 kr, B hade satsat 30 kr och C 70 kr. Hur skulle vinstpengarna fördelas? En klubb har 63 medlemmar. Fem sjundedelar är kvinnor. Hur många män ingår i klubben? En tunna rymmer 2/5 m 3. a) Hur mycket rymmer femton sådana tunnor? b) Hur mycket vatten är det i en sådan tunna när den är fylld till en fjärdedel? En växt skrumpnar sedan en tid tillbaka. För varje månad minskar dess längd till 4/5 av längden månaden innan. I början av april var växten 100 cm hög. a) Hur hög är växten i början av juni? b) Hur hög var växten i början av mars? Ge svaren i hela cm. 13

14 DIVISION OCH RATIONELLA TAL På en fotbollsmatch med 2000 åskådare var tre fjärdedelar män. Av dessa var hälften under 30 år. Av dessa åt en femtedel mat. Av dessa åt två tredjedelar korv. a) Hur många av deltagarna var korvätande män under trettio år? b) Hur stor andel av deltagarna var korvätande män under trettio år? c) Hur många män var över 30 år? d) Hur många kvinnor var det på matchen? Det bruna och blå fältet utgör var för sig 1/n av den totala rektangeln. Hur stor andel av det ickebruna området är blått? En kompisgäng beställer mat. De tänker dela notan lika. Plötsligt inser Pernilla att hon måste gå och springer utan att betala. Thomas säger: Typiskt, nu måste vi andra betala 12 kr till var. Jag springer efter. Men Jana invänder: Sitt kvar! Om du också försvinner måste ju alla betala ytterligare 15 kr till. Hur mycket kommer de kvarvarande att få betala per person? När en tredjedel av ett tal subtraheras från hälften av samma tal får man 7. Vilket är talet? Amir har kokat 7 liter sylt. Hur många syltburkar gick det åt om varje burk rymde a) en halv liter b) en tredjedels liter c) 5/ 6 liter? Välj ett tal, vilket som helst. Lägg till 4 och dubbla sedan summan. Dra nu ifrån 6 och dividera därefter differensen med 2. Vad fick du? Upprepa proceduren ett antal gånger med några andra fritt valda tal. Vilket mönster uppträder och varför? Özz åker långfärdsskridsko runt en plogad bana på en insjö. Varje varv tar honom 28 minuter. Amanda åker samma bana men åt motsatt håll. De möts var tolfte minut. Hur lång tid tar det för Amanda att åka ett varv? 14

15 KAPITEL 3 NUMERISK RÄKNING FÖRÄNDRINGSFAKTOR Upprepade procentuella förändringar kan man inte bara lägga ihop. Man måste istället multiplicera förändringsfaktorerna. Om priset stiger med 40 % så har det förändrats med faktorn 1,40. Om priset sedan sjunker med 40 % så har det förändras med faktorn 0,60. Den totala förändringen blir 1,40 0,60 = 0,84 dvs. en prissänkning med 16 %. DEFINITION Förändringsfaktor När en storhet förändras är förändringsfaktorn = nytt värde gammalt värde Därmed gäller nytt värde = gammalt värde förändringsfaktorn EXEMPEL Förändring till det större Sabina och Rickard köper en lägenhet för en miljon kronor. Den stiger i värde 20 procent per år i fem år. Hur mycket är den värd då? Fel svar: En värdestegring på 20 % per år i fem år är totalt 100 %, dvs. från en miljon till två miljoner kronor. Förändringsfaktorer multipliceras ihop Rätt svar: Förändringsfaktorn är 1,20. På fem år förändras priset med faktorn 1,20 1,20 1,20 1,20 1,20 = 1,20 5 2,5. Från en miljon kronor går priset upp till 2,5 miljoner kronor. 15

