Något om Matematisk modellering och Mathematica

Storlek: px
Starta visningen från sidan:

Download "Något om Matematisk modellering och Mathematica"

Transkript

1 HH/ITE/BN Matematisk modellering och Mathematica 1 Något om Matematisk modellering och Mathematica Bertil Nilsson t Vtct q intc in tq ut tc ut t c0 c 0 t 0, Τ, Vt A k 1 B k 2 k C A t B t C t k 1 A k 1 Ak 2 Bk C k 2 Bk C

2 2 Matematisk modellering och Mathematica HH/ITE/BN Förord På följande sidor presenteras en elementär "streetwise guide" till matematisk modellering med med något lite användning av Mathematica. Framställningen är fåordig, fri från pedanteri men i någon mening fullständig. Det man väsentligen behöver veta om begrepp, terminologi, beteckningar och teori för att modellera och lösa problem i framtida kurser och yrkesliv som ingenjör, naturvetare eller lärare klarläggs och typiska exempel ges. Introduktion Matematiken har för de flesta människor en undanskymd och inte sällan ifrågasatt tillvaro. Vi har ju datorer!! I själva verkat har den en allt viktigare, om än lite osynlig, betydelse i våra liv. I en konkurrensutsatt verksamhet gäller det för en modern ingenjör att minska ledtider och spara in på kostsamma provserier. Därför är all produktutveckling numera helt beroende av att kunna simulera sina produkter i dator under utvecklingsfasen. Framgångsrik utveckling av exempelvis bilar, datorer, mobiltelefoner, vindkraftverk och medicinsk utrustning vore otänkbart utan stöd av avancerad matematik! Detsamma gäller för mera "osynliga saker", såsom effektiv schemaläggning av flygtrafik (tåg, sopbilar, elnät, mobilnät...) eller sökmotorer (Google) på www. Att modellera verkliga problem med hjälp av matematik kräver erfarenhet och ett öppet sinnelag. Till sin natur är denna verksamhet oftast helt skild från den matematikundervisning man möter i skolan och upplevs av naturliga skäl som svår. Inte minst på grund av att man ska hämta kunskap och inspiration från flera grundläggande ämnen, inte bara matematik även om detta kommer att bli själva språket. Det gäller att "se" på verkligheten genom glasögon som identifierar och tydliggör fenomen som kan kläs med matematiska begrepp som derivata, integral och differentialekvation. Med detta betraktelsesätt tillägnar sig en modern ingenjör en klar konkurrensfördel eftersom modellering och simulering är ett absolut krav för att klara de allt kortare ledtider som krävs för att utveckla nya produkter. Modellering är inte något speciellt för matematik, mer än att den blir lite mer precis, utan något som vi ägnar oss åt jämt och ständigt, undermedvetet eller ej. Det kanske handlar om en mental modell över gruppdynamiken i en klass, vilken i sin tur kan påverka vårt beteende eller hur ska jag kryssa mellan bilarna på parkeringsplatsen utanför Maxi för att minimera avståndet till dörren. Beroende på väder väljer vi kanske helt olika vägar när vi ska förflytta oss inom Högskoleområdet, osv. Vi sammanfattar redan nu några punkter om Matematisk modellering Handlar om att kunna omsätta matematiska kunskaper i praktiken för att erhålla användbara lösningar på problem hämtade från verkligheten. Man måste bland annat kunna avgöra vilken och hur en matematisk teori kan användas i ett specifikt problem. Ett bra sätt att systematiskt struktuera och analysera ett verkligt problem. Konstruktion av modellen leder ofta till ökad kunskap om det verkliga problemet. Matematisk analys av modellen kan ge ökad insikt om det verkliga problemets egenskaper. Med modellen kan vi simulera verkligheten under hypotetiska scenarier, t.ex. utföra experiment som inte låter sig göras i verkligheten på grund av att det vore för dyrt, tidsödande eller riskabelt, eller helt enkelt omöjligt. Är ett tvärvetenskapligt ämne där man använder matematiken som ett verktyg i tillämpningar, som inte alltid vid första anblicken ter sig matematiska. Är ingen exakt vetenskap med entydiga korrekta svar. Olika angreppssätt kan ge olika resultat. Lär man sig enklast (endast?) genom att själv praktisera det. Matematisk modellering är en mycket kreativ sysselsättning! Vad är en matematisk modell? Begreppet matematisk modell har blivit ett populärt inslag i den tillämpade matematiken, ungefär från 1960-talet och framåt. Modelltänkandet erövrar alltfler områden där matematiken används: naturvetenskap, teknik, ekonomi, samhällsvetenskap osv. En orsak till den här utvecklingen är de enorma möjligheter som numera finns att med datorers hjälp göra snabba numeriska beräkningar. Det går att arbeta med komplicerade matematiska konstruktioner och ända få fram användbara resultat. Före datorernas tid var man hänvisad till analytiskt lösbara formuleringar eller tidsödande numeriska beräkningar. Modellbegreppet Ordet modell kommer från det latinska ordet modulus (litet mått) och betyder förebild eller mönster. En modell avbildar eller föreställer något annat. Detta som avbildas kallar vi det verkliga eller riktiga systemet. Den fysiska modellen är ett eller flera objekt som konstrueras för att efterlikna ett system. Modelljärnvägen avbildar "riktiga" tågvagnar, lok, spår, växlar, signalsystem osv. Ibland görs modellen före det riktiga systemet. En fartygsmodell där skrovets form är noga definierad byggs traditionellt före fartyget och används vid byggandet för att ge varje del dess rätta form. Vid modellförsök använder man skalriktiga modeller för att undersöka fysikaliska förhållanden.

3 HH/ITE/BN Matematisk modellering och Mathematica När en fysisk modell skapas nöjer man sig med att avbilda vissa egenskaper hos systemet och bortse från andra. Vad som är intressant eller ointressant avgörs av syftet med modellen. Studerar man luftströmningen runt en flygplanskropp behöver man inte montera in stolar i flygplansmodellen! När en modell av en damm konstrueras för att studera belastningar använder man andra material än de som den riktiga dammen senare byggs av. Den store filosofen och matematiken Rene Descartes ( Dog i Stockholm som drottning Kristinas personlige lärare i matematik.) introducerade och utvecklade begreppet matematisk modell. I början hade Descartes en dröm om att hitta en universell metod, en matematisk metod förstås, för att beskriva varje problem som kunde komma från verkligheten och sedan lösa problemet. Även om hans dröm aldrig förverkligats, så finns det mängder av problem som kan lösas i denna anda. I korthet gick den ut på följande: Reducera problemet till ett matematiskt problem. Reducera det matematiska problemet till ett algebraiskt problem. Reducera det algebraiska problemet till att lösa en ekvation. Matematisk modell En matematisk modell "avbildar" eller beskriver ett system med hjälp av matematiska begrepp och storheter. Exempel: är lätta att hitta genom historien Människor har i alla tider haft en önskan att förstå dygnets växling mellan dag och natt, årstidernas regelbundna återkomst, sol- och månförmörkelser osv. Många matematiska modeller för solsystemet har utvecklats under historiens gång. På medeltiden föreställde man sig jorden som fast och orörlig. Runt jorden rörde sig solen och planeterna på bestämda sfärer (den "ptolemeiska" världsbilden). Den Kopernikanska modellen placerar i stället solen i medelpunkten med jorden och de övriga planeterna i cirkulära banor runt den. Kepler var den som kom fram till att planetbanorna beskriver ellipser. Dagens astronomer arbetar med förfinade modeller där nya planeter, kometer och asteroider ingår. Modellerna av solsystemet är formulerade i geometriska eller matematiskt analytiska termer och är därför matematiska modeller. Den allmänna gravitationslagen (formulerad av Newton 1684) kallas en naturlag. Den ingår i den klassiska matematiska modellen för partiklars och kroppars dynamik. Modellen har visat sig vara enormt användbar för att beskriva kroppars rörelse i verkligheten. Men liksom andra modeller har den ett begränsat giltighetsområde. Den kan t.ex. inte användas för att beskriva vad som händer inuti atomer. Hormonet insulin balanserar sockerkoncentrationen i blodet. Man kan matematiskt beskriva hur halterna av insulin och socker i blodet påverkar varandra. Varför gör man modeller? För att få svar på frågor om hur en system fungerar kan man genomföra experiment med systemet. Men det finns många tillfällen då ett experiment med det riktiga systemet inte är möjligt. Skälen kan vara olika: det kan vara omöjligt: Det går inte att experimentera med solsystemet eller med väder och vind. Inte heller kan man experimentera med en system som ännu inte finns utan ska konstrueras. det kan bli för dyrt: Att experimentera med reglersystemet i en stor processindustri kan kosta hundratusentals kronor i förstörd produktion. det kan vara farligt. Provflygningar med nykonstruerade flygplan skulle vara mycket riskabla utan föregående noggranna beräkningar i matematiska modeller och studier av fysiska modeller av planet. Att testa fram dosering av mediciner på människor utan att utsätta personer för risker är bara möjligt inom snäva gränser. att få bättre förståelse av systemet. att sammanfatta teorier om systemet. att förmedla generell kunskap om systemet. att strukturera eller formalisera kunskap och tankar för diskussion och kritik. att kvantifiera skeenden i mer komplexa sammanhang. att studera ett planerat eller hypotetiskt system när ett verkligt inte finns. att göra projektioner för framtiden utifrån befintlig kunskap. att simulera experiment som är för svåra, farliga, tidskrävande eller dyra i verkligheten för att hinna med i konkurrensen. att använda som redskap i ett prognos- eller förvaltningssammanhang. Vi sammanfattar: Matematisk modellering är en nödvändighet inom all modern utveckling! I en konkurrensutsatt verksamhet gäller det för en modern ingenjör att minska ledtider och spara in på kostsamma provserier.

4 4 Matematisk modellering och Mathematica HH/ITE/BN Modellen ger ny kunskap I många fall är man alltså hänvisad till studier av modeller av systemet. Hur kommer det sig då att man kan få reda på något nytt - något som man inte redan visste när modellen konstruerades - genom att undersöka en modell? Den matematiska modellen är uppbyggd på ett antal grundläggande förutsättningar som väljs så att de beskriver centrala egenskaper hos systemet. Egenskaperna är experimentellt eller erfarenhetsmässigt verifierade. Sådana egenskaper kan t.ex. vara naturlagar (som i själva verket också de är matematiska modeller som är väl undersökta och vars giltighet man noga känner sedan tidigare). Det kan också handla om egenskaper man har iakttagit hos det speciella systemet ifråga. Utifrån dessa egenskaper, som formuleras i matematiska termer, och andra antaganden eller förenklingar man kan behöva göra, drar man slutsatser. Då hanterar man sina matematiska objekt och använder logikens lagar enligt vad som gäller inom matematiken. De matematiska teorierna är i sin tur baserade på vissa axiom och logiska regler. Det betyder att de slutsatser man kommer fram till är trovärdiga logiska konsekvenser av de förutsättningar man grundat modellen på. Det gäller åtminstone om de förenklingar man gjort på vägen inte varit för grova. Den nya kunskap om systemet som modellen ger oss är alltså i princip logiska konsekvenser av egenskaper som vi själva valt ut och som vi anser karaktärisera systemet. De konsekvenserna kan emellertid vara svåra att lista ut utan hjälp av matematiken. Matematikens formalism är bekväm och många teorier grundligt genomarbetade. Därför blir matematiken ett mycket kraftfullt verktyg. Vilka frågor kan modellen besvara? De frågor man ställer kan röra sig om vitt skilda saker. Exempel: på frågor vars svar man kan söka genom att konstruera och studera matematiska modeller: Varför skakar min bil just vid vissa hastigheter och inte andra? Vilket jakttryck tål en viss älgstam? Hur hög ska en skorsten byggas för att röken inte ska smutsa ned luften i närheten av anläggningen? Vilket väder får vi i morgon? Hur ska insulindosen väljas för en viss patient? Hur ska jag optimera ett visst transportsystem med tanke på energiåtgång, tidskrav, ekonomi? I hur många steg ska en raket byggas? Är vi på väg mot ett varmare klimat på jorden på grund av de koldioxidutsläpp människan orsakat eller är vi på väg mot en ny istid? Hur ska ett effektivt datorprogram för lösning av linjära ekvationssystem se ut? Kommer sälstammen utanför svenska västkusten att kunna återhämta sig? Vilken effekt på skatteplanerandet får förslaget till ny aktiebeskattning? Typen av frågor går att klassificera. Ett sätt att göra det är följande: Förståelse. Vi söker förstå hur ett system fungerar - kanske av ren nyfikenhet. Förutsägelse. Vi önskar kunna förutsäga hur systemet kommer att bete sig i framtiden. Styrning. Vi har eller vill skaffa oss metoder att påverka systemet så att det fungerar på ett förutbestämt sätt. Konstruktion. Vi är ute efter att konstruera ett visst system vars egenskaper vi önskar bestämma i förväg eller som vi vill göra optimala i någon mening. De fyra typerna bildar nivåer i en hierarki. Förståelse är grundläggande och krävs för att kunna göra förutsägelser. Både kontroll och konstruktion bygger på de två andra. För en ingenjör är det naturligt att arbeta med de två sista typerna av frågor. Grundforskning inom naturvetenskapen handlar ofta om den första typen medan tillämpad teknikforskning mest rör sig med frågor av de andra tre typerna. Klassificering av matematiska modeller En modell kallas mekanistisk om den beskriver ett orsaks-samband. En icke-mekanistisk modell kan bestå av empiriskt baserade samband mellan parametrar och variabler, i det enklaste fallet en kurvanpassning. Ofta får man börja att arbeta med en icke-mekanistisk modell för att senare kunna sluta sig till hur en mekanistisk ("förklarande") modell kan se ut. En modell är statisk om den beskrivs helt och hållet av de momentana (just aktuella) värdena av vissa parametrar eller insignaler. Modellen har inget "minne". Ett dynamiskt systems tillstånd däremot bestäms också av sin förhistoria. I den matematiska beskrivningen kommer tidsderivator in när det gäller dynamiska modeller. Ett dynamiskt system brukar beteckna ett system som kan beskrivs i en matematisk modell där ekvationerna som ingår är ordinära differential- eller differensekvationer. Man skiljer också på kontinuerliga och diskreta modeller. Diskreta modeller innehåller variabler som förändras i diskreta steg (t.ex. antal) eller har bara ändligt många alternativa tillstånd. Kontinuerliga modeller beskrivs av variabler som förändras kontinuerligt eller infinitesimalt. Ett kontinuerligt system modelleras med differentialekvationer.

