Statistiska metoder för utveckling av innovativa process-teknologier med hög yield för tillverkning av nästa generationens mikroprocessorer

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Statistiska metoder för utveckling av innovativa process-teknologier med hög yield för tillverkning av nästa generationens mikroprocessorer"

Transkript

1 Statistiska metoder för utveckling av innovativa process-teknologier med hög yield för tillverkning av nästa generationens mikroprocessorer Martin von Haartman Tekn Dr. Senior Process Engineer, Intel Corp. September Gästföreläsning Ingenjörsmetodik KTH

2 Innehåll Lite om mig själv och Intel Kort om ingenjörsrollen i industrin Översikt om statistiska metoder som används vid utveckling av process-teknologier 2 Gästföreläsning Ingenjörsmetodik KTH

3 Om mig , Elektroteknik 180p, KTH (E96) , Forskarstudent, ICT, KTH Huvudinriktning mikroelektronik Avhandling om karakterisering och modellering av brus i CMOS transistorer , forskare KTH 2006 idag, Senior Process Engineer, Intel Corp., Portland, USA. Jobbar på Yield avdelning med uteckling av framtida halvledarteknologier Ansvarar för metoder och analys av fel och defekter i tillverkningen. Engelskt namn Fault isolation/failure analysis 3 Gästföreläsning Ingenjörsmetodik KTH

4 Om Intel anställda (Dec. 2007) Huvudkontor i Santa Clara, Kalifornien, USA Utvecklingsavdelning för halvledarteknologi i Portland, Oregon, USA. Fabriker bland annat i Oregon, Arizona, Israel, Irland Produkter Mikroprocessorer för stationära och mobila datorer, arbetsstationer, netbook, inbäddade produkter, kommunikation, kosument-elektronik Flash-minnen Chip-set, moderkort, kretsar för kommunikation etc. 4 Gästföreläsning Ingenjörsmetodik KTH

5 Ingenjörsrollen Vanliga uppgifter i mitt jobb Kontakt med service personal för reparation av utrustning Inköp och installation av utrustning Leda projekt Dokumentation Upplärning av nya anställda och övrig personal Hålla presenationer Arbetsledning Programmering I mitt fall utgör rent tekniska uppgifter inom mitt specialområde ca 50% 5 Gästföreläsning Ingenjörsmetodik KTH

6 Nyttan av teknisk utbildning och övrig kompetens Personliga reflektioner (inte KTHs eller Intels allmäna inställning) Viktigt med översikt över många teknikområden (bredd) Också viktigt med specialistkompetens men kanske främst för att söka jobb (?) Språk (främst engelska) Ofta stor direkt nytta av mer tillämpade kurser i utbildningen Teoretiska kurser behövs för förståelsen och svårare att läsa in i efterhand. Viktigt för självförtroende, beslutsfattning och som utgångspunkt för att söka mer information (kunskapsbas). Utbildningen ger också omfattande träning i problemlösning, självständigt och kritiskt tänkande, etc vilket är viktigt i jobbet som ingenjör. 6 Gästföreläsning Ingenjörsmetodik KTH

7 Statistika metoder för utveckling av innovativa processteknologier med hög yield för tillverkning av nästa generationens mikroprocessorer Nya produkter tex atom processorn för minimal effektförbrukning i netbooks etc högre prestanda (fler kärnor, snabbare kretsar) Nya process-teknologier innehåller många innovativa lösningar Mindre & snabbare transistorer (Moore s law) Effekt, pålitlighet, yield, miljöhänsyn, etc. Yield = andel chip som fungerar Processutveckling Ny Produkt Produktion Krets design 7 Gästföreläsning Ingenjörsmetodik KTH

8 Översikt över tillverkningsprocessen Nedskalning av dimensioner med faktor 0.7 vartannat år Senaste process-teknologin (32nm) har transistorer vars gatelängd är 30nm. Vissa skikt är så tunna att de innehåller ett fåtal atomlager. 32nm SRAM test-chip innehåller 1.9 miljarder transistorer Kisel-skiva Process steg: Deponering Etsning Mönstring (litografi) Dopning Skiva med färdiga chip 8 Gästföreläsning Ingenjörsmetodik KTH

9 Variationer och defekter SRAM cell används i cache minnet För stabil design bör T3 > T1 > T2 (maximal ström genom transistorn) Variationer i framförallt tröskelspänningen gör att cellen kan bli defekt Det finns en specifikation för medelvärde och standardavvikelse T1 T2 T3 Ledningarna som kopplar samman transistorerna får inte ha en kortslutning eller ha en öppen krets någonstans Små dimensioner ytterst små partiklar eller process-variationer kan leda till en icke fungerande krets Interconnect stack 9 Gästföreläsning Ingenjörsmetodik KTH

10 Statistiska metoder Hur ska man uteckla en process med hög yield? Totala variationen beror av bidragen Minimera variationen i process-moduler med stort bidrag Minimera systematiska fel För komplicerade samband teoretiskt allting bestäms experimentellt mha statistik 10 Gästföreläsning Ingenjörsmetodik KTH

11 Kontroll-gränser Varje process-modul tar mätdata från sin process Kan sampla olika nivåer (batch-batch, skiva-skiva, inom skiva) Kontrollerar att medelvärde och standardavvikelse ligger inom uppsatta gränser Konfidens-intervall Försöker uppskatta okänt medelvärd μ från en population med standardavvikelse σ 95% säkerhet att μ är i intervallet X ± 2σ/ n där X är medelvärdet av n datapunkter Kan sätta kontroll-gränser utifrån specifikationen för en viss maskin och konfidens-intervall 11 Gästföreläsning Ingenjörsmetodik KTH

12 Hypotes-test Avgöra om två maskiner är matchade Avgöra om ett nytt process-steg är en förbättring Antag att ny typ av filmdeponeringsteknik utvecklats som ska ge lägre resistans Kan vi säga om vi säga om metoden är bättre? Historiskt medelvärde Nytt medelvärde 12 Gästföreläsning Ingenjörsmetodik KTH

13 Hypotes-test forts. Anätt en hypotes μ = μ 0, alternativ hypotes (ex. μ μ 0 ) och signifikans-värde α I de flesta fall kan normal-fördelning användas Beräkna z test = (X μ 0 )/(σ/ n) Kolla tabell eller formel för normal-fördelning sannolikhet p för att Z > z test (dubbel-sidig) Om p α avslå hypotesen α/2 α/2 -z α/2 z α/2 13 Gästföreläsning Ingenjörsmetodik KTH

14 Design av experiment (DOE) Effektiv metod för stastisk analys Anger hur många experiment som behöver göras för att ta beslut vid viss risk och upplösningsförmåga En batch delas upp i skivor som genomgår standard process och skivor som genomgår ny process Batch Standard process Ny process 14 Gästföreläsning Ingenjörsmetodik KTH

15 Analyser av samband Antag att ett stort yield problem upptäckts. Hur indentifierar man felkällan? Teknisk kunskap (karakteristiska egenskaper, fellokalisering och felanalys) Trender Korrelationer 15 Gästföreläsning Ingenjörsmetodik KTH

16 Trender Studera variabel över tid eller i sekvens Förändring kan härledas tex till införandet av ett visst process-steg eller service tidpunkt av en viss maskin Om datat innehåller mycket brus kan filtrering/utjämningstekniker användas tex rullande medelvärde 16 Gästföreläsning Ingenjörsmetodik KTH

17 Korrelationer Korrelation mellan två variabler innebär att en variation in den ena variabeln är kopplad till en variation i den andra R = S XY /S X S Y R = R = 0.99 Jämförelse mellan två processer 17 Gästföreläsning Ingenjörsmetodik KTH

18 Korrelation i 2D Fel kan uppträda en hög täthet i vissa regioner på skivan Varje område kan analyseras separat Fel Test-struktur data visar tex problem i samma område Process 1 Process 1 Process 2 18 Gästföreläsning Ingenjörsmetodik KTH

19 Felanalys (Failure Analysis) Statistisk analys är användbart för att identifiera orsaker till yield problem men inte alltid I många fall kan ingen korrelation enkelt hittas Den statistiska analysen ger bara en indikation Behöver metoder för att fysiskt identifiera defekter Verifiera elektriskt (tex kortslutning mellan två ledare). Finns prob-tekniker för att utföra IV-mätningar även på 32nm transistorer Fotografera defekter med SEM (scanning electron microscopy) eller TEM (transmission electron microscopy) 19 Gästföreläsning Ingenjörsmetodik KTH

20 Fellokalisering (fault isolation) I många fall är det ett kluster av minnesceller som har fel Hur vet man var man ska mäta? Var finns defekten? Elektrisk karakterisering av felet (DC-mätningar, funktionella mätningar). Bestämma bla område för felet och tid/spänningsberoende Logisk-fysisk analys mha krets-design och CAD program Studera IR-ljus från kretsarna Laser-stimulering 20 Gästföreläsning Ingenjörsmetodik KTH

21 Sammanfattning Statistiska metoder är viktiga verktyg för att ta beslut baserat på tillgängligt data Speciellt viktigt vid extremt komplicerade processer som kräver strikt kontroll, tex yield vid tillverkning av mikroprocessorer Orientering av olika statistiska metoder som används vid utveckling av process-teknologier har presenterats Frågor? 21 Gästföreläsning Ingenjörsmetodik KTH

22 22 Gästföreläsning Ingenjörsmetodik KTH

Vetenskaplig metod och statistik

Vetenskaplig metod och statistik Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på

Läs mer

Extrauppgifter i matematisk statistik

Extrauppgifter i matematisk statistik Extrauppgifter i matematisk statistik BT 2014 1. Mängden A är dubbelt så sannolik som B. Hur förhåller sig P(A B) till P(B A)? 2. Två händelser A och B har sannolikheter skilda från noll. (a) A och B är

Läs mer

Extrauppgifter - Statistik

Extrauppgifter - Statistik Extrauppgifter - Statistik Uppgifter 1. Den stokastiska variabeln Y t 10 ). Bestäm c så att P ( c < Y < c) = 2. Vid tillverkning av en viss sorts färg tillsätts färgpigmentet med hjälp av en doseringsapparat,

Läs mer

Ingenjörsmetodik IT & ME 2011 Föreläsning 11

Ingenjörsmetodik IT & ME 2011 Föreläsning 11 Ingenjörsmetodik IT & ME 011 Föreläsning 11 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Läsanvisningar

Läs mer

Experimentella metoder 2014, Räkneövning 1

Experimentella metoder 2014, Räkneövning 1 Experimentella metoder 04, Räkneövning Problem : Tio mätningar av en resistans gav följande resultat: Mätning no. Resistans (Ω) Mätning no Resistans (Ω) 0.3 6 0.0 00.5 7 99.98 3 00.0 8 99.80 4 99.95 9

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

Digital IC konstruktion

Digital IC konstruktion Digital IC konstruktion Viktor Öwall Transistorn: en förstärkare Power Supply Korrekt? gate drain source En transistor kan användas på många olika sätt, t.ex. för att förstärka en elektrisk signal. Ground

Läs mer

Examinationsuppgift 2014

Examinationsuppgift 2014 Matematik och matematisk statistik 5MS031 Statistik för farmaceuter Per Arnqvist Examinationsuppgift 2014-10-09 Sid 1 (5) Examinationsuppgift 2014 Hemtenta Statistik för farmaceuter 3 hp LYCKA TILL! Sid

Läs mer

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Grunden för all analys är ordning och reda! Beskrivande statistik hjälper oss att överskådligt sammanfatta

Läs mer

Ingenjörsmetodik IT & ME 2010 Föreläsning 5

Ingenjörsmetodik IT & ME 2010 Föreläsning 5 Ingenjörsmetodik IT & ME 010 Föreläsning 5 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Frågor från

Läs mer

Studietyper, inferens och konfidensintervall

Studietyper, inferens och konfidensintervall Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Vetenskaplig metod och Statistik

Vetenskaplig metod och Statistik Vetenskaplig metod och Statistik Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Experiment NE:

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Hypotestestning och repetition

Hypotestestning och repetition Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Elektronik. MOS-transistorn. Översikt. Då och nu. MOS-teknologi. Lite historik nmosfet Arbetsområden pmosfet CMOS-inverterare NOR- och NAND-grindar

Elektronik. MOS-transistorn. Översikt. Då och nu. MOS-teknologi. Lite historik nmosfet Arbetsområden pmosfet CMOS-inverterare NOR- och NAND-grindar Översikt Pietro Andreani Institutionen för elektro- och informationsteknik unds universitet ite historik nmofet Arbetsområden pmofet CMO-inverterare NOR- och NAN-grindar MO-teknologi å och nu Metal-e-silicon

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

Ny teknik slår igenom när den är gammal

Ny teknik slår igenom när den är gammal Januari 2007 Ny teknik slår igenom när den är gammal Tekniska genombrott tar mycket längre tid än man tror. Och för att de ska få någon effekt krävs en rad följduppfinningar. Ångkraften, elektriciteten

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Grindar och transistorer

Grindar och transistorer Föreläsningsanteckningar Föreläsning 17 - Digitalteknik I boken: nns ej med Grindar och transistorer Vi ska kort beskriva lite om hur vi kan bygga upp olika typer av grindar med hjälp av transistorer.

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga urvalsmetoder

Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga urvalsmetoder Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga smetoder Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-11 Några övriga smetoder OSU-UÅ (med eller utan stratifiering) förutsätter

Läs mer

F1 Introduktion och ingenjörsrollen EDAA05 Datorer i system! Roger Henriksson!

F1 Introduktion och ingenjörsrollen EDAA05 Datorer i system! Roger Henriksson! F1 Introduktion och ingenjörsrollen EDAA05 Roger Henriksson I kursen får du en introduktion till de frågeställningar och problemområden som omfattas av D-programmet och ämnet datavetenskap och underlättar

Läs mer

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar

Läs mer

F1 Introduktion och ingenjörsrollen

F1 Introduktion och ingenjörsrollen F1 Introduktion och ingenjörsrollen EDAA05 Roger Henriksson Jonas Wisbrant I kursen får du en introduktion till de frågeställningar och problemområden som omfattas av D-programmet och ämnet datavetenskap

Läs mer

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p)

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p) Avd. Matematisk statistik TENTAMEN I SF90 OCH SF905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 4:E MARS 204 KL 4.00 9.00. Kursledare: För D och Media: Gunnar Englund, 073 32 37 45 Kursledare: För F:

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (12 uppgifter) Tentamensdatum 2012-12-19 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

Ledtrådar till utvalda uppgifter för NDAB01, vt2011, 17 januari 2011.

Ledtrådar till utvalda uppgifter för NDAB01, vt2011, 17 januari 2011. Ledtrådar till utvalda uppgifter för DAB01, vt011, 17 januari 011. 3.1cd sida 3 Summatecknet antas vara känt för er. Övningen avser mer att kolla på skrivsättet X i som förklaras i boken ungefär mitt på

Läs mer

Kalibreringsfel 0.01V 0.01V -0.02V V 0.005V 0V -0.01V 0.02V. Sant värde. Medeloperatör. Karl. Maria Linn Annika Bo Peter Thomas.

Kalibreringsfel 0.01V 0.01V -0.02V V 0.005V 0V -0.01V 0.02V. Sant värde. Medeloperatör. Karl. Maria Linn Annika Bo Peter Thomas. Mätutrustning Elektriskt brus 0mV -2mV 2mV 1mV 5mV 4mV 2mV -3mV e 9 e 2 e 8 e e 2 3 e 5 e=0 e 7 e 1 e e 4 6 e 10 Okända felkällor Matarspänning 10.2V 10.1V 9.8V 9.7V 9.9V 10V 10.1V 9.6V Sant värde Kalibreringsfel

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

Digital IC konstruktion

Digital IC konstruktion Digital IC konstruktion iktor Öwall Transistorn: en förstärkare Power Supply Transistorn: en förstärkare Power Supply Korrekt? gate drain gate drain source source En transistor kan användas på många olika

Läs mer

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Analytisk statistik. Mattias Nilsson Benfatto, PhD. Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #21 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Teknologier och hierarkier Minnestyper Vi har hittills

Läs mer

IF1611 Ingenjörsmetodik (Engineering Fundamentals)

IF1611 Ingenjörsmetodik (Engineering Fundamentals) IF1611 Ingenjörsmetodik (Engineering Fundamentals) 7.5 hp HT 2007 KursPM Kursens hemsida http://www.kth.se/student/program-kurser/kurshemsidor/ict/map/if1611/ HT07-1 Mål, Krav, Innehåll och Schemaunderlag

Läs mer

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Vad är KiselGermanium?

Vad är KiselGermanium? Vad är KiselGermanium? Kiselgermanium, eller SiGe, får nog sägas vara den nya teknologin på modet inom området integrerade kretsar för radiofrekvenser, RF-ASIC. Det kan vara på sin plats med en genomgång

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden

Läs mer

Lärare 1. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum

Lärare 1. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 1 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag

Läs mer

OBS! Vi har nya rutiner.

OBS! Vi har nya rutiner. KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-09-28 Tillåtna

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Anvisningar till rapporter i psykologi på B-nivå

Anvisningar till rapporter i psykologi på B-nivå Anvisningar till rapporter i psykologi på B-nivå En rapport i psykologi är det enklaste formatet för att rapportera en vetenskaplig undersökning inom psykologins forskningsfält. Något som kännetecknar

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p) Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och

Läs mer

Föreläsning 7 FK2002

Föreläsning 7 FK2002 Föreläsning 7 FK2002 Föreläsning 7 Binomialfördelning Poissonfördelning Att testa en hypotes Binomialfördelningen Betrakta ett experiment som består av n försök varav ν är lyckade försök. Mätningar har

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

732G01/732G40 Grundläggande statistik (7.5hp)

732G01/732G40 Grundläggande statistik (7.5hp) 732G01/732G40 Grundläggande statistik (7.5hp) 2 Grundläggande statistik, 7.5 hp Mål: Kursens mål är att den studerande ska tillägna sig en översikt över centrala begrepp och betraktelsesätt inom statistik.

Läs mer

Parade och oparade test

Parade och oparade test Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett

Läs mer

Vetenskaplig Metod och Statistik. Maja Llena Garde Fysikum, SU Vetenskapens Hus

Vetenskaplig Metod och Statistik. Maja Llena Garde Fysikum, SU Vetenskapens Hus Vetenskaplig Metod och Statistik Maja Llena Garde Fysikum, SU Vetenskapens Hus 2010 10 20 Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet?

Läs mer

2.1 Minitab-introduktion

2.1 Minitab-introduktion 2.1 Minitab-introduktion Betrakta följande mätvärden (observationer): 9.07 11.83 9.56 7.85 10.44 12.69 9.39 10.36 11.90 10.15 9.35 10.11 11.31 8.88 10.94 10.37 11.52 8.26 11.91 11.61 10.72 9.84 11.89 7.46

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

12. Kort om modern halvledarteknologi

12. Kort om modern halvledarteknologi 12. Kort om modern halvledarteknologi Kursen i halvledarfysik behandlar i detalj halvledarkomponenter. På denna kurs går vi igenom bara den allra viktigaste av dem, MOSFET-transistorn som ger grunden till

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum Laboration 6 A/D- och D/A-omvandling A/D-omvandlare Digitala Utgång V fs 3R/2 Analog Sample R R D E C O D E R P/S Skiftregister R/2 2 N-1 Komparatorer Digital elektronik Halvledare, Logiska grindar Digital

Läs mer

Erfarenheter Mina arbetserfarenheter listas som i en blogg med det senaste upptill.

Erfarenheter Mina arbetserfarenheter listas som i en blogg med det senaste upptill. Tillåt mig presentera mig. Jag heter och ser mig själv som en elektronikutvecklare efter totalt 22 år på Philips och Thermometric AB. Att omsätta idéer och möjligheter till nya lönsamma produkter är min

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

F9 Konfidensintervall

F9 Konfidensintervall 1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Bakgrund Introduktion till test Introduktion Formulera lämplig hypotes Bestäm en testvariabel Bestäm en beslutsregel Fatta ett beslut När det

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #21 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Teknologier och hierarkier Minnestyper Vi har hittills

Läs mer

Tenta i Statistisk analys, 15 december 2004

Tenta i Statistisk analys, 15 december 2004 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt

Läs mer

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A0 samt STA A3 9p 4 augusti 005, kl. 08.5-3.5 Tillåtna hjälpmedel: Ansvarig lärare: Övrigt:

Läs mer

Introduktion till programmering och Python Grundkurs i programmering med Python

Introduktion till programmering och Python Grundkurs i programmering med Python Introduktion till programmering och Python Hösten 2009 Dagens lektion Vad är programmering? Vad är en dator? Filer Att tala med datorer En första titt på Python 2 Vad är programmering? 3 VAD ÄR PROGRAMMERING?

Läs mer

Tentamentsskrivning: Matematisk statistik TMA Tentamentsskrivning i Matematisk statistik TMA321, 4.5 hp.

Tentamentsskrivning: Matematisk statistik TMA Tentamentsskrivning i Matematisk statistik TMA321, 4.5 hp. Tentamentsskrivning: Matematisk statistik TMA32 Tentamentsskrivning i Matematisk statistik TMA32, 4.5 hp. Tid: Onsdag den 2 jan, 20 kl 4:00-8:00 Examinator och jour: Erik Broman, tel. 772-354, mob. 073

Läs mer

Hur måttsätta osäkerheter?

Hur måttsätta osäkerheter? Geotekniska osäkerheter och deras hantering Hur måttsätta osäkerheter? Lars Olsson Geostatistik AB 11-04-07 Hur måttsätta osäkerheter _LO 1 Sannolikheter Vi måste kunna sätta mått på osäkerheterna för

Läs mer

Analysis of Structure, Composition and Growth of Semiconductor Nanowires by Transmission Electron Microscopy

Analysis of Structure, Composition and Growth of Semiconductor Nanowires by Transmission Electron Microscopy Analysis of Structure, Composition and Growth of Semiconductor Nanowires by Transmission Electron Microscopy Martin Ek POPULÄRVETENSKAPLIG SAMMANFATTNING 2013 Polymer & Materials Chemistry Centre for Analysis

Läs mer

Hantering av begränsat antal skrivningar på Solid State diskar

Hantering av begränsat antal skrivningar på Solid State diskar LTH - LUNDS TEKNISKA HÖGSKOLA Hantering av begränsat antal skrivningar på Solid State diskar Filip Nilsson 2015-12-07 Sammanfattning På senare år har utvecklingen för SSD (Solid State Drive) enheter kommit

Läs mer

Moment 2 Digital elektronik. Föreläsning Inbyggda system, introduktion

Moment 2 Digital elektronik. Föreläsning Inbyggda system, introduktion Moment 2 Digital elektronik Föreläsning Inbyggda system, introduktion Jan Thim 1 Inbyggda system, introduktion Innehåll: Historia Introduktion Arkitekturer Mikrokontrollerns delar 2 1 Varför lär vi oss

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

för att komma fram till resultat och slutsatser

för att komma fram till resultat och slutsatser för att komma fram till resultat och slutsatser Bearbetning & kvalitetssäkring 6:1 E. Bearbetning av materialet Analys och tolkning inleds med sortering och kodning av materialet 1) Kvalitativ hermeneutisk

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

10. Konfidensintervall vid två oberoende stickprov

10. Konfidensintervall vid två oberoende stickprov TNG006 F0-05-06 Konfidensintervall för linjärkombinationer 0. Konfidensintervall vid två oberoende stikprov Antag att X, X,..., X m är ett stikprov på N(µ, σ ) oh att Y, Y,..., Y n är ett stikprov på N(µ,

Läs mer

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt. Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Tentan består av 15 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 33 poäng för att få välgodkänt.

Tentan består av 15 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 33 poäng för att få välgodkänt. Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2010-09-23 kl. 09:00 13:00

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

Kritisk granskning av forskning

Kritisk granskning av forskning Om kursen Kritisk granskning av forskning ebba.elwin@psyk.uu.se 018-471 21 35 rum 14:366 (vån 3) Två veckors arbete, 3 hp Fördjupning i tidigare studier i forskningsmetodik Mål: kunskaper för att läsa,

Läs mer

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Installationsanvisning av proximityläsare 1103/2. Mod. 1103/2

Installationsanvisning av proximityläsare 1103/2. Mod. 1103/2 Installationsanvisning av proximityläsare 1103/2 Mod. 1103/2 EGENSKAPER: Proxiläsaren tillåter tidsreglerad öppning från 0 99 sekunder när: En användare placerar sin proxinyckel framför frontpanelen. En

Läs mer

Några vanliga fördelningar från ett GUM-perspektiv

Några vanliga fördelningar från ett GUM-perspektiv Några vanliga fördelningar från ett GUM-perspektiv I denna PM redovisas några av de vanligaste statistiska fördelningarna och deras hantering inom ramen för GUM: Guide to the Expression of Uncertainty

Läs mