LHC Att Studera Universums Minsta Beståndsdelar i Världens största Experiment

Storlek: px
Starta visningen från sidan:

Download "LHC Att Studera Universums Minsta Beståndsdelar i Världens största Experiment"

Transkript

1 LHC Att Studera Universums Minsta Beståndsdelar i Världens största Experiment 1 Introduktion = Vem är jag? = Vad ska jag prata om? = LHC, the Large Hadron Collider = Startade så smått för ett och ett havlt år sedan, men gick sönder redan efter tre veckor. Nu är den igång igen sedan november och sedan en månad är den uppe i ca. halva sin energi, vilket är nästan fyra gånger högre än något annat experiment som gjorts. = Det har varit ett visst mediaintresse. Dock var ibland media mer intresserade av vad som inte kommer att studeras i experimenten än det som vi faktiskt byggt dem för. För säkerhets skull kommer jag att prata om båda delar. = Först ska jag beskriva själva maskinen och varför den behöver vara så stor. Därefter ska jag försöka förklara vad en Higgspartikel är. Sen tänkte jag förklara varför det snackas så mycket om svarta hål. 1

2 Slutligen tänkte jag försöka övertyga er om att det faktiskt är vettigt att lägga ner en massa pengar på stora experiment som LHC. 2 Mikroskop = LHC är en maskin som accelererar protoner till väldigt höga energier. Protoner är små små partiklar som finns inuti alla atomkärnor. Protonerna accelereras i en tre mil lång tunnel på gränsen mellan Frankrike och Schweiz strax utanför Geneve. = Protonerna accelereras både moturs och medurs med hjälp av stora supraledande magneter. Vid fyra punkter tvingar man strålarna att kollidera. Det som kommer ut ur dessa kollisioner studeras sedan i gigantiska detektorer. = Varför gör man detta? Jo, i princip är LHC ett gigantiskt mikroskop i vilket vi kan förstora saker och ting en miljard miljard gånger. Ni har säkert hört talas om nanofysik. Nano är en miljarddel. LHC tittar på saker som är en miljard gånger mindre än så. 2

3 nano-nano. = Varför behöver allt vara så stort när vi ska titta på något så litet? = Normalt sett använder man mikroskop när man vill se något väldigt litet. Problemet är att mikroskop använder ljus, och ljus är en vågrörelse med en viss våglängd. Och det är svårt att se något som är mindre än den våglängden. = Sten och vasstrå i vatten. = Synligt ljus har en våglängd av sisådär 100 nm (hårstrå µm), men vi är intresserade av saker som är mycket mindre. = Om vi ska se någon mindre måste vi använda något med mindre våglängd. Vi har alla hört talas om elektronmikroskop. Det fungerar ungefär som ett vanligt mikroskop med med elektroner istället för ljus. = Med det är ju jätte skillnad. Ljus är en vågrörelse och elektroner är partiklar. Nja, vad kvantmekaniken lärde oss i början av förra seklet är att små partiklar 3

4 och vågor i princip är samma sak. Det är bara två olika sätt att beskriva samma företeelse. = Ju högre energi en elektron har deso kortare våglängd har den och ju mindre saker kan man studera. Man kan se enstaka celler (ca 10µm). Cellen kärna är ca 1µm, DNA kedjor 0.1µm. Enstaka molekyler (1nm) enstaka atomer 0.1nm. Atomkärnor ca 0.01pm. Vi kan tillochmed se inuti protoner och studera avstånd mindre än 1fm. = Hur får vi då så hög energi hos elektronerna. Jo en elektrisk laddning accelereras om det rör sig i ett elektriskt fält. Och ju högre spänning deso högre energi. En volt ger en viss energi. Tusen volt ger tusen gånger högre energi. Med en en-volts elektron kan man se saker som är större än 1µm. I en gammal TV-apparat accelereras elektroner med några tusen volt, vips är vi nere på nanometernivå. = I LHC använder vi protoner istället för elektroner. Men det fungerar ungefär lika dant. Protonerna accelereras med 7 biljoner volt, vilket gör att vi är nere på nano-nano nivå. Det går inte att ha så hög spänning på en gång, istället åker protonerna runt och accelereras lite varje varv. Hastigheten på 4

5 protonerna blir tillslut ca % av ljusfarten. = Protonerna frontalkolliderar med varandra, så på ett sätt använder vi den ena protonen för att titta innuti den andra, eller tvärt om. Eller rättare sagt, vi använder partiklarna inuti den ena protonen för att titta på partiklarna inuti den andra. Protoner består nämligen av mindre partiklar som vi kallar kvarkar och gluoner. = Faktum är att det inte blir några vanliga bilder. Istället blir det så höga energiconsentrationer i kollisionerna att energin omvandlas till massa och ett hundratal nya partiklar bildas och sprids åt alla håll och kanter. Det är dessa partiklar man registrerar i detektorerna, flera meter från kollisionspunkten. = Men det vi får ut är inget som liknar ett foto. Varje kollision ger upphov till en massa signaler, många megabyte, och det är mycket komplicerat att analysera dessa bilder för att förstå vad det är vi ser (flera gigabyte måste registreras per sekund) = Och det räcker inte med en bild. Vi måste ta miljontals bilder och analysera dem statistiskt. Dessutom är det så att protonerna väldigt sällan 5

6 träffar mitt i prick, oftast bara nuddar de varandra. Och även om de träffar mitt i prick, är det sällan kvarkarna träffar varandra mitt på, vilket vi behöver för att vi ska få de hårda smällar med tillräckligt hög energi för att vi ska kunna se det allra minsta. = LHC accelererar alltså protoner med hjälp av elektriska fält. Men det stora problemet är att få dem att gå runt i det tre mil långa strålröret, och sedan fokusera dem så väl att de kan träffa varandra mitt på. På tre mil måste vi sikta rätt på en mikrometer när. = Vi accelererar inte bara en proton i taget. Vi har flera biljoner protoner i korta pulser. Varje enskild proton väger bara kg, men har så hög energi att det motsvarar rörelsemängden av en mygga. Tillsammans har de ungefär samma rörelsemängt som ett hangarfartyg. = Så för att styra dem behöver vi väldigt starka magneter (precis som gamla TV apparater behöver magneter för att styra elektronstrålen). LHC är den första maskin som är helt beroende av supraledande magneter. När vissa material blir tillräckligt nedkylda, förlorar de helt sin elektriska resistans, och vi kan gära en magnetspole med extremt högt magnetfält. LHC har meter långa supraledande magneter, 6