5 HH/ITE/BN Matematisk modellering och Mathematica 5 En deterministisk modell ger åt varje ingående variabel ett väldefinierat värde. I en stokastisk modell arbetar man med slumpmässighet. En variabel har inte ett bestämt värde utan beskrivs av en sannolikhetsfördelning. När ett system innehåller inslag av slumpmässighet kan det vara nödvändigt att göra en stokastisk modell för att den ska bli realistisk. En komplikation är att deterministiska system kan ha ett stokastiskt utseende. Det gäller framför allt så kallade kaotiska system. Den matematiska definitionen på kaotiskt dynamiska system är att mycket små skillnader i begynnelsevärden medför stora skillnader i slutändan. Exempel: För att bestämma nedböjning och påkänningar på en bro används ofta Eulers balkteori som modell. För samma indata, brospann, pilonhöjd, balktjocklekar osv. får man samma svar varje gång man räknar. Vi har en deterministisk modell. Hur ska man dimensionera antalet öppna kassor på ICA? Med kännedom om hur många personer det kommer per tidsenhet och deras överläggningar angående kön till kassan kan man med slumptal studera hur vinsten blir vid olika konfigurationer. Här får vi olika svar varje gång vi kör modellen, alltså en stokastisk modell. Vädret är ett mycket bra exempel på svårförutsägbart system. Lite skämtsamt brukar man säga att en fjäril som fladdrar i Amazonas kan påverka vädret i Sverige. Riktigt så illa är det nog inte, men principen är riktig. Vi har att göra med ett kaotiskt system. Hur gör man en matematisk modell? Att modellera är något man lär sig genom erfarenhet och det är inte lätt att beskriva en metod som fungerar i alla situationer. Ett krav är kännedom om det aktuella systemet. Ett annat är goda matematiska kunskaper. Det går dock att peka på vissa aspekter av modelleringens konst redan med enkla modeller som inte kräver specialistkunskap eller avancerade matematiska metoder. Ofta får man ta fram en första modell som sedan förbättras i flera omgångar. Arbetet kan inte formaliseras helt och hållet men en viss struktur kan urskiljas. I arbetet med en viss modell följer stegen inte alltid efter varandra i den logiska ordning som presenteras här men i princip kan man säga att man vevar runt tills man är nöjd! Man ska vara medveten om att alla system uppfattas och "filtreras" genom de sinnen och instrument som vi har till hands när vi ska uttala oss om "sanningen". Vår uppfattning om verkligheten är alltså inte verkligheten utan redan det en tanke-modell. Dessutom är alla system delar av andra system i en hierarki. Det gäller att göra lämpliga avgränsningar. Exempel: Antag att du vill konstruera en modell av hur mängden grodor varierar i en damm. I det fallet kan man anta, med viss säkerhet, att cellprocesser är så snabba att de inte nämnvärt påverkar variationen i grodantal. Man kan också anta att mängden grodor i en damm flera mil därifrån inte heller nämnvärt påverkar den lokala populationen. Vidare kan man nog anta att eventuella evolutionära processer är så långsamma att de inte heller påverkar antalet. På så sätt kan man begränsa detaljrikedomen i modellen, och göra den hanterlig. Hade däremot syftet med modellen varit att beskriva grodornas näringsupptag hade det varit nödvändigt att avgränsa detaljrikedomen på ett annat sätt. Beteendet hos modellen beror helt och hållet på vad man stoppar in, det vill säga de antaganden man gör om systemet. Ändrar man ett antagande kan man ändra utfallet totalt. Därför är det viktigt att noggrannt ange alla antaganden för att utomstående ska kunna bilda sig en uppfattning om var och när en modell är giltig. Om antagandena inte är giltiga för ett visst system kan modellen ge en felaktig bild av den verklighet den avser att avbilda. För att utvärdera modellens giltigheten är det därför nödvändigt att jämföra med

6 6 Matematisk modellering och Mathematica HH/ITE/BN verkligheten. Var också observant på orimliga resultat från modellen. Det går att konstruera modeller för vilka system som helst, fast metoden kan variera kraftigt beroende på frågeställning och mellan vetenskapliga discipliner. I vissa discipliner är verbala eller logiska modeller vanligast medan andra discipliner använder nästan enbart matematiska modeller. I princip är det ingen skillnad, men den matematiska modellen har fördelen att vara betydligt mer koncis och transparent. Oftast är avnämaren inte någon matematiker därför gäller det att föra samtalet kring problemställningen i en god resonerande ton och behålla de matematiska reflektionerna som dyker upp för sig själv. Precisera frågeställningen Den ursprungliga frågan är ofta vag och oprecis. Gör man modellen på uppdrag av någon annan är det särskilt viktigt att ta god tid på sig att precisera frågan. Det kan också bli aktuellt att föreslå en annorlunda infallsvinkel som leder till en helt ny frågeställning. Det är ofta svårt att precisera frågeställningen utan att samtidigt skaffa sig kunskaper om hur systemet fungerar. Exempel: Antag att vi får i uppdrag att göra ett förslag till belysning av en idrottsarena. Vilket är bästa sättet att ordna belysningen? Vad menas med "bästa"? Starkast, jämnast, utan reflexer...? Eller menar man kanske billigast? Vilka minimikrav ställs? Ska vi ta fram alternativa modeller till olika kostnad och olika kvalitet? Vill vi ha en kvalitativ modell, det vill säga en modell som reagerar proportionellt på ingående parametrar på samma sätt som den verkliga modellen eller krävs en kvantitativ modell där vi även kräver numerisk relevans? Exempel: Antag att vi ska dimensionera hjulupphängningen på en bil och har tagit fram en modell över hur någon storhet varierar med mönsterdjupet Δ på däcket. Vi vill nu se vad som händer när vi dubblerar vikten på hjulet. Vi förväntar oss ett högre värde på vår studerade storhet. Till vänster har vi en icke kvalitativ modell. Att den blev rätt i första fallet var förmodligen tur eller "fusk". I mitten har vi en kvalitativt riktig modell. En sådan är ofta enkel, snabb och räcker långt för att bedriva utvecklingsarbete över en kopp kaffe på Heathrow. Den högra är kvantitativ och därmed även kvalitativ. En sådan är oftast mer omfattande, kanske svåröverskådlig, och kräver datorberäkning. prov, modell Ej kvalitativ d prov, modell Kvalitativ d prov, modell Kvantitativ d Det är mycket viktigt att formulera sig i kvantifierbara termer eftersom modellens relevans så småningom ska utvärderas mot vad vi preciserat här! Identifiera faktorer och samband De faktorer i systemet som kan påverka svaret på vår frågeställning kan vara många. Alla sådana faktorer kandiderar till en plats i den matematiska modellen. Man kan dela upp arbetet med att hitta faktorer i två steg. I en "brain-storming"-fas listar man alla tänkbara faktorer. I nästa fas väljer man ut de faktorer som ska finnas med i modellen. Anledningen att utesluta en viss faktor kan vara någon av följande: Dess inverkan är försumbar jämfört med andra faktorer. Vi kan eventuellt ta med den i en förfinad version av modellen senare. Det är omöjligt att förutse dess konsekvenser. Vi får tänka oss att den faktorn inte varierar eller spelar en liten roll. Det är svårt eller invecklat att beskriva hur faktorn påverkar systemet. Det gäller en slumpmässig variation. Vi är av något skäl inte beredda att göra en stokastisk modell eller tror att slumpmässigheten inte påverkar resultatet nämnvärt. Vi får arbeta med medelvärden i stället. Det är lätt att inse att vi kan införa stora begränsningar när vi bestämmer vilka faktorer som inte kommer med i modellen. Det gäller att hålla detta i minnet när utvärderingen av modellen sker så småningom. Är modellens förutsägelser dåliga kan det bero på att vi har försummat en faktor som inte var oviktig. Hur påverkar de olika faktorerna varandra? Om det går att formulera samband bör det göras redan nu. Än så länge kan man nöja sig med kvalitativa beskrivningar. Vrid och vänd på problemet. Förenkla! Idealisera! Vilka storheter kan ha betydelse? Använd kunskap, förnuft, intuition eller chansa! Vad vet jag? Vad söker jag? Vilken informatio-

7 HH/ITE/BN Matematisk modellering och Mathematica 7 nen finns? Nödvändiga? Onödiga? Motsägande? Verkar det rimligt? Vad har jag sett för teorier om sådant här? Kanske kan man omformulera problemet? Har jag sett något liknande tidigare? Vad skiljer i så fall problemen åt? Vad behöver jag ändra i den för den ska passa in här? Lista, rita bubblor och pilar och försök länka samman! Kanske kan jag hämta en modell från ett helt annat tillämpningsområde. Kom ihåg att en roll matematiken har är att koka ner olika tillämpningar och peka på gemensamma strukturer i grunden som absolut inte verkar uppenbara för det otränade ögat! Exempel: Så vitt skilda fenomen som radioktivt sönderfall, bakterietillväxt, avsvalning av sockerkaka, blandning av föroreingar i en sjö, m.fl. beskrivs av exakt samma differentialekvation. Det är bara dimensionen på ingående storheter och parametrar som varierar. Tänk på att börja enkelt! Om vi studerar modelleringsloopen ovan ser vi att det finns bara en väg ut! Det duger alltså inte att göra något så komplicerat att vi inte kommer runt! Sitt inte i ett hörn och deppa. Framåt till "varje" pris...!! I ett företag duger det inte att akademiskt proklamera "Ett intressant matematiskt problem, det löser vi kanske om 100 år!". Då har förmodligen företaget gått i konkurs för länge sedan. Så Einsteins gamla devis duger gott "Make it as simple as possible, but not simpler!" Börja enkelt! Det kanske räcker! Annars modifierar vi i nästa varv av modelleringsloopen ovan! Översätt till matematiskt språk De faktorer som ska inga måste kvantifieras för att kunna användas i en matematisk modell. Vi inför alltså ett antal variabler som beskriver faktorer som vi vill studera. Vi kan också introducera vissa hjälpvariabler eller parametrar som gör det möjligt att beskriva egenskaper hos systemet. Parametrar är storheter som vi väljer att hålla konstant under en betraktelse. Ofta gör man en parameterstudie och parametrar och variabler kan i en annan modell byta plats med varann. Var noga med att tänka igenom vilken dimension olika variabler har. Gör dimensionsanalys på alla samband! Den preciserade frågeställningen ska översättas till matematiskt språk. Den kommer att innehålla frågor av typen: Vilket är det maximala värdet av...? Vad blir storleken av en viss variabel vid en viss tidpunkt? Hur lång tid tar det innan funktionens värde blir mindre än...? För stora system med många variabler blir frågeställningen sammansatt av många delfrågor. Samband vi tidigare har funnit ska också översättas till matematiskt språk. För att det ska vara möjligt måste sambanden kvantifieras. Ibland innebär kvantifieringen en stark förenkling. Att studera extremförhållande ger ofta ledtrådar i modellval. Välj så att uppenbara egenskaper i preoblemställningen uppfylls, exempelvis; När tiden går mot oändligheten går koncentrationen mot noll! När massan går mot noll försvinner kraften! Andra samband som nu formuleras är relationer mellan (hjälp)variablerna som kan beskriva geometriska villkor, kontinuitetssamband (massbalans t ex) osv. De samband man sätter upp har ofta formen av ekvationer. Antingen är det vanliga algebraiska ekvationer eller differential- eller differensekvationer. Inte sällan har man ett optimeringsproblem. Ett samband kan vara ett tidigare känt samband från t.ex. fysik. Men om det inte är välkänt så ska man göra noga klart exakt vad sambandet innebär. Hela analysen och resultaten bygger nämligen på dessa samband och de måste vara rimliga, annars blir modellen inte bra. Exempel: Att modellering ger upphov till ekvationer är ganska naturligt eftersom en modell av verkligheten ofta representeras av något slags samband, exempelvis volymen av en konservburk V Πr 2 h. Det är ju sällan man väljer r och h och ser vad volymen blir. Det vanliga scenariot i verkligheten är snarare att en ingenjör ställs inför mängder med krav på sin modell, exempelvis "Vilken är den minsta plåtåtgång för en given volym?". Detta i sin tur leder till krav på modellens variabler, i vårt fall r och h. Om flera krav skall beaktas och jämkas samman leder detta sedan naturligt vidare till optimering. Läsa spelet En av svårigheterna är att kunna dechiffrera en verbal beskrivning till en matematisk beskrivning. Vi exemplifierar med en mycket vanlig situation, nämligen någon storhet, säg y, som varierar med tiden t. Då har vi en differentialekvation att vänta och vi söker funktionen yt. Som hjälp vid dechiffreringen är det bra att känna igen vanliga formuleringar som skall tolkas som derivata av den sökta funktionen Ändring av y per tidsenhet y eller y' t. t Ändringshastigheten av y y eller y' t. t I en uppsjö av tillämpningar är olika typer av proportionalitet inblandade. Vissa ord kan också direkt associeras med matematiska krumelurer, exempelvis