16 FÖRÄNDRINGSFAKTOR EXEMPEL Förändring till det mindre En solig sommardag sålde en kiosk tvåhundra glassar. Nästa dag var mulen, då såldes 30 procent färre glassar. Dagen därpå regnade det, då sjönk försäljningen med ytterligare 80 procent. Hur många procent sjönk försäljningen totalt på två dagar? Fel svar: Försäljningen sjönk med 30 % + 80 % = 110 %. Rätt svar: Den mulna dagen förändrades försäljningen med faktorn 0,70. Den regniga dagen förändrades försäljningen med faktorn 0,20. Total förändring blev 0,70 0,20 = 0,14, dvs. försäljningen minskade med 86 % på två dagar. Inget kan minska mer än 100 %! Övningar på förändringsfaktor Vad är förändringsfaktorn vid en ökning med a) 5 procent b) 100 procent c) 0 procent d) 430 procent e) x procent Vad är förändringsfaktorn vid en minskning med a) 8 % b) 50 % c) 0 % d) 100 % e) y % Vad är förändringsfaktorn vid en förändring a) från 50 kg till 40 kg b) från 40 kr till 50 kr c) från 17 st till 17 st d) 30 procentenheter till 0 procentenheter e) från x till y Om fack och arbetsgivare kommer överens om löneökningar på 4,1 procent per år i tre år, hur stor löneökning blir det på tre år? En butik drar av 10 % på priset på alla varor. Nästa vecka drar de av ytterligare 20 %. Hur stor prissänkning blev det totalt? År 1945 åt svenskarna 4,6 kg ost per person. Under de tre kommande tjugoårsperioderna ökade konsumtionen först med 74 %, sedan med ytterligare 85 % och slutligen med ytterligare 22 %. Hur mycket ost åt svenskarna per person år 2005? År 1945 åt svenskarna 14,4 kg smör per person. Under de tre kommande tjugoårsperioderna minskade konsumtionen med 39 %, 61 % respektive 62 %. Hur mycket smör åt svenskarna per person år 2005? BEGREPP Vad ger störst ökning, att först öka med 20 % och sedan minska med 10 % eller att först minska med 10 % och sedan öka med 20 %? I vilken av följande situationer har man särskild nytta av att räkna med förändringsfaktorer: a) vid extra stor förändring b) när förändring kan vara både uppåt och nedåt c) vid upprepad förändring. RESONEMANG En svensk ekonomiprofessor skrev en gång om Chile att landets valuta under sex år på 1970-talet tappade flera hundra procent i värde. Förklara hur professorn måste ha tänkt fel. (Valutan tappade i snitt 60 % av sitt värde per år under denna period.) 16

17 KAPITEL 3 NUMERISK RÄKNING PROBLEM En butik som har slutrealisation under en vecka börjar med att sänka priset med 10 procent på måndagen. Sedan fortsätter de att sänka priset med 10 procent varje dag. Har de sänkt mer än halva priset på söndagen? En butik som har slutrealisation under en vecka vill sänka priset med lika många procent varje dag, så att priset halveras på sju dagar. Med två siffrors noggrannhet, hur många procent ska den dagliga sänkningen vara? I ett glas finns en deciliter vatten, i ett annat glas finns två deciliter vin. Hillevi tar en matsked från vinglaset, häller över i vattenglaset och rör om. Sedan tar hon en matsked av blandningen och häller över i vinglaset. a) Är det nu mer vin i vattnet än det är vatten i vinet, mätt i volym? b) Är det mer vin i vattnet än det är vatten i vinet, mätt i procent? c) Hur stor andel vin är det i vattenglaset? d) Hur stor andel vatten är det i vinglaset? Befolkningen i en liten by ökade ett år med 25 % för att året därpå minska med 25 % till 3000 invånare. Vad var antalet två år tidigare? På en given kvadrat ökas alla sidlängder med 41 %. Med hur många procent ökar omkretsen respektive areran? Sträckan AB har uppskattats till 50 5 meter och sträckan AC till meter. Den relativa osäkerheten är alltså 10 %. Vad är den relativa osäkerheten i sträckornas summa (AB + AC = 150 m), i sträckornas förhållande (AB:AC = 1:2), och i sträckornas produkt (AB AC = 5000 m 2 ) Jag skulle vilja gå ner tio kilo, sa hundrakilosmannen Sven-Hubert, och varje sommar motionerar jag bort tio procent av vikten men varje vinter går jag upp tio procent igen, så det är hopplöst! Säg något uppmuntrande till Sven-Hubert som bygger på dina goda kunskaper i procenträkning. 17