7 nedkylda till 291 grader, för att böja runt strålen. = Det som hände när LHC gick sönder var att en koppling mellan två sådana magneter var lite dåligt svetsad. När man ökade strömmen till max, blev det en liten resistans i kopplingen, vilket gjorde att det blev lite varmare, och efter ett tag blev det så varmt att kopplingen slutade vara supraledande, och då blev värmeutveckligen så hög att kopplingen förgasades i en stor explosion. Åtta magneter förstördes, hundra andra rubbas ur sitt läge med upp till en meter, sex ton flytande helium släpptes ut. Det tog ett år att laga och att röntga om alla svetsfogar. Men nu är LHC igång igen. Bara halva energin för säkerhets skull. 3 Vad är det vi vill titta på? Higgs! = Vad är det då vi vill hitta = Vi vill hitta en partikel som kallas Higgs. Och vad är det då för partikel? För att förstå det måste vi först titta på de teorier som beskriver de allra minsta 7

8 partiklarna som bygger upp Universum. = All materia består av elektroner och kvarkar. Kvarkar bygger upp protoner och neutroner som bygger upp atomkärnorna som tillsammans med elektroner bygger upp atomer som binds samman till molekyler som bygger upp allt vi ser och känner till. = Sen finns det krafter som verkar på dessa partiklar. = Det finns den starka kärnkraften som håller ihop protonerna och atomkärnan. Vi har den svaga kärnkraften som bl.a. ansvarar för att tunga atomkärnor sönderfaller till lättare. Sen finns det den elektro-magnetiska kraften som håller ihop atomen och ser till att atomer kan hållas ihop i molekyler. = Sen har vi, förstås, gravitationen som håller ihop jorden och solsystemet och galaxerna. Men den är oändligt mycket svagare än de andra krafterna på de avstånd vi kan se med LHC. = De teorier som beskriver den starka, svaga och elektromagnetiska krafterna kallas för standardmodellen. Den bygger på en matematisk 8

9 formulering som kallas för kvant-fält teori och utarbetades av Richard Feynman i mitten av förra seklet. I den teorin beskrivs både partiklar och vågrörelser med hjälp av fält. = Fält vet ni kanske vad det är. Ett elektriskt fält har ju ett värde i varju punkt i rummet. Ett magnetiskt fält har både ett värde och en riktning i varje punkt i rummet. De här fälten är mycket mer komplicerade. = De finns överallt - även i vakuum. Både de vanliga partiklarna och krafterna beskrivs i termer av fält. Vilket bl.a. gör att även krafterna kan representeras av partiklar (gluoner fotoner och W- och Z-bosoner. = Den kvant-fältteoretiska beskrivningen av elektromagnetismen är den mest exakta teori som någonsin har skapats. Vi kan beskriva processer med en precision på en miljarddels procent. Motsvarande beskrivning av den starka kraften är lite mer matematiskt komplicerad och inte så exakt, men den är också mycket framgångsrik. = Det enda problemet med kvantfältteorierna är att alla partiklar, speciellt de partiklar som representerar krafterna måste vara masslösa. Enligt Einsteins relativitetsteori betyder det att de alltid måste rusa 9

10 fram med ljusets hastighet. = I början av sjuttitalet insåg man att den elektriska och svaga kraften kunde beskrivas med samma fält, de är bara olika aspekter på samma kraft. Peter Higgs insåg då att om man införde ett nytt fält, Higgs fältet, kan man förklara varför en del partiklar ändå kan ha en massa. = Higgsfältet, som fyller hela universum, fungerar så att olika partiklar påverkas av det på olika sätt. En del partiklar, som fotonen - ljuspartikeln - inte bryr sig om fältet alls och far fram just med ljusets hastighet. De är masslösa. För andra partikel fungerar Higgsfältet som att gå igenom sirap. Det blir trögt, och det ser ut som om de har en stor massa. I kvantfältteoretisk mening är de fortfarande masslösa, men påverkan från Higgsfältet gör att de uppför sig precis som om de hade en massa. = Den här teorin fungerar fantastiskt bra. Det finns bara ett problem. Om det finns ett Higgsfält borde det också finnas en Higgspartikel. Den motsvaras av tryckvågor i higgsfältet. Men någon sådan partikel har vi inte hittat än. = Vi vet nu att om standardmodellen är korrekt måste higgs partikeln ha en massa så att det finns 10

11 tillräckligt med energi i kollisionerna vid LHC för att de ska bildas. Problemet är bara att den faller sönder nästan meddetsamma, och allt vi ser är en massa partiklar som bildas i sönderfallet tillsammans med alla andra partiklar som bildas i kollisionen. Dessutom kommer bildas en higgs bara i en bråkdel av kollisionerna, och det gäller verkligen att kvarkarna och gluonerna träffar mitt i prick. = så här ser en higgskollision ut = Då här ser en vanlig kollision ut. = Det är som att hitta en nål i en miljon höstackar. Faktum är att på Teoretisk fysik i Lund är vi nästan mest intresserade av att förstå hur höet ser ut. = Normalt sett är det ju inte svårt att skilja ett höstrå från en nål. Men om man tittar i en miljon höstackar kommer man att hitta höstrå som smulats sönder och man kan hitta tunna höfibrer som ser ut precis som nålar. En del kan nästan se lite silvriga ut... = Det är den starka kärnkraften som är ansvarig för 11

12 det mesta höet, och som jag sa tidigare är den inte så exakt. De vanligaste kollisionerna vet vi hur de ser ut, men vi måste också kunne beskriva de riktigt sällsynta där höet nästan ser ut som en higgs. = Den mest framgångsrika modellen för att beskriva höet heter Lundamodellen och är utvecklad här i Lund på teoretisk fysik. 4 Svarta Hål och andra vilda teorier = Hur var det då med de svarta hålen? Ni har kanske noterat skriverierna om risken att det skulle bildas ett svart hål i LHC som skulle växa och svälja hela jorden- = Ett svart hål bildas när en stjärna kollapsar under sin egen tyngdkraft vid en supernpva explosion. Gravitationen blir då så stor att inget förmår lämna stjärnan, inte ens ljus därav namnet. Men gravitationen gör att saker kan sugas in i hålet som därför kan växa och växa. Man tror att det i Vintergatans centrum finns ett super-massivt svart hål 12

13 som väger miljoner gånger mer än vår sol. = För att svarta hål ska kunna bildas krävs en oerhört stark gravitation. Och som jag sa är gravitationen oändligt svag på de avstånd vi studerar vid LHC. Så några svarta hål kan inte bildas. = Dessutom är det så att de kollisioner vi studerar vid LHC inte är unika. De händer ideligen när högenergetisk strålning från yttre rymden träffar vår atmosfär. Så om svarta hål kunde bildas skulle de ha gjort det för länge sedan. Och om de kunde svälja hela jorden, skulle vi helt enkelt inte finnas till. = So, what s the fus? = Jo det har framkastats teorier som föreslår att det kanske kunde finns fler dimensioner än de tre som vi är vana vid. Dessa måste i så fall vara så små att vi inte kan se dem, men om de är tillräckligt stora för att vi skulle kunna se dem vid LHC skulle det kunna betyda att gravitationen på de avstånden plötsligt blir väldigt stor och svarta hål skulle kunna bildas. = Vi har aldrig sett någonting som skulle stödja en sådan teori. Men även om det skulle stämma vet vi att ett sådant svart hål skulle falla sönder omedelbart, 13

14 innan det har en chans att växa och sluka jorden (Hawking). = OK, då kan man hitta på ännu en teori som skulle förhindra hålet att falla sönder. Och sen får man hitta på ännu en teori om varför jorden inte redan har försvunnit i et svart hål från kollisioner med kosmisk strålning. = Nej, det här är bara fria fantasier som inte har med verkligheten att göra. = Men varför hittar vi på sådana här teorier? Faktum är att jag själv har studerat teorierna med extra dimensioner. = Jo, även om vi gärna vill hitta en higgs vid LHC, skulle det vara ännu roligare om vi hittade något vi inte hade räknat med. Något som skulle ställa våra teorier på ända. = Hur ska vi då hitta något oväntat. Jag har ju precis förklarat hur svårt det är att hitta en higgs. Faktum är att efter LHC har startat på riktigt, kommer det att ta ett par år innan vi vet om det finns 14

15 en Higgspartikel eller inte. = Hur ska vi då kunna hitta något som vi inte vet var det är? Det är lite som när man har tappat nycklarna en natt, och man letar efter dem under gatlampan. Inte för att man tror att den finns där, men det är det enda stället där man skulle ha en chans att hitta den. Överallt annars är det mörkt. = Därför försöker vi sätta upp andra gatlyktor förutom higgslampan för att lysa upp ett större område. Sätter vi gör det på är att uppfinna mer eller mindre spekulativa teorier och så gör vi simuleringar för att se om vi skulle kunna se dem. Sen låter vi experimenten leta där också. Om de hittar något under svarta-hål-lampan är det inte troligt att det är just svarta hål de har hittat, men har i alla fall hittat något nytt. 5 Vad är nyttan? = Vad är det då för nytta med allt detta. Vem fan bryr sig om det finns en Higgs eller inte? = Är det verkligen värt att lägga ut tiotals miljarder kronor på ett sånt här experiment. Bara för att några tusen forskare ska ha något roligt att sysselsätta sig 15

16 med. = Ja, själv kan jag inte tänka mig något mer nyttigt än att lära sig om hur vår tillvaro fungerar och är uppbyggd. LHC är inte bara Higgs, det kommer också att lära oss mer om hur det gick till när universum skapades, i big bang. Varför det nästan bara finns materia i universum och nästan ingen antimateria. = Och vad består universum av egentligen? Bara 5% av energin i universum är materia och ljus som vi känner till. 25% är någon annan sorts materia som vi inte har någon aning om vad det är. Resten (70%) är en mystisk sort mörk energi som vi inte har en aning om var den kommer ifrån. Förhoppningsvis kan vi skapa lite mörk materia i LHC så att vi kan studera den. = Kanske kan vi också lära oss om krafter och materia egentligen bara är två olika aspekter på samma sak. = Det är ju den nyfikenheten som gör oss till människor. Alla andra djur på vår planet kämpar bara med att överleva. Men vi har utrustats med en hjärna som tillåter oss att ställa frågor om tillvaron. Ska vi då 16

17 inte försöka ge svar på dem också? = Men förutom att LHC är världens största och ett av de dyraste experimenten någonsin (bara maskinen kostar cs 30 miljarder kronor) så är det också världens mest lönsamma experiment. = I början av 90talet satt folk på CERN och funderade på hur man ska kunna samordna så många fysiker i så många länder. Hur ska de kunna utbyta information på ett vettigt sätt. Så man tog något som kallades för internet, som uppfanns av den amerikanska militären på 60talet för att skicka meddelanden och satte ihop det med ett sätt att dela filer samt ett textformat som hette hypertext. Och så fick man något som man kallade world wide web. Webben omsätter idag mycket mer än 30 miljarder om dagen. = Ett annat problem som sysselsatt forskarna är hur man ska lagra och analysera all data som kommer ut från CERN. Miljontals kollisioner i sekunden. Mycket gallras bort men upp till en Gigabyte måste lagras per sekund, ca en petabyte om året. Hur ska man kunna sprida denna information till alla involverade forskare, 17

18 hur ska man hitta datakraft för att analysera det. = The Grid. Ett intelligent sätt att dela på dataresurser som bland annat utvecklas av avdelningen för experimentell högenergifysik här i Lund. Är det lättare att transportera delar av datan till min dator och göra beräkningar här eller kan jag skicka mitt program till någon som redan har datan? Tekniken används redan inom andra vetenskapsområden. Dock ingen kommersiell användning. Än. = Även om man bara är intresserad av kortsiktig vinst, är som sagt LHC lönsamt. Men att spendera pengar för att utvidga vårt vetande kan aldrig vara fel, och framför allt är det oerhört spännande, och jag hoppas att jag ikväll lyckats förmedla en del av den spänningen. 18

Hur mycket betyder Higgspartikeln? MASSOR!

Hur mycket betyder Higgspartikeln? MASSOR! Hur mycket betyder Higgspartikeln? MASSOR! 1 Introduktion = Ni kanske har hört nyheten i somras att mina kollegor i CERN hade hittat Higgspartikeln. (Försnacket till nobellpriset) = Vad är Higgspartikeln

Läs mer

LHC Vad händer? Christophe Clément. Elementarpartikelfysik Stockholms universitet. Fysikdagarna i Karlstad, 2010-10-09

LHC Vad händer? Christophe Clément. Elementarpartikelfysik Stockholms universitet. Fysikdagarna i Karlstad, 2010-10-09 LHC Vad händer? Christophe Clément Elementarpartikelfysik Stockholms universitet Fysikdagarna i Karlstad, 2010-10-09 Periodiska systemet 1869 Standardmodellen 1995 Kvarkar Minsta beståndsdelar 1932 Leptoner

Läs mer

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik en ny värld av partiklar att upptäcka, Lunds Universitet NMT-dagar, Lund, 2011-03-10 1 i fysik 2 och krafter 3 ska partiklar och krafter 4 på jakt efter nya partiklar Newtons 2:a lag i fysik Newtons andra

Läs mer

Standardmodellen. Figur: HANDS-ON-CERN

Standardmodellen. Figur: HANDS-ON-CERN Standardmodellen Den modell som sammanfattar all teoretisk kunskap om partikelfysik i dag kallas standardmodellen. Standardmodellen förutspådde redan på 1960-talet allt det som man i dag har lyckats bevisa

Läs mer

Christian Hansen CERN BE-ABP

Christian Hansen CERN BE-ABP Christian Hansen CERN BE-ABP LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision 1952

Läs mer

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik en ny värld av partiklar att upptäcka, Lunds Universitet NMT-dagar, Lund, 2014-03-10 1 i fysik 2 och krafter 3 ska partiklar och krafter 4 på jakt efter nya partiklar Newtons 2:a lag i fysik Newtons andra

Läs mer

1.5 Våg partikeldualism

1.5 Våg partikeldualism 1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens

Läs mer

Higgspartikeln. och materiens minsta beståndsdelar. Johan Rathsman Teoretisk Partikelfysik Lunds Universitet. NMT-dagar i Lund

Higgspartikeln. och materiens minsta beståndsdelar. Johan Rathsman Teoretisk Partikelfysik Lunds Universitet. NMT-dagar i Lund och materiens minsta beståndsdelar Teoretisk Partikelfysik Lunds Universitet NMT-dagar i Lund 2018-03-14 Översikt 1 och krafter 2 ska partiklar och krafter 3 på jakt efter nya partiklar 4 och krafter materiens

Läs mer

Upptäckten av Higgspartikeln

Upptäckten av Higgspartikeln Upptäckten av Higgspartikeln 1. Introduktion 2. Partikelfysik 3. Higgspartikeln 4. CERN och LHC 5. Upptäckten 6. Framtiden 1 Introduktion De senaste åren har ni säkert hört talas om den så kallade Higgspartikeln

Läs mer

Innehåll. Förord...11. Del 1 Inledning och Bakgrund. Del 2 Teorin om Allt en Ny modell: GET. GrundEnergiTeorin

Innehåll. Förord...11. Del 1 Inledning och Bakgrund. Del 2 Teorin om Allt en Ny modell: GET. GrundEnergiTeorin Innehåll Förord...11 Del 1 Inledning och Bakgrund 1.01 Vem var Martinus?... 17 1.02 Martinus och naturvetenskapen...18 1.03 Martinus världsbild skulle inte kunna förstås utan naturvetenskapen och tvärtom.......................

Läs mer

Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri,

Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri, Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad Institutionen för Astronomi och teoretisk fysik Lunds Universitet S:t Petri, 12.09.05 Higgs 1 Leif Lönnblad Lund University Varför är Higgs viktig?

Läs mer

Universums uppkomst: Big Bang teorin

Universums uppkomst: Big Bang teorin Universums uppkomst: Big Bang teorin Universum expanderar (Hubbles lag) Kosmisk bakgrundsstrålning Fördelningen av grundämnen Några kosmologiska frågor 1. Har universum alltid expanderat som idag eller

Läs mer

Varför forskar vi om elementarpartiklar? Svenska lärarare på CERN 2013-10-31 Tord Ekelöf, Uppsala universitet

Varför forskar vi om elementarpartiklar? Svenska lärarare på CERN 2013-10-31 Tord Ekelöf, Uppsala universitet Varför forskar vi om elementarpartiklar? 1 Large Hadron Collider LHC vid CERN i Genève Världens mest högenergetiska protonkrockare 2 Varför hög energi? Enligt kvantmekaniken medger hög energi att man kan

Läs mer

Universums tidskalor - från stjärnor till galaxer

Universums tidskalor - från stjärnor till galaxer Universums tidskalor - från stjärnor till galaxer Fysik och Kemidagarna 2017 Prof. Peter Johansson Institutionen för Fysik, Helsingfors Universitet Matematisk-naturvetenskapliga fakulteten/ Peter Johansson/

Läs mer

Edwin Hubbles stora upptäckt 1929

Edwin Hubbles stora upptäckt 1929 Edwin Hubbles stora upptäckt 1929 Edwin Hubble Edwin Hubbles observationer av avlägsna galaxer från 1929. Moderna observationer av avlägsna galaxer. Bild: Riess, Press and Kirshner (1996) Galaxerna rör

Läs mer

VARFÖR MÖRK ENERGI HAR EN ANMÄRKNINGSVÄRT LITET VÄRDE. Ahmad Sudirman

VARFÖR MÖRK ENERGI HAR EN ANMÄRKNINGSVÄRT LITET VÄRDE. Ahmad Sudirman VARFÖR MÖRK ENERGI HAR EN ANMÄRKNINGSVÄRT LITET VÄRDE Ahmad Sudirman CAD, CAM och CNC Teknik Utbildning med kvalitet (3CTEQ) STOCKHOLM, 9 januari 2014 1 VARFÖR MÖRK ENERGI HAR EN ANMÄRKNINGSVÄRT LITET

Läs mer

Lösningar - Rätt val anges med fet stil i förekommande fall (obs att svaren på essäfrågorna inte är uttömmande).

Lösningar - Rätt val anges med fet stil i förekommande fall (obs att svaren på essäfrågorna inte är uttömmande). STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Materiens Minsta Byggstenar, 5p. Lördag den 15 juli, kl. 9.00 14.00 Lösningar - Rätt val anges med fet stil i förekommande fall (obs att svaren på essäfrågorna

Läs mer

Att förena gravitation och elektromagnetism i en (klassisk) teori. Kaluza [1919], Klein [1922]: Allmän

Att förena gravitation och elektromagnetism i en (klassisk) teori. Kaluza [1919], Klein [1922]: Allmän M-teori Strängteori Supersträngteori Einsteins Dröm Att förena gravitation och elektromagnetism i en (klassisk) teori Kaluza [1919], Klein [1922]: Allmän relativitetsteori i en extra dimension kanske ger

Läs mer

III Astropartikelfysik och subatomär fysik

III Astropartikelfysik och subatomär fysik III Astropartikelfysik och subatomär fysik III.1. Sammanfattande bedömning Under de senaste tjugo åren har vår förståelse för såväl naturens mest fundamentala beståndsdelar och processer som universums

Läs mer

Theory Swedish (Sweden)

Theory Swedish (Sweden) Q3-1 Large Hadron Collider (10 poäng) Läs anvisningarna i det separata kuvertet innan du börjar. I denna uppgift kommer fysiken i partikelacceleratorn LHC (Large Hadron Collider) vid CERN att diskuteras.

Läs mer

Utbildningsutmaningar för ATLAS-experimentet

Utbildningsutmaningar för ATLAS-experimentet Utbildningsutmaningar för ATLAS-experimentet Erik Johansson Stockholms universitet 1 Projektledare Michael Barnett Lawrence Berkeley Nat. Lab. Erik Johansson Stockholms universitet 2 ATLAS utmaningar 1.

Läs mer

CERNs facny kvarter. Man har inte haft råd att renovera byggnaderna, man gräver ner pengarna 100m under jorden istället.

CERNs facny kvarter. Man har inte haft råd att renovera byggnaderna, man gräver ner pengarna 100m under jorden istället. Anna besökte Cern Den 29.11-3.12.2009 åkte jag med 19 andra fysikstuderande gymnasister till det världsberömda centret för fysisk forskning, nämligen CERN i Genéve, Schweiz. De flesta deltagarna kom från

Läs mer

Vanlig materia (atomer, molekyler etc.) c:a 4%

Vanlig materia (atomer, molekyler etc.) c:a 4% Universum som vi ser det idag: Vanlig materia (atomer, molekyler etc.) c:a 4% Mörk materia (exotiska partiklar, WIMPs??) c:a 23% Mörk energi (kosmologisk konstant??) c:a 73% Ålder c:a 13,7 miljarder år

Läs mer

Higgsbosonens existens

Higgsbosonens existens Higgsbosonens existens Ludvig Hällman, Hanna Lilja, Martin Lindberg (9204293899) (9201120160) (9003110377) SH1012 8 maj 2013 Innehåll 1 Sammanfattning 2 2 Standardmodellen 2 2.1 Kraftförmedlarna.........................

Läs mer

Astronomi. Vetenskapen om himlakropparna och universum

Astronomi. Vetenskapen om himlakropparna och universum Astronomi Vetenskapen om himlakropparna och universum Solsystemet Vi lever på planeten jorden (Tellus) och rör sig i en omloppsbana runt en stjärna som vi kallar solen. Vårt solsystem består av solen och

Läs mer

Instuderingsfrågor för godkänt i fysik år 9

Instuderingsfrågor för godkänt i fysik år 9 Instuderingsfrågor för godkänt i fysik år 9 Materia 1. Rita en atom och sätt ut atomkärna, proton, neutron, elektron samt laddningar. 2. Vad är det för skillnad på ett grundämne och en kemisk förening?

Läs mer

Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen.

Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen. Atomfysik ht 2015 Atomens historia Atom = grekiskans a tomos som betyder odelbar Filosofen Demokritos, atomer. Stort motstånd, främst från Aristoteles Trodde på läran om de fyra elementen Alla ämnen bildas

Läs mer

Partikeläventyret. Bernhard Meirose

Partikeläventyret. Bernhard Meirose Partikeläventyret Bernhard Meirose Vad är Partikelfysik? Wikipedia: "Partikelfysik eller elementarpartikelfysik är den gren inom fysiken som studerar elementarpartiklar, materiens minsta beståndsdelar,

Läs mer

Två typer av strålning. Vad är strålning. Två typer av strålning. James Clerk Maxwell. Två typer av vågrörelse

Två typer av strålning. Vad är strålning. Två typer av strålning. James Clerk Maxwell. Två typer av vågrörelse Vad är strålning Två typer av strålning Partikelstrålning Elektromagnetisk strålning Föreläsning, 27/1 Marica Ericson Två typer av strålning James Clerk Maxwell Partikelstrålning Radioaktiva kärnpartiklar

Läs mer

Att utforska mikrokosmos

Att utforska mikrokosmos 309 Att utforska mikrokosmos Hur lundafysiker mätte en ny spridningseffekt, var med och bestämde familjeantalet av leptoner och kvarkar och deltog i jakten på Higgs partikel. Vad vi vet och vill veta Idag

Läs mer

Alltingsmodellen eller Den Kosmiska Modellen. Den nya atommodellen. Ett förslag Av Josef Kemény (2007)

Alltingsmodellen eller Den Kosmiska Modellen. Den nya atommodellen. Ett förslag Av Josef Kemény (2007) Alltingsmodellen eller Den Kosmiska Modellen. Den nya atommodellen. Ett förslag Av Josef Kemény (2007) Standardmodellen som består av en enda kärna Fysikens problem: Teorin som inte existerar i praktiken

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin Den speciella relativitetsteorin är en fysikalisk teori om lades fram av Albert Einstein år 1905. Denna teori beskriver framför allt hur utfallen (dvs resultaten) från

Läs mer

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense. If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose It is often stated that of all theories proposed

Läs mer

Litet quiz om svarta hål och kvantfysik: facit på www2.kau.se/tp/outreach Nedanför quizzet ger jag facit. Men försök själv först!

Litet quiz om svarta hål och kvantfysik: facit på www2.kau.se/tp/outreach Nedanför quizzet ger jag facit. Men försök själv först! Litet quiz om svarta hål och kvantfysik: facit på www2.kau.se/tp/outreach Nedanför quizzet ger jag facit. Men försök själv först! 1. Vad är en gluon ( lim-partikel", från glue på engelska)? a. En riktig

Läs mer

Krävs för att kunna förklara varför W och Z bosoner har massor.

Krävs för att kunna förklara varför W och Z bosoner har massor. Higgs Mekanismen Krävs för att kunna förklara varför W och Z bosoner har massor. Ett av huvudmålen med LHC. Teorin förutsäger att W och Z bosoner är masslösa om inte Higgs partikeln introduceras. Vi observerar

Läs mer

Experimentell fysik. Janne Wallenius. Reaktorfysik KTH

Experimentell fysik. Janne Wallenius. Reaktorfysik KTH Experimentell fysik Janne Wallenius Reaktorfysik KTH Återkoppling från förra mötet: Många tyckte att det var spännade att lära sig något om 1. Osäkerhetsrelationen 2. Att antipartiklar finns och kan färdas

Läs mer

LHC Vad händer? Christophe Clément. Elementarpartikelfysik Stockholms universitet. Fysikdagarna i Karlstad,

LHC Vad händer? Christophe Clément. Elementarpartikelfysik Stockholms universitet. Fysikdagarna i Karlstad, LHC Vad händer? Christophe Clément Elementarpartikelfysik Stockholms universitet Fysikdagarna i Karlstad, 2010-10-09 Periodiska systemet 1869 Standardmodellen 1995 Kvarkar Minsta beståndsdelar 1932 Leptoner

Läs mer

Strängar och extra dimensioner

Strängar och extra dimensioner Strängar och extra dimensioner Världens vackraste ekvation? Rummet, rymden, är arenan där allt i universum utspelar sig. Tiden ger rörelse och dynamik. Av materia är vi alla uppbyggda. Men hur hänger allt

Läs mer

Vilken av dessa nivåer i väte har lägst energi?

Vilken av dessa nivåer i väte har lägst energi? Vilken av dessa nivåer i väte har lägst energi? A. n = 10 B. n = 2 C. n = 1 ⱱ Varför sänds ljus av vissa färger ut från upphettad natriumånga? A. Det beror på att ångan är mättad. B. Det beror på att bara

Läs mer

2 H (deuterium), 3 H (tritium)

2 H (deuterium), 3 H (tritium) Var kommer alla grundämnen ifrån? I begynnelsen......var universum oerhört hett. Inom bråkdelar av en sekund uppstod de elementarpartiklar som alla grund- ämnen består av: protoner, neutroner och elektroner.

Läs mer

WALLENBERGS FYSIKPRIS 2018

WALLENBERGS FYSIKPRIS 2018 WALLENBERGS FYSIKPRIS 2018 Tävlingsuppgifter (Kvalificeringstävlingen) Riv loss detta blad och häfta ihop det med de lösta tävlingsuppgifterna. Resten av detta uppgiftshäfte får du behålla. Fyll i uppgifterna

Läs mer

Denna pdf-fil är nedladdad från Illustrerad Vetenskaps webbplats (www.illvet.com) och får ej lämnas vidare till tredjepart.

Denna pdf-fil är nedladdad från Illustrerad Vetenskaps webbplats (www.illvet.com) och får ej lämnas vidare till tredjepart. Käre användare! Denna pdf-fil är nedladdad från Illustrerad Vetenskaps webbplats (www.illvet.com) och får ej lämnas vidare till tredjepart. Av hänsyn till copyright innehåller den inga foton. Med vänlig

Läs mer

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? Session: okt28 Class Points Avg: 65.38 out of 100.00 (65.38%) 1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? A 0% Vi måste ha haft "koincidens", dvs. flera

Läs mer

Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12!

Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12! 1) Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12! Om vi tar den tredje kol atomen, så är protonerna 6,

Läs mer

Acceleratorer och Detektorer Framtiden. Barbro Åsman den

Acceleratorer och Detektorer Framtiden. Barbro Åsman den Acceleratorer och Detektorer Framtiden Barbro Åsman den 11-07-06 Rutherfords experiment Rutherfords experiment Atommodeller Thomsons modell Rutherfords resultat Studerade radioaktiv strålning tillsammans

Läs mer

Gravitationens gåta Ett nytt förslag till lösning Av Josef Kemény, 2008

Gravitationens gåta Ett nytt förslag till lösning Av Josef Kemény, 2008 Gravitationens gåta Ett nytt förslag till lösning Av Josef Kemény, 2008 Detta är en gåta som lett till de värsta grälen inom vetenskapen. Att lösa gåtan är inte en lätt uppgift. Den rådande vetenskapen

Läs mer

Science Night Rymden nu och framåt Aktuell forskning om rymden som utgångspunkt för intresseskapande fysik.

Science Night Rymden nu och framåt Aktuell forskning om rymden som utgångspunkt för intresseskapande fysik. Science Night Rymden nu och framåt Aktuell forskning om rymden som utgångspunkt för intresseskapande fysik. Nobelpriser i fysik 2017 Liv i rymden En app för att hitta på stjärnhimlen Nobelpriset i fysik

Läs mer

Tomrummet Partikelfysik 2008 av Josef Kemény

Tomrummet Partikelfysik 2008 av Josef Kemény Tomrummet Partikelfysik 2008 av Josef Kemény Tomrummet i mikrokosmos I det ser vi partiklar Tomrummet i makrokosmos I det ser vi solar/stjärnor Nobelpris i fysik 2008 Yoichiro Nambu, Toshihide Maskawa

Läs mer

Kärnenergi. Kärnkraft

Kärnenergi. Kärnkraft Kärnenergi Kärnkraft Isotoper Alla grundämnen finns i olika varianter som kallas för isotoper. Ofta finns en variant som är absolut vanligast. Isotoper av ett ämne har samma antal protoner och elektroner,

Läs mer

Del A: Seminarium i Hedemora Tord Ekelöf, Uppsala universitet

Del A: Seminarium i Hedemora Tord Ekelöf, Uppsala universitet Del A: *Partikelfysik, en överblick * Introduktion om Big Bang, materia och antimateria i lika delar, hur vet vi det?, universum bildades, materia blev kvar. Vart tog all antimateria vägen? *Neutriner:

Läs mer

Partikelfysik och det Tidiga Universum. Jens Fjelstad

Partikelfysik och det Tidiga Universum. Jens Fjelstad Partikelfysik och det Tidiga Universum Jens Fjelstad 2010 05 10 Universum Expanderar Hubbles Lag: v = H 0 D D avståndet mellan två punkter i universum v den relativa hastigheten mellan punkterna H 0 (70km/s)/Mpc

Läs mer

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Tisdagen den 27:e maj 2008, kl 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

Kosmologi. Ulf Torkelsson Teoretisk fysik CTH/GU

Kosmologi. Ulf Torkelsson Teoretisk fysik CTH/GU Kosmologi Ulf Torkelsson Teoretisk fysik CTH/GU Program Universums expansion, observationer Universums expansion, teori Universums geometri Universums expansion och sammansättning Exotisk materia Andromedagalaxen

Läs mer

Citation for the original published paper (version of record):

Citation for the original published paper (version of record): http://www.diva-portal.org This is the published version of a paper published in Filosofisk Tidskrift. Citation for the original published paper (version of record): Bergström, L. (2014) Ett universum

Läs mer

Om partikelfysik och miljardsatsningar

Om partikelfysik och miljardsatsningar Om partikelfysik och miljardsatsningar Detta är en något utvidgad version av Håkans föreläsning vid MAX IV och ESS i Lund. Det är ett försök att efter bästa förmåga beskriva atomfysikens nuvarande läge

Läs mer

Bli klok på himlen och stjärnorna

Bli klok på himlen och stjärnorna Läsnyckel Bli klok på himlen och stjärnorna Text: Michéle Mira Pons Bilder: Robert Barborini Översättning: Johanna Brock Bli klok på himlen och stjärnorna är en lättläst faktabok, skriven på Hegas nivå

Läs mer

Preonstjä. av Johan Hansson och Fredrik Sandin

Preonstjä. av Johan Hansson och Fredrik Sandin Preonstjä av Johan Hansson och Fredrik Sandin M odern astrofysik har gett förnyade insikter om materians uppbyggnad och möjliga tillstånd. Neutronstjärnor och svarta hål förutsas först teoretiskt innan

Läs mer

Rörelsemängd och energi

Rörelsemängd och energi Föreläsning 3: Rörelsemängd och energi Naturlagarna skall gälla i alla interial system. Bl.a. gäller att: Energi och rörelsemängd bevaras i all växelverkan mu p = Relativistisk rörelsemängd: 1 ( u c )

Läs mer

Föreläsningsserien k&p

Föreläsningsserien k&p Föreläsningsserien k&p 1. "Begrepp bevarandelagar, relativistiska beräkningar" 1-3,1-4,1-5,2-2 2. "Modeller av atomkärnan" 11-1, 11-2, 11-6 3. "Radioaktivitet, alfa-, beta-, gammasönderfall" 11-3, 11-4

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n, 13 APRIL 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Allmän rymdfysik. Plasma Magnetosfärer Solen och solväder. Karin Ågren Rymdfysik och rymdteknik

Allmän rymdfysik. Plasma Magnetosfärer Solen och solväder. Karin Ågren Rymdfysik och rymdteknik Allmän rymdfysik Plasma Magnetosfärer Solen och solväder Rymdfysik och rymdteknik Karin Ågren 090608 Plasma Vi lever i en neutral värld, där materia är i fast, flytande eller gasform...... universum i

Läs mer

Universums mörka hemlighet

Universums mörka hemlighet Universums mörka hemlighet En kort presentation av neutrinoastronomin av Sverker Johansson Neutrinoastronomi, vad är det, och vad ska det vara bra för? Astronomi har vi väl alla ett visst begrepp om, stjärnor

Läs mer

Kurs: Kemi/Fysik 2 Fysikdelen Kurskod LUI103. Examinator: Anna-Carin Larsson Tentamens datum 060822

Kurs: Kemi/Fysik 2 Fysikdelen Kurskod LUI103. Examinator: Anna-Carin Larsson Tentamens datum 060822 OMTENTAMEN DEL 2 Kurs: Kemi/Fysik 2 Fysikdelen Kurskod LUI103 Examinator: Anna-Carin Larsson Tentamens datum 060822 Jourhavande lärare: Anna-Carin Larsson 070-2699141 Skrivtid 9-14 Resultat meddelas senast:

Läs mer

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0] Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:

Läs mer

Kosmologi efter elektrosvagt symmetribrott

Kosmologi efter elektrosvagt symmetribrott Kosmologi efter elektrosvagt symmetribrott Den teoretiska grunden för modern kosmologi Einsteins allmänna relativitetsteori 1907 inser Einstein att man kan lokalt göra sig kvitt med gravitation genom att

Läs mer

Orienteringskurs i astronomi Föreläsning 1, Bengt Edvardsson

Orienteringskurs i astronomi Föreläsning 1, Bengt Edvardsson Orienteringskurs i astronomi Föreläsning 1, 2014-09-01 Bengt Edvardsson Innehåll: Korta frågor och svar Anteckningarna är en hjälp vid läsningen av boken men definierar inte kursen. Första föreläsningen

Läs mer

Välkomna till Kvantfysikens principer!

Välkomna till Kvantfysikens principer! Välkomna till Kvantfysikens principer! If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose If quantum

Läs mer

attraktiv repellerande

attraktiv repellerande Magnetism, kap. 24 Eleonora Lorek Magnetism, introduktion Magnetism ordet kommer från Magnesia, ett område i antika Grekland där man hittade konstiga stenar som kunde lyfta upp järn. Idag är magnetism

Läs mer

MATTIAS MARKLUND GRUNDLÄGGANDE FYSIKFORSKNING OCH MILITÄRFORSKNING

MATTIAS MARKLUND GRUNDLÄGGANDE FYSIKFORSKNING OCH MILITÄRFORSKNING GRUNDLÄGGANDE FYSIKFORSKNING OCH MILITÄRFORSKNING MATTIAS MARKLUND Matematik, naturvetenskap och teknik i ett samhälls- och forskningsperspektiv. 170411 ÖVERSIKT Några olika forskningsfält. Koppling till

Läs mer

Kvantmekanik. Kapitel Natalie Segercrantz

Kvantmekanik. Kapitel Natalie Segercrantz Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!

Läs mer

DE SJU SYMMETRISKA UNIVERSUM. Ahmad Sudirman

DE SJU SYMMETRISKA UNIVERSUM. Ahmad Sudirman DE SJU SYMMETRISKA UNIVERSUM Ahmad Sudirman CAD,CAM och CNC Teknik Utbildning med kvalitet (3CTEQ) STOCKHOLM, den 13 november 2011 1 DE SJU SYMMETRISKA UNIVERSUM Copyright 2011 Ahmad Sudirman* Stockholm

Läs mer

Information om kursen

Information om kursen Information om kursen Föreläsningar: Magnus Axelsson och Emma Wikberg Räkneövningar: Thomas Kvorning Kurshemsida: www.fysik.su.se/~emma/kvantprinciperna Kontaktinformation Schema Skannade föreläsningsanteckningar

Läs mer

Alla bilder finns på kursens hemsida http://www.physto.se/~lbe/poeter.html

Alla bilder finns på kursens hemsida http://www.physto.se/~lbe/poeter.html Alla bilder finns på kursens hemsida http://www.physto.se/~lbe/poeter.html Fysik för poeter 2010 Professor Lars Bergström Fysikum, Stockholms universitet Vi ska börja med lite klassisk fysik. Galileo Galilei

Läs mer

Big bang Ulf Torkelsson. 1 Enkla observationer om universums kosmologiska egenskaper

Big bang Ulf Torkelsson. 1 Enkla observationer om universums kosmologiska egenskaper Föreläsning 2/4 Big bang Ulf Torkelsson 1 Enkla observationer om universums kosmologiska egenskaper Oberoende av i vilken riktning på himlen vi tittar, så ser universum i stort sett likadant ut. Det tycks

Läs mer

En resa från Demokritos ( f.kr) till atombomben 1945

En resa från Demokritos ( f.kr) till atombomben 1945 En resa från Demokritos (460-370 f.kr) till atombomben 1945 kapitel 10.1 plus lite framåt: s279 Currie atomer skapar ljus - elektromagnetisk strålning s277 röntgen s278 atomklyvning s289 CERN s274 och

Läs mer

Kosmologin söker svar bl.a. på: Hur uppkom universum? Hur gammalt är universum? Hur är materian och energin fördelad?

Kosmologin söker svar bl.a. på: Hur uppkom universum? Hur gammalt är universum? Hur är materian och energin fördelad? 7 Kosmologi Kosmologin söker svar bl.a. på: Hur uppkom universum? Hur gammalt är universum? Hur är materian och energin fördelad? Hur uppkom elementarpartiklarna? Hur uppkom grundämnena? Hurdan är universums

Läs mer

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i Modern fysik, TFYA11/TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Onsdagen den 27/3 2013 kl. 08.00-12.00 i T1 och T2 Tentamen består av 2 A4-blad (inklusive detta)

Läs mer

Välkommen till CERN. Lennart Jirden CERN PH Department Genève

Välkommen till CERN. Lennart Jirden CERN PH Department Genève Välkommen till CERN Lennart Jirden CERN PH Department Genève Innehåll Vad betyder «CERN»? Conseil Européen pour la Recherche Nucléaire European Council for Nuclear Research 1952 Vad betyder «CERN»? Organisation

Läs mer

Christophe Clément (Stockholms Universitet)

Christophe Clément (Stockholms Universitet) Svenska Lärare på CERN Christophe Clément (Stockholms Universitet) Översikt 1. Varför bygger vi LHC & ATLAS experimentet? 2. Hur funkar ATLAS experimentet? 3. Material Varför bygger vi LHC & ATLAS experimentet?

Läs mer

Innehållsförteckning. Innehållsförteckning 1 Rymden 3. Solen 3 Månen 3 Jorden 4 Stjärnor 4 Galaxer 4 Nebulosor 5. Upptäck universum med Cosmonova 3

Innehållsförteckning. Innehållsförteckning 1 Rymden 3. Solen 3 Månen 3 Jorden 4 Stjärnor 4 Galaxer 4 Nebulosor 5. Upptäck universum med Cosmonova 3 1 Innehållsförteckning Innehållsförteckning 1 Rymden 3 Upptäck universum med Cosmonova 3 Solen 3 Månen 3 Jorden 4 Stjärnor 4 Galaxer 4 Nebulosor 5 2 Rymden Rymden, universum utanför jorden, studeras främst

Läs mer

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5

Läs mer

I once saw Einstein on a train which whistled past our station. - Your clock ticks much too slow, I yelled. - Ach, nein. That's time dilation

I once saw Einstein on a train which whistled past our station. - Your clock ticks much too slow, I yelled. - Ach, nein. That's time dilation I once saw Einstein on a train which whistled past our station. - Your clock ticks much too slow, I yelled. - Ach, nein. That's time dilation - Gordon Judge Om man åker fortare än ljuset, svartnar det

Läs mer

Kosmologi - läran om det allra största:

Kosmologi - läran om det allra största: Kosmologi - läran om det allra största: Dikter om kosmos kunna endast vara viskningar. Det är icke nödvändigt att bedja, man blickar på stjärnorna och har känslan av att vilja sjunka till marken i ordlös

Läs mer

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity

Läs mer

De gröna demonerna. Jorden i fara, del 2

De gröna demonerna. Jorden i fara, del 2 De gröna demonerna Jorden i fara, del 2 KG Johansson SMAKPROV Publicerad av Molnfritt Förlag Copyright 2014 Molnfritt Förlag Den fulla boken har ISBN 978-91-87317-35-4 Boken kan laddas ned från nätbutiker

Läs mer

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5

Läs mer

Välkommen till CERN. Lennart Jirden CERN PH Department Genève

Välkommen till CERN. Lennart Jirden CERN PH Department Genève Välkommen till CERN Lennart Jirden CERN PH Department Genève Vad betyder «CERN»? 1952 Conseil Européen pour la Recherche Nucléaire European Council for Nuclear Research Vad betyder «CERN»? Organisation

Läs mer

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity

Läs mer

Gull! Astrofysikk, kärnfysik, kvantmekanik og relativitetsteori i vardagen? Jonas Persson Institutt for Fysikk, NTNU

Gull! Astrofysikk, kärnfysik, kvantmekanik og relativitetsteori i vardagen? Jonas Persson Institutt for Fysikk, NTNU Gull! Astrofysikk, kärnfysik, kvantmekanik og relativitetsteori i vardagen? Jonas Persson Institutt for Fysikk, NTNU 2 Periodiska systemet 3 Periodiska systemet för astrofysiker 4 Periodiska systemet -

Läs mer

PROGRAMMANUS 1(9) PRODUCENT: TOVE JONSTOIJ PROJEKTLEDARE: HELEN RUNDGREN BESTÄLLNINGSNUMMER: /RA10 SKAPELSEMYTER I BEGYNNELSEN

PROGRAMMANUS 1(9) PRODUCENT: TOVE JONSTOIJ PROJEKTLEDARE: HELEN RUNDGREN BESTÄLLNINGSNUMMER: /RA10 SKAPELSEMYTER I BEGYNNELSEN PROGRAMMANUS PRODUCENT: JONSTOIJ PROJEKTLEDARE: HELEN RUNDGREN BESTÄLLNINGSNUMMER: 102517/RA10 SKAPELSEMYTER I BEGYNNELSEN Reportageprogram av Tove Jonstoij Medverkande: Peter Borenstein Caroline Krook

Läs mer

Lokal pedagogisk plan

Lokal pedagogisk plan Syfte med arbetsområdet: Undervisningen i ämnet fysik ska syfta till att eleverna utvecklar kunskaper om fysikaliska sammanhang och nyfikenhet på och intresse för att undersöka omvärlden. Genom undervisningen

Läs mer

Preliminärt lösningsförslag till Tentamen i Modern Fysik,

Preliminärt lösningsförslag till Tentamen i Modern Fysik, Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs

Läs mer

Relativistisk energi. Relativistisk energi (forts) Ekin. I bevarad energi ingår summan av kinetisk energi och massenergi. udu.

Relativistisk energi. Relativistisk energi (forts) Ekin. I bevarad energi ingår summan av kinetisk energi och massenergi. udu. Föreläsning 3: Relativistisk energi Om vi betraktar tillskott till kinetisk energi som utfört arbete för att aelerera från till u kan dp vi integrera F dx, dvs dx från x 1 där u = till x där u = u, mha

Läs mer

ELLÄRA. Denna power point är gjord för att du ska få en inblick i elektricitet. Vad är spänning, ström? Var kommer det ifrån? Varför lyser lampan?

ELLÄRA. Denna power point är gjord för att du ska få en inblick i elektricitet. Vad är spänning, ström? Var kommer det ifrån? Varför lyser lampan? Denna power point är gjord för att du ska få en inblick i elektricitet. Vad är spänning, ström? Var kommer det ifrån? Varför lyser lampan? För många kan detta vara ett nytt ämne och till och med en helt

Läs mer

ENKEL Kemi 2. Atomer och molekyler. Art nr 515. Atomer. Grundämnen. Atomens historia

ENKEL Kemi 2. Atomer och molekyler. Art nr 515. Atomer. Grundämnen. Atomens historia ENKEL Kemi 2 Atomer och molekyler atomkärna elektron Atomer Allting runt omkring oss är uppbyggt av atomer. En atom är otroligt liten. Den går inte att se för blotta ögat. Ett sandkorn rymmer ungefär hundra

Läs mer

Medicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2

Medicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2 Medicinsk Neutron Vetenskap 医疗中子科学 yi1 liao2 zhong1 zi3 ke1 xue2 Introduction Sames 14 MeV neutrongenerator Radiofysik i Lund på 1970 talet För 40 år sen Om

Läs mer

14. Elektriska fält (sähkökenttä)

14. Elektriska fält (sähkökenttä) 14. Elektriska fält (sähkökenttä) För tillfället vet vi av bara fyra olika fundamentala krafter i universum: Gravitationskraften Elektromagnetiska kraften, detta kapitels ämne Orsaken till att elektronerna

Läs mer

101-åringen som klev ut ur teorin Om gravitationsvågor (2016) och Einsteins allmänna relativitetsteori (1915)

101-åringen som klev ut ur teorin Om gravitationsvågor (2016) och Einsteins allmänna relativitetsteori (1915) 101-åringen som klev ut ur teorin Om gravitationsvågor (2016) och Einsteins allmänna relativitetsteori (1915) Filosoficirkeln, Lund, 7 mars 2017 Bengt EY Svensson https://www.ligo.caltech.edu/video/ligo20160211v2

Läs mer

Kaströrelse. 3,3 m. 1,1 m

Kaströrelse. 3,3 m. 1,1 m Kaströrelse 1. En liten kula, som vi kallar kula 1, släpps ifrån en höjd över marken. Exakt samtidigt skjuts kula 2 parallellt med marken ifrån samma höjd som kula 1. Luftmotståndet som verkar på kulorna

Läs mer

Mer om E = mc 2. Version 0.4

Mer om E = mc 2. Version 0.4 1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om

Läs mer