8 8 Matematisk modellering och Mathematica HH/ITE/BN yt är proportionell mot t ytkt. k yt är omvänt proportionell mot t yt k. t k Ändring av yt per tidsenhet är proportionell mot yt y' tkyt. y' t Ändring av yt per tidsenhet är proportionell mot yt och t y' tkytt. y' t Ändring av yt per tidsenhet är proportionell mot yt och skillnaden mellan m och yt y' tkytm yt. y' t k k k myt För fler exempel och fler tips inom specifika tillämpningar hänvisas till senare avsnittet i "Något om..." serien längre fram i kursblocket Tillämpad Matematik. Fysikaliska principer Ofta kommer någon fysikalisk lag eller princip till användning. Newtons accelerationslag m 2 y F my F t 2 KR y y y F. Energins bevarande Massans oförstörbarhet. massa = densitet (eller koncentration) gånger volym. Arkimedes princip: Då en kropp nedsänkes i en vätska påverkas denna av en lyftkraft som är lika stor som den undan trängda vätskans tyngd. Dimensionsanalys Se till att det är lika många "äpplen och päron" på båda sidor om tecknet i ekvationerna! Dimensionsanalys är ett stort och viktigt stöd vid modellering och vid utvärderandet av modellen. Ta för vana att utnyttja denna hjälp under hela arbetet! Ett studium av de storheter som ingår i problemet ger nästan alltid direkta tips som leder till målet. Se vidare i Något om Dimensionsanalys och Mathematica. Analysera modellen Nu vidtar det vanliga matematiska arbetet. Det gäller att lösa ekvationerna. Man kan använda analytiska eller numeriska metoder. Båda typerna av metoder är lika viktiga. Innan man tar till numeriska metoder bör man analysera modellen så långt det är möjligt. Att söka numeriska lösningar betyder ofta att man är tvungen att välja värden på vissa variabler eller parametrar. Det betyder att resultaten inte blir lika allmängiltiga som vid en analytisk lösning. Man måste noga fundera på vilka variabelvärden det är lönt att räkna på. Frågeställningen i modellen bestämmer valet av numerisk strategi. När det gäller stokastiska modeller kan man genomföra simuleringar. Det innebär att man med hjälp av en slumptalsgenerator i modellen efterliknar naturens slumpmässiga beteende. Simuleringar genomförs alltid i dator. Begreppet simulering används ibland i en annan betydelse. Då har det inte med slumpmässighet att göra. Simulering får då helt enkelt betyda numerisk lösning av differentialekvationerna i ett kontinuerligt eller dynamiskt system. Man "simulerar" sitt system i den meningen att man efterliknar det i datorn. Man får då ofta nöja sig med att dra slutsatser utifrån mängder med simuleringar. När man lämnat skolan och dess uppriggade ekvationer för att passa handräkning möter man som praktiskt arbetande ingenjör mängder med ekvationer som inte går att lösa exakt, oftast beroende på olinjäritet. Frågorna som dyker upp är "Finns det någon lösning?", "I så fall hur många?", "Hur identifierar jag den eller de som är relevanta?", "Hur hittar jag den som löser mitt problem?". Oftast har en ekvation flera lösningar, varav en del är mer exotiska än andra, "negativa längder", "komplexa massor" och så vidare. Dessa har kanske inget med verkligheten att göra men likväl är modellen korrekt! Man brukar säga att en matematisk modell är rikare än den fysikaliska modell den beskriver. Sådana här frågeställningar kommer ofta i ny dager om de belyses med grafik under arbetets gång! Naturligtvis används moderna och effektiva datorprogram för analysen och visualisering av resultat. Tillägna dig ett arbetssätt där du så ofta som möjligt använder grafiska representationer!

9 HH/ITE/BN Matematisk modellering och Mathematica 9 Tolka resultatet av analysen I nästa fas går vi tillbaka till systemet och tolkar resultaten av den matematiska analysen i det icke-matematiska språk som problemet ursprungligen formulerades i. Den här fasen är intressant och kan ibland bjuda på spännande överraskningar. Det kan vara så att systemet ger utfall som är oväntade. I så fall har vi fått reda på något nytt om vårt system genom att göra en modell för det. En mindre spännande möjlighet är att det finns någon felaktighet i den matematiska analysen, vi kanske har räknat fel. Slutligen kan modellen vara för grov eller uppenbart felaktig när man ser resultatet. Exempel: Man vill av tunn plåt tillverka en cylindrisk konservburk med given volym V. Bestäm radie och höjd i den burk som kräver minst materialåtgång, det vill säga har minst total area. Lösningsförslag: Antag att konservburken har höjden h och radien r. Dessa kan nu inte variera fritt oberoende av varandra, de binds samman av att volymen på burken är given V Πr 2 h. Sådana här kopplingar brukar kallas för just kopplingsvillkor. Totala arean av burken byggs upp av två lock, 2A l 2Πr 2, samt mantelarean A m omkretshöjd 2 Π rh. Gör nu inte för mycket för hand, varje sådan insats är en potentiell risk för att introducera fel. Låt Mathematica göra jobbet! Skriv bara ned alla grundsamband. Glöm inte dimensionsanalys! ekv V Πr 2 h, A tot 2A l A m,a l Πr 2,A m 2 Π rh V Πhr 2, A tot 2 A l A m, A l Πr 2, A m 2 Π hr Utnyttja att V är given för att lösa ut A tot som funktion av r. Ta för vana att lösa ut lika många variabler som vi har ekvationer. Även de variabler som inte primärt används vid optimeringen är oftast intressanta att veta värdena på till slut. Så alla som funktioner av r! Amm Solveekv, A tot,h,a l,a m First A tot 2 Π r V, h V r Π r, A 2 l Πr 2, A m 2 V r Innan man börjar på allvar är det utmärkt att pigga upp sig med en bild över situationen för att se om modellen är sund. Visst, tydligt minimum som sig bör, eftersom A tot både då r 0 och r. PlotA tot V 2. Amm. r xv 1, x, 0.1, 1, PlotStyle Red, PlotRange 5, 10, AxesLabel "rv 1 ", "A tot V 2 " A tot V rv 1 Bestäm nu det r som minimerar A tot genom att söka nollställe till derivatan, A tot r dadr DA tot. Amm, r 6 Π r 2 Π r V r 2 r SolvedAdr 0, r 0. r 1 V 2 Π, r V 2 Π, r 12 V 2 Π Nr

10 10 Matematisk modellering och Mathematica HH/ITE/BN r V, r V, r V Här är det bara den mittersta lösningen som är reell, de andra två komplexa har inte med saken att göra. Vi har uppenbart minimum, varav slutligen alla variabler vid detta välsignade tillstånd. Amm. r 2 A tot 2 Π V 2, h 22 Π V, A l Π V 2, A m 2 2 Π 2 2 V 2 Alla symboliska resultat måste underkastas dimensionsanalys!! Här har vi för arean A tot höjden h 22 2 Π V 2 1 V 2 m 2 m 2, Ok! V 1 V Π 1 m 1 m, Ok! Med symboliska svar kan man lätt få en kvalitativ bild av hur modellen påverkas av olika storheter. Utvärdera modellen Den systematiska utvärderingen är viktig. Utvärderingen sker först och främst mot det punkter som formulerades när frågeställningen mejslades ut. Det är därför så viktigt att detta görs ordentligt i inledningen till modelleringen. Har man möjlighet att jämföra med resultatet av experiment eller observationer av det riktiga systemet eller ett liknande system (kanske en nedskalad modell) är det bra. De experiment man behöver göra för att testa modellen är färre, enklare och billigare än om man hade undersökt systemet och försökt besvara frågan utan modellens hjälp. Har man inte möjlighet att göra experiment får man utgå från de data man har tillgång till. Det bästa är givetvis att testa med andra data än dem man utgick ifrån för att välja sambanden i modellen. Att testa extremvärde är ofta fruktbart! Modellens giltighetsområde ska undersökas. Alla modeller har någon form av begränsning i sin giltighet. Exempelvis är det helt olika modeller om man ska göra en väderprognos över ett dygn eller tio dygn! Så länge variablerna ligger i intervall där vi har empiriska data rör man sig på mycket säkrare mark än när man försöker extrapolera. Det kan tänkas att utvärderingen leder till slutsatsen att modellen har brister. Det gäller då att inte vara alltför fast vid sin skapelse utan acceptera att modellen behöver ändras. Den "misslyckade" modellen ger information om att någon viktig faktor försummats. De kunskaper om systemet man skaffat genom att arbeta med den första modellen har man nytta av i fortsättningen. I själva verket är det paradoxalt nog själva modelleringsprocessen som är intressantast och ger de nya kunskaperna, inte den färdiga modellen. En felkalkyl, noggrannhetsanalys och känslighetssanalys bör göras. De empiriska data som modellen utgår från har en viss felmarginal som påverkar resultatet av analysen. En modell som är väldigt känslig för variationer i variabler och parametrar är förmodligen inte riktigt sund. En numerisk analys inför också nya felkällor. Det gäller förstås också en stokastisk simulering. Hur säkra kan vi vara på vart resultat? Kom ihåg att en modell får inte användas utanför de förutsättningar som bestämdes då problemet specifiserades! Förenklingens roll Det är ofta givande att börja med en starkt förenklad modell. Den kan vara lätt att konstruera och snabb att räkna igenom. Den kan visa hur mycket av systemets egenskaper som förklaras av en eller ett par centrala faktorer och den kan slutligen användas som utgångspunkt för nästa bättre modell. Detta kan vara en god hjälp om man råkar ut för det som är så vanligt i problemlösning, man "sitter fast". Ett annat "knep" är att testa vad modellen säger om ytterlighetsfallen. Ofta vet man hur systemet bär sig åt i de fallen (tiden går mot oändligheten, massan går mot noll osv.). Det ger en möjlighet att utvärdera modellen under arbetets gång. Kommunicera modellen Om utvärderingen av modellen har varit nöjaktig är det läge att sätta den i arbete! Annars vore det ju ingen mening med att göra den. Så använd den så mycket som möjligt till att kommunicera, förklara, förutsäga, bestämma, planera, börja, sluta...så! Skaffa er fördelar gentemot andra som håller på med liknande produkter men ännu inte upptäckt Matematisk modellering!

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β HH/ITE/BN Dimensionsanalys och Mathematica 1 Något om Dimensionsanalys och Mathematica Bertil Nilsson 2016-08-15 Assume period T Cm Α g Β Γ s 1 kg Α m Β m Γ s 2 s 1 kg Α m Β s 2Β m Γ Identify exponents

Läs mer

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet

Läs mer

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi Beräkningsvetenskap stefan@it.uu.se Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt,

Läs mer

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg. Kunskapskrav Ma 2a Namn: Gy Betyg E D Betyg C B Betyg A 1. Begrepp Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden

Läs mer

A-Ö Ämnet i pdf Ämne - Fysik Fysik är ett naturvetenskapligt ämne som har sitt ursprung i människans behov av att förstå och förklara sin omvärld. Fysik behandlar allt från växelverkan mellan materiens

Läs mer

Funktionsstudier med derivata

Funktionsstudier med derivata Funktionsstudier med derivata Derivatan ett kraftfullt verktyg för att studera och tolka funktioner Det här avsnittet handlar om att man kan använda derivatan till att bestämma en funktions egenskaper

Läs mer

Matematik i Gy11. 110912 Susanne Gennow

Matematik i Gy11. 110912 Susanne Gennow Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod: SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

FRÅN MASSA TILL TYNGD

FRÅN MASSA TILL TYNGD FRÅN MASSA TILL TYNGD Inledning När vi till vardags pratar om vad något väger använder vi orden vikt och tyngd på likartat sätt. Tyngd associerar vi med tung och söker vi på ordet tyngd i en synonymordbok

Läs mer

KUNSKAPSKRAV I ÄMNET FYSIK. Kunskapskrav för godtagbara kunskaper i slutet av årskurs 3

KUNSKAPSKRAV I ÄMNET FYSIK. Kunskapskrav för godtagbara kunskaper i slutet av årskurs 3 KUNSKAPSKRAV I ÄMNET FYSIK Kunskapskrav för godtagbara kunskaper i slutet av årskurs 3 Eleven kan beskriva och ge exempel på enkla samband i naturen utifrån upplevelser och utforskande av närmiljön. I

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Centralt innehåll. I årskurs 1.3

Centralt innehåll. I årskurs 1.3 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

MATEMATIKENS SPRÅK. Avsnitt 1

MATEMATIKENS SPRÅK. Avsnitt 1 Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en

Läs mer

Anders Logg. Människor och matematik läsebok för nyfikna 95

Anders Logg. Människor och matematik läsebok för nyfikna 95 Anders Logg Slutsatsen är att vi visserligen inte kan beräkna lösningen till en differentialekvation exakt, men att detta inte spelar någon roll eftersom vi kan beräkna lösningen med precis den noggrannhet

Läs mer

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.

Läs mer

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

KEMI. Ämnets syfte. Kurser i ämnet

KEMI. Ämnets syfte. Kurser i ämnet KEMI Kemi är ett naturvetenskapligt ämne som har sitt ursprung i människans behov av att förstå och förklara sin omvärld samt i intresset för hur materia är uppbyggd och hur olika livsprocesser fungerar.

Läs mer

MATEMATIK 5.5 MATEMATIK

MATEMATIK 5.5 MATEMATIK 5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

17.10 Hydrodynamik: vattenflöden

17.10 Hydrodynamik: vattenflöden 824 17. MATEMATISK MODELLERING: DIFFERENTIALEKVATIONER 20 15 10 5 0-5 10 20 40 50 60 70 80-10 Innetemperaturen för a =1, 2och3. Om vi har yttertemperatur Y och startinnetemperatur I kan vi med samma kalkyl

Läs mer

Lokal pedagogisk planering i matematik för åk 8

Lokal pedagogisk planering i matematik för åk 8 Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering

Läs mer

Metoder för beräkningar med potenser med rationella exponenter.

Metoder för beräkningar med potenser med rationella exponenter. Kurskod: MATMAT02a Kursen matematik 2a omfattar punkterna 1 7 under rubriken Ämnets syfte. Centralt innehåll Kommentar Begrepp i kursen matematik 2a Metoder för beräkningar vid budgetering. Budgetering

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 2. Explicita formler och rekursionsformler. Dag mötte vi flera talföljder,

Läs mer

Differentialekvationer och komplexa tal kom under 1900-talet in i den

Differentialekvationer och komplexa tal kom under 1900-talet in i den Jonas Hall & Thomas Lingefjärd Differentialekvationer och komplexa tal med GeoGebra Författarna som vid det här laget är väl kända för Nämnarens läsare ger här ytterligare konkreta förslag på hur GeoGebra

Läs mer

Perspektiv på kunskap

Perspektiv på kunskap Perspektiv på kunskap Alt. 1. Kunskap är något objektivt, som kan fastställas oberoende av den som söker. Alt. 2. Kunskap är relativ och subjektiv. Vad som betraktas som kunskap är beroende av sammanhanget

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Linjära ekvationer med tillämpningar

Linjära ekvationer med tillämpningar UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel

Läs mer

ESN lokala kursplan Lgr11 Ämne: Fysik

ESN lokala kursplan Lgr11 Ämne: Fysik ESN lokala kursplan Lgr11 Ämne: Fysik Övergripande Mål: Genom undervisningen i ämnet fysik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att använda kunskaper i fysik för

Läs mer

1 Mätdata och statistik

1 Mätdata och statistik Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt

Läs mer

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap Hands-On Math Matematikverkstad 09.00 10.30 & 10.45 12.00 Elisabeth.Rystedt@ncm.gu.se Lena.Trygg@ncm.gu.se eller ett laborativt arbetssätt i matematik Laborativ matematikundervisning vad vet vi? Matematik

Läs mer

Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi

Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Kristoffer Virta Katarina Gustavsson Vårterminen 2011 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Naturvetenskapsprogrammet (NA)

Naturvetenskapsprogrammet (NA) Naturvetenskapsprogrammet (NA) Naturvetenskapsprogrammet (NA) ska utveckla elevernas kunskaper om sammanhang i naturen, om livets villkor, om fysikaliska fenomen och skeenden och om kemiska processer.

Läs mer

3: Muntlig redovisning Vid tveksamhet om betygsnivå, kommer du att få ett kompletterande muntligt förhör.

3: Muntlig redovisning Vid tveksamhet om betygsnivå, kommer du att få ett kompletterande muntligt förhör. Prövning i Fysik1 Prövning i Fy 1 omfattar 1: Skriftligt prov Ett skriftligt prov görs på hela kursen 2: Laborationer I kursen ingår laborationer och att skriva rapporter. Laborationerna görs en torsdag

Läs mer

Förmågor och Kunskapskrav

Förmågor och Kunskapskrav Fysik Årskurs 7 Förmågor och Kunskapskrav Använda kunskaper i fysik för att granska information, kommunicera och ta ställning i frågor som rör energi, teknik, miljö och samhälle F Y S I K Använda fysikens

Läs mer

Nationella medieprogrammet Obligatoriska kärnämnen

Nationella medieprogrammet Obligatoriska kärnämnen Nationella medieprogrammet Obligatoriska kärnämnen Engelska (A) 100p Estetisk verksamhet 50p Idrott och hälsa (A) 100p Matematik (A) 100p Naturkunskap (A) 50p Religionskunskap (A) 50p Samhällskunskap (A)

Läs mer

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft.

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. Kraft Allmänt om kraft * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. * Det finns olika krafter t ex; tyngdkraft, friktionskraft, motkraft. * Krafter kan

Läs mer

Fysik Kunskapens användning

Fysik Kunskapens användning Delmål Delmål 2010-06-14 Fysik Kunskapens användning utvecklar sin förmåga att göra kvantitativa, kvalitativa och etiska bedömningar av konsekvenser av mänskliga verksamheter och olika tekniska konstruktioner

Läs mer

Matematik C (MA1203)

Matematik C (MA1203) Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma C (MA103) Matematik 03-08- Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven

Läs mer

Lektion isoperimetrisk optimering

Lektion isoperimetrisk optimering Lektion isoperimetrisk optimering Lektionens namn: Isoperimetrisk optimering Kurs: Ma2a, Ma2b, Ma2c Längd: 85 min Inledning Lektionen behandlar ett klassiskt maximeringsproblem (Euklides och Zenodorus):

Läs mer

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta

Läs mer

Projektplan. Naturvetenskaps- och tekniksatsningen

Projektplan. Naturvetenskaps- och tekniksatsningen Projektplan Elever: Klass: Version på planen: Senast uppdaterad: Idé Vilket fenomen eller skeende i er omgivning vill ni undersöka? Exempel: Fåglars olika läten och beteenden vid olika situationer. Ämne

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är

Läs mer

3: Muntlig redovisning Vid tveksamhet om betygsnivå, kommer du att få ett kompletterande muntligt förhör.

3: Muntlig redovisning Vid tveksamhet om betygsnivå, kommer du att få ett kompletterande muntligt förhör. Prövning i Fysik 2 Prövningen i Fy 2 omfattar 1: Skriftligt prov Ett skriftligt prov görs på hela kursen. 2: Laborationer I kursen ingår att laborera och att skriva rapporter. Laborationerna görs en torsdag

Läs mer

Kemi 2. Planering VT2016

Kemi 2. Planering VT2016 Kemi 2 (KEM02, NA2) Planering VT2016 Pär Leijonhufvud CC $\ BY: 20160208 C Denna planering gäller för VT2016, med andra ord den andra halvan av kursen. Centralt innehåll Fet stil skolverkets text, med

Läs mer

Tillämpad Matematik I Övning 3

Tillämpad Matematik I Övning 3 HH/ITE/BN Tillämpad Matematik I, Övning 3 1 Tillämpad Matematik I Övning 3 Allmänt Övningsuppgifterna, speciellt Typuppgifter i första hand, är eempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå

Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå Naturvetenskapliga fakulteten Dnr G 2015/59 Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå 1. Utbildningsprogrammets benämning och omfattning Programmet benämns

Läs mer

Introduktion till logik

Introduktion till logik Introduktion till logik Av Johan Johansson Johan.johansson@guldstadsgymnasiet.se Logik sägs som många andra saker komma från de grekiska filosoferna, och ordet kommer också därifrån. Grekerna kallade det

Läs mer

Symboler och abstrakta system

Symboler och abstrakta system Symboler och abstrakta system Warwick Tucker Matematiska institutionen Uppsala universitet warwick@math.uu.se Warwick Tucker, Matematiska institutionen, Uppsala universitet 1 Vad är ett komplext system?

Läs mer

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55 Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att

Läs mer

Kombinationer och banor i agilityträningen

Kombinationer och banor i agilityträningen Kombinationer och banor i agilityträningen av Emelie Johnson Vegh och Eva Bertilsson, publicerad i Canis 2012 En av de saker som gör agility så fantastiskt roligt är den ständiga variationen. Ingen tävlingsbana

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. NpMab ht 01 Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet

Läs mer

KUNSKAPSKRAV I ÄMNET BIOLOGI

KUNSKAPSKRAV I ÄMNET BIOLOGI KUNSKAPSKRAV I ÄMNET BIOLOGI Kunskapskrav för godtagbara kunskaper i slutet av årskurs 3 Eleven kan beskriva och ge exempel på enkla samband i naturen utifrån upplevelser och utforskande av närmiljön.

Läs mer

Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor

Rapport av genomförd Lesson study av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs Bultar, muttrar och brickor Vågad problemlösning Förberedelser Ekvationssystem i matematik B ger progression från

Läs mer

GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden. Utbildningsplan för Matematikprogrammet (N1MAT) 1. Beslut om fastställande. 2.

GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden. Utbildningsplan för Matematikprogrammet (N1MAT) 1. Beslut om fastställande. 2. GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden Utbildningsplan för Matematikprogrammet (N1MAT) 180 högskolepoäng Grundnivå Bachelor Program in Mathematics 1. Beslut om fastställande Utbildningsplanen

Läs mer

Problemlösning Fk- åk 3 19/ Pia Eriksson

Problemlösning Fk- åk 3 19/ Pia Eriksson Problemlösning Fk- åk 3 19/12 2013 Pia Eriksson Fyra glaskulor och tre pappersstjärnor väger 63 gram. Tre glaskulor och två pappersstjärnor väger 46 gram. Alla glaskulor väger lika mycket och alla pappersstjärnor

Läs mer

Studenter i lärarprogrammet Ma 4-6 I

Studenter i lärarprogrammet Ma 4-6 I Ma 4-6 I Provmoment: Ladokkod: Tentamen ges för: Matematik 4hp Studenter i lärarprogrammet Ma 4-6 I 15 högskolepoäng TentamensKod: Tentamensdatum: 12-08-16 Tid: 09.00-13.00 Hjälpmedel: Skrivmaterial och

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

Vad beror benägenheten att återvinna på? Annett Persson

Vad beror benägenheten att återvinna på? Annett Persson Vad beror benägenheten att återvinna på? Annett Persson 12 mars 2011 Innehåll 1 Inledning 2 1.1 Bakgrund............................... 2 1.2 Syfte.................................. 2 1.3 Metod.................................

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

MA4021 Vektorgeometri, Projekt 2

MA4021 Vektorgeometri, Projekt 2 HH/IDE/BN Projekt 2 1 MA4021 Vektorgeometri, Projekt 2 Allmänt Skriv klart och tydligt. Motivera väl! Tänk på att skriva så att fler än ni själva förstår vad ni menar. Rita alltid tydliga figurer där variabler

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till! Matematik 4-6 II Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 4 hp Studenter i lärarprogrammet LAG 4-6 T3 15 högskolepoäng Tentamensdatum: 15-01-15 Tid: 09.00 13.00 Hjälpmedel: Lgr 11,

Läs mer

Inledande matematik M+TD

Inledande matematik M+TD Introduktionsföreläsning p. 1/13 Introduktionsföreläsning Inledande matematik M+TD Stig Larsson http://www.math.chalmers.se/ stig Matematiska vetenskaper Chalmers tekniska högskola Göteborgs universitet

Läs mer

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 2011-12-21 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng

Läs mer

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 2013-06-25 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng

Läs mer

48 p G: 29 p VG: 38 p

48 p G: 29 p VG: 38 p 11F322 MaI Provmoment: Matematik 5 hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet F-3 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-31 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel Totalt

Läs mer

Handledning Det didaktiska kontraktet. 19 september 2012

Handledning Det didaktiska kontraktet. 19 september 2012 Handledning Det didaktiska kontraktet 19 september 2012 Dagens teman Begreppsföreställning och begreppskunskap igen Handledning Det didaktiska kontraktet Begreppsföreställning och begreppsdefinition Begreppsföreställning

Läs mer

π-dagen TÄVLING & PRIS

π-dagen TÄVLING & PRIS π-dagen TÄVLING & PRIS Alla elever vid vår trevliga skola inbjuds att delta i årets stora π-tävling. Rikedom, ära och berömmelse, i måttlig grad, är vad som väntar de vinnande eleverna. Bakgrund: Den årliga

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Fysik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret

Fysik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret Fysik Balderskolan, Uppsala musikklasser 2009 Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret känna till några vanliga energikällor och deras påverkan på miljön kunna redogöra för vattnets

Läs mer

Exempel på gymnasiearbete inom naturvetenskapsprogrammet naturvetenskap

Exempel på gymnasiearbete inom naturvetenskapsprogrammet naturvetenskap Exempel på gymnasiearbete september 2012 Exempel på gymnasiearbete inom naturvetenskapsprogrammet naturvetenskap Mpemba-effekten Elevens idé Rana ska utföra sitt gymnasiearbete i grupp tillsammans med

Läs mer

Lokal pedagogisk plan

Lokal pedagogisk plan Syfte med arbetsområdet: Undervisningen i ämnet fysik ska syfta till att eleverna utvecklar kunskaper om fysikaliska sammanhang och nyfikenhet på och intresse för att undersöka omvärlden. Genom undervisningen

Läs mer

Studenter i lärarprogrammet Ma F-3 I

Studenter i lärarprogrammet Ma F-3 I Ma F-3 I Provmoment: Ladokkod: Tentamen ges för: Matematik 5 hp Studenter i lärarprogrammet Ma F-3 I 15 högskolepoäng TentamensKod: Tentamensdatum: 12-08-24 Tid: 09.00-13.00 Hjälpmedel: Skrivmaterial och

Läs mer

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte Sammanfattning Vi har i kursen Modelleringsprojekt TNM085 valt att simulera ett geléobjekt i form av en kub. Denna består av masspunkter som är sammankopplade med tre olika typer av fjädrar med olika parametrar.

Läs mer

Från snökaos till kvantkaos

Från snökaos till kvantkaos 020302 Kaosforskning var högsta mode på åttiotalet. Sedan blev det tyst. Men för väderprognoser är kaosmatematiken fortfarande högaktuell, liksom för den nya nanotekniken. Från snökaos till kvantkaos Av

Läs mer

Matematik E (MA1205)

Matematik E (MA1205) Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND

Läs mer

Betyget D innebär att kunskapskraven för betyget E och till övervägande del för C är uppfyllda. KUNSKAPSKRAV I ÄMNET KEMI

Betyget D innebär att kunskapskraven för betyget E och till övervägande del för C är uppfyllda. KUNSKAPSKRAV I ÄMNET KEMI KUNSKAPSKRAV I ÄMNET KEMI Kunskapskrav för godtagbara kunskaper i slutet av årskurs 3 Eleven kan beskriva och ge exempel på enkla samband i naturen utifrån upplevelser och utforskande av närmiljön. I samtal

Läs mer

Funktioner, Algebra och Ekvationer År 9

Funktioner, Algebra och Ekvationer År 9 Undervisning Funktioner, Algebra och Ekvationer År 9 Mål att uppnå i år 9, ur Lpo 94 Utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Beräkning med ord. -hur en dator hanterar perception. Linköpings universitet Artificiell intelligens 2 2010-10-03 Erik Claesson 880816-1692

Beräkning med ord. -hur en dator hanterar perception. Linköpings universitet Artificiell intelligens 2 2010-10-03 Erik Claesson 880816-1692 Beräkning med ord -hur en dator hanterar perception 2010-10-03 Erik Claesson 880816-1692 Innehåll Inledning... 3 Syfte... 3 Kan datorer hantera perception?... 4 Naturligt språk... 4 Fuzzy Granulation...

Läs mer

CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING

CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING Lokal examensbeskrivning Dnr: 541-2076-10 Sid 1 (5) CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING INRIKTNING: TEKNISK KEMI SPECIALISATION: ENGINEERING CHEMISTRY 1 Fastställande Denna examensbeskrivning

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor Våren 010 PRÖVNINGSANVISNINGAR Prövning i Matematik B Kurskod MA 10 Gymnasiepoäng 50 Läromedel Prov Muntligt prov Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag Skriftligt

Läs mer

Lutande torn och kluriga konster!

Lutande torn och kluriga konster! Lutande torn och kluriga konster! Aktiviteter för barn under Vetenskapsfestivalens skolprogram 2001 Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den

Läs mer