18 KAPITEL 6 STATISTIK INSAMLING OCH SAMMANSTÄLLNING AV STATISTIK Vetenskapliga undersökningar kräver insamling och sammanställning av data. Man kan dela upp detta arbete i fyra steg: 1. Utformning av protokoll/enkät. Vilka frågor vill man besvara och hur ska svarsalternativen se ut? 2. Genomförande av mätningar med ifyllande av protokoll eller utdelning och insamling av enkät. Mängden av ifyllda protokoll/enkäter kallas rådata och är oftast helt oöverskådlig. 3. Sammanställning av data krävs för att göra informationen mer överblickbar. Man kategoriserar svar, summerar ihop totaler och beräknar frekvenser. 4. Presentation av data sker i tabell eller diagram av lämplig form. Två sätt att mäta längd: Det finns olika sätt att samla in data: mäta själv eller fråga någon annan som redan mätt. 18

19 SAMMANSTÄLLNING AV STATISTIK Rosemary och Peter Grant EXEMPEL Utforma protokoll 6.19 På Galapagosöarna lever Darwins finkar. Där har evolutionsbiologerna Peter Grant och Rosemary Grant i många år undersökt hur finkarnas näbbstorlekar utvecklas. Forskarna går varje år igenom hela populationen av finkar och mäter bl.a. varje honas näbbstorlek och hur många ungar hon får. Hur kan man utforma ett protokoll för detta? Lösning: fågel id näbb (mm) 8,4 10,1 7,1 8,6 8,9 9,3 10,1 7,9 9,8 antal ungar Enklast tänkbara protokoll är en kolumn för varje fink, med en rad för varje mätetal. Sammanställning av data från protokoll och enkäter gör man numera oftast genom att man matar in dem i ett statistikprogram. Bilden visar datafönstret från programmet Stathuset. 19

20 KAPITEL 6 STATISTIK frekvens antal ungar EXEMPEL Sammanställa data för antalet ungar 6.20 Hur kan man för hand enkelt sammanställa och presentera data över antal ungar? Lösning: Gör en avprickningslista med en rad för varje tänkbart antal ungar. Sätt ett streck på rätt rad för varje fågel. Gruppera strecken fem och fem. Avläs sedan frekvenser, dvs. antalet streck på varje rad. Summera så att du får totalen. Beräkna relativa frekvenser genom att dividera frekvenser med totalen. Antal ungar Avprickning Frekvens Relativ frekvens 2 I 1 11 % 3 I I 2 22 % 4 I I I I 5 56 % 5 I 1 11 % SUMMA % Vill man använda ett diagram för att presentera detta datamaterial kan ett stolpdiagram vara lämpligt, eftersom antal ungar är heltal. EXEMPEL Sammanställa data för näbblängder frekvens 6.21 Hur kan man för hand enkelt sammanställa data över näbblängder? Lösning: Att pricka av näbblängder direkt är inte särskilt meningsfullt eftersom de kan anta så många olika värden. I sådana fall bör man välja ett sätt att kategorisera sina data: klumpa t.ex. ihop alla värden som börjar på samma hela antal millimeter. Näbb (mm) Avprickning Frekvens Relativ frekvens 7,0 7,9 8,0 8,9 9,0 9,9 10,0 10,9 näbbstorlek, mm 7,0 7,9 I I 2 22 % 8,0 8,9 I I 2 22 % 9,0 9,9 I I I 3 33 % 10,0 10,9 I I 2 22 % SUMMA 9 99 % HUR KAN SUMMAN BLI 99 %? Obs! Avrundning kan medföra att procenttalen skenbart inte summerar till 100. Ett stapeldiagram där kategorierna, i detta fall näbblängd, är talintervall kallas för histogram. 20

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk.

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk. täljare bråkstreck ett bråk nämnare Vilket bråk är störst? Ett bråk kan betyda mer än en hel. Olika bråk kan betyda lika mycket. _ 0 två sjundedelar en hel och två femtedelar > 0 > 0 < > > < > Storlek

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Studiehandledning. kurs Matematik 1b

Studiehandledning. kurs Matematik 1b Studiehandledning kurs Matematik 1b Innehållsförteckning Inledning och Syfte... 1 Ämnesplan för ämnet matematik... 1 Ämnets syfte... 1 Centralt innehåll... 2 Problemlösning... 2 Taluppfattning, aritmetik

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

7-2 Sammansatta händelser.

7-2 Sammansatta händelser. Namn: 7-2 Sammansatta händelser. Inledning Du vet nu vad som menas med sannolikhet. Det lärde du dig i kapitlet om just sannolikhet. Nu skall du tränga lite djupare i sannolikhetens underbara värld och

Läs mer

Matematik 1A 4 Potenser

Matematik 1A 4 Potenser Matematik 1A 4 Potenser förklara begrepp t ex. potens, bas, exponent och grundpotensform (Nivå E C) tolka, skriva och räkna med tal i grundpotensform (Nivå E A) helst kunna redogöra för räkneregler för

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

3Procent. Mål. Grunddel K 3

3Procent. Mål. Grunddel K 3 Procent Mål När eleverna har studerat det här kapitlet ska de kunna: förstå och utföra de tre olika typerna av procentberäkningar räkna ut delen räkna ut hur många procent något är räkna ut det hela använda

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Matematik 3000 kurs A

Matematik 3000 kurs A Studieanvisning till läroboken Matematik 3000 kurs A Innehåll Kursöversikt...4 Vad skall du kunna efter Matematik kurs A?...5 Så här jobbar du med boken...6 Studieenhet Arbeta med tal...7 Studieenhet Procent...12

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven

Läs mer

5Chans och risk. Mål. Grunddel K 5. Ingressen

5Chans och risk. Mål. Grunddel K 5. Ingressen Chans och risk ål När eleverna har studerat det här kapitlet ska de kunna: förklara vad som menas med begreppet sannolikhet räkna ut sannolikheten för att en händelse ska inträffa känna till hur sannolikhet

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar

Läs mer

Matematik Åk 3 Tal och räkning

Matematik Åk 3 Tal och räkning FA C I T Lgr 11 Matematik Åk 3 Tal och räkning Catherine Bergman Maria Österlund Kan du använda och beskriva tal? Hur långt kan du räkna framåt? Jag kan räkna till: Hur långt kan du räkna bakåt? Jag kan

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Steg-Vis. Innehållsförteckning

Steg-Vis. Innehållsförteckning Innehållsförteckning SIDAN Förord 6 Inledning 7 Målgrupp och arbetssätt 8 Dåligt minne? 9 Nyckelfakta 10 Råd till pedagog 11 Tre matematiska lagar 12 10-komplement 14 Från subtraktion till addition 15

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson

Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson Detaljplanering Matematik 1A Jonas Bengtsson Läromedel: Matematik 00 1a, Natur & Kultur Information Detta är en detaljplan i kursen Matematik 1A för läsåret 2013/2014. Varje vecka innehåller 3 st lektionspass

Läs mer

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande tikk Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte

Läs mer

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form. Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.

Läs mer

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK KRAVNIVÅER Åtvidabergs kommuns grundskolor MATEMATIK Reviderade april 2009 Förord Välkommen att ta del av Åtvidabergs kommuns kravnivåer och bedömningskriterier för grundskolan. Materialet har tagits fram

Läs mer

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte vara?

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

Studiehandledning för Matematik 1a

Studiehandledning för Matematik 1a Studiehandledning för Matematik 1a Innehåll Studiehandledning för Matematik 1a... 1 Inledning och Syfte... 2 Ämne - Matematik... 3 Ämnets syfte... 3 Matematik 1a... 4 Centralt innehåll... 4 Kunskapskrav...

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

Algebra - uttryck och ekvationer

Algebra - uttryck och ekvationer Förenkla: Tänk så här: Du går till affären och köper 3 äpplen och 2 bananer och lösgodis för 7 kr. Din kompis köper 1 äpple och 3 bananer och lösgodis för 10 kr. Hur många äpplen och hur många bananer

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Utvärdering av dina matematiska förmågor - Procent

Utvärdering av dina matematiska förmågor - Procent Utvärdering av dina matematiska förmågor - Procent Göra beräknar med promille och ppm 1. En person med 4,8 liter blod i kroppen har en alkoholhalt i blodet som är 0,25 promille. Hur många centiliter alkohol

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Innehållsförteckning. Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period.

Innehållsförteckning. Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period. 2 Resultat Innehållsförteckning Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period Screeningmoment Talserier Jämnt - udda Tal och obekanta

Läs mer

Talmönster och algebra. TA

Talmönster och algebra. TA Talmönster och algebra. TA Diagnoserna i området avser att kartlägga om eleverna kan upptäcka talmönster samt på olika sätt bearbeta algebraiska uttryck och ekvationer. Förståelse av koordinatsystem och

Läs mer

Centralt innehåll som vi arbetar med inom detta område:

Centralt innehåll som vi arbetar med inom detta område: BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 1.1Introduktion Introduktion Avsnitt 1 handlar till att börja med om hantering av bråkstreck. Samtidigt ges exempel och övningar

Läs mer

Matematikundervisningen har under

Matematikundervisningen har under bengt aspvall & eva pettersson Från datorernas värld Hur kan vi stimulera elever i matematik, och hur kan vi genom matematiken visa delar av datorns funktioner? Författarna visar hur man kan introducera

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000

Läs mer

Målet med undervisningen är att eleverna ges förutsättningar att:

Målet med undervisningen är att eleverna ges förutsättningar att: Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska

Läs mer

MATEMATIK - grunderna och lite till - Hans Elvesjö

MATEMATIK - grunderna och lite till - Hans Elvesjö MATEMATIK - grunderna och lite till - Hans Elvesjö 1 Största delen av boken ligger på höstadienivå med en mindre del på gymnasienivå Den har ej för avsikt att följa läroplanen men kan med fördel användas

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v.

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v. TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det nionde skolåret: Eleven skall ha förvärvat sådana kunskaper i matematik som behövs för att kunna beskriva och hantera situationer samt lösa

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik 1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik Beskriver några projekt, laborationer och alternativa arbetsformer som gett goda resultat. Diskussion om tillvägagångssätt

Läs mer

KALKYL OCH DIAGRAM. Kalkylbladet. 170 Datorkunskap Kalkyl och diagram

KALKYL OCH DIAGRAM. Kalkylbladet. 170 Datorkunskap Kalkyl och diagram 170 Datorkunskap Kalkyl och diagram KALKYL OCH DIAGRAM När du behöver göra beräkningar, diagram eller sammanställa större mängder data använder du Excel. Kalkylbladet Ett Excel-dokument kallas även för

Läs mer

Procent anger hundradelar och kan användas när man vill jämföra andelar.

Procent anger hundradelar och kan användas när man vill jämföra andelar. Repetition kapitel 2 2.1 Andelen, delen och det hela Viktiga begrepp Procent Hundradel, 1 procent skrivs 1 % Andel Promille Tusendel, 1 promille skrivs 1 ppm Miljondel (parts per million), skrivs 1 ppm

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

EXTRA UPPGIFTER I C++ PROGRAMMERING-A

EXTRA UPPGIFTER I C++ PROGRAMMERING-A EXTRA UPPGIFTER I C++ PROGRAMMERING-A Uppgifterna är ej sorterade efter svårighetsgrad 1. Gör ett program som kan beräkna arean och omkretsen av en cirkel om användaren (du) matar in cirkelns radie. Skapa

Läs mer

MATEMATIK I FAMILJEN

MATEMATIK I FAMILJEN MATEMATIK I FAMILJEN Matematik i skolan Lärostoffet i matematik har under årens lopp genomgått endast små förändringar. Det brukar därför vara lätt för föräldrarna att känna igen innehållet i lärokurserna

Läs mer

Kommunövergripande Mål i matematik, åk 1-9

Kommunövergripande Mål i matematik, åk 1-9 Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna

Läs mer

MATEMATIK. Ämnets syfte. Kurser i ämnet

MATEMATIK. Ämnets syfte. Kurser i ämnet MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7

0,1 0,3 0,6 0,9 0,2 + 0,3 = 0,5 0,7 + 0,1 = 0,8 0,3 + 0,5 = 0,8 0,5 + 0,4 = 0,9 0,3 + 0,3 = 0,6 0,4 + 0,3 = 0,7 Facit följer uppgifternas placering i häftet. Sidan 2: Tal i decimalform Tiondelar 0,9 är närmast en hel Skriv talet i decimalform. sju tiondelar 0,7 en tiondel 0,1 fyra tiondelar 0,4 fem tiondelar 0,5

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2010-10-23 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGa Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Bedömningsexempel. Matematik kurs 1c

Bedömningsexempel. Matematik kurs 1c Bedömningsexempel Matematik kurs 1c Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 9 Exempel

Läs mer

NYA KURSPLANER FÖR GRUNDSKOLAN MATEMATIK GRUNDSKOLAN

NYA KURSPLANER FÖR GRUNDSKOLAN MATEMATIK GRUNDSKOLAN NYA KURSPLANER FÖR GRUNDSKOLAN Den 17 mars 1994 fastställde regeringen KURSPLANER FÖR GRUNDSKOLAN att gälla i årskurserna 1 7 från läsåret 1995/96, i årskurs 8 läsåret 1996/97 och i årskurs 9 läsåret 1997/98.

Läs mer

MATEMATIK KURS A Våren 2005

MATEMATIK KURS A Våren 2005 MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?

Läs mer

Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 4 2009-10-24 Högskoleprovet Svarshäfte nr. DELPROV 7 NOGa Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Labora&v matema&k - för en varierad undervisning

Labora&v matema&k - för en varierad undervisning Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth 2012-02- 23 Lgr11- Matema&ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar

Läs mer

! "# # # $ # " % & # # '(") " " )## (")"#*+*(, ( - " ' # (") #. % % /

! # # # $ #  % & # # '()   )## ()#*+*(, ( -  ' # () #. % % / ! "# # # $ # " % & # # '(") " " )## (")"#*+*(, ( - " ' # (") #. % % / Hageltal Problem ID: hageltal Tänk dig att du skriver upp alla positiva heltal på ett oändligt stort papper. Från varje tal n>1 ritar

Läs mer

Graärgning och kromatiska formler

Graärgning och kromatiska formler Graärgning och kromatiska formler Henrik Bäärnhielm, d98-hba 2 mars 2000 Sammanfattning I denna uppsats beskrivs, för en ickematematiker, färgning av grafer samt kromatiska formler för grafer. Det hela

Läs mer

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden.

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. Man ser en jämn ström av uppseendeväckande scenarier. Man undviker nog

Läs mer

Ungefär lika stora tal

Ungefär lika stora tal Bilaga 2:1 Arbeta med jämförelser mellan tal Ungefär lika stora tal Jämför de tre talen här nedan: 234567 234566 234568 Alla siffrorna i talen är lika utom den sista, den högra, där siffrorna är 7,6 och

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta

Läs mer

Konkretisering av matematiska begrepp i skolan

Konkretisering av matematiska begrepp i skolan Karin Kairavuo Konkretisering av matematiska begrepp i skolan Den kinesiska författaren och nobelpristagaren i litteratur, Gao Xingjian, använder en spännande metod i sitt arbete. Han talar in sina blivande

Läs mer

Vikt och volym. Kapitel 4 Vikt och volym

Vikt och volym. Kapitel 4 Vikt och volym Vikt och volym Kapitel 4 Vikt och volym I kapitlet får eleverna arbeta med vikt och volym. Avsnittet om volym tar upp enheterna liter, deciliter och centiliter. Avsnittet om vikt tar upp enheterna kilogram,

Läs mer

Lokal studieplan för träningsskolan i verklighetsuppfattning åk 1-9

Lokal studieplan för träningsskolan i verklighetsuppfattning åk 1-9 Lokal studieplan för träningsskolan i verklighetsuppfattning åk 1-9 Kunskaps område Människa, djur och natur Centralt innehåll Kunskapskrav åk 9 grundläggande Människans upplevelse av ljud, ljus, temperatur,

Läs mer

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år.

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. STYRANDE SATSER 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. Vilket år är du född? 1971 Då har du bara 35 år kvar

Läs mer

Högskoleverket. Delprov NOG 2002-10-26

Högskoleverket. Delprov NOG 2002-10-26 Högskoleverket Delprov NOG 2002-10-26 1. Det ordinarie priset på en skjorta, som såldes på rea, var 600 kr. Inför slutrean sänktes priset till halva ursprungliga reapriset. Vad var det ursprungliga reapriset

Läs mer

Lutande torn och kluriga konster!

Lutande torn och kluriga konster! Lutande torn och kluriga konster! Aktiviteter för barn under Vetenskapsfestivalens skolprogram 2001 Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den

Läs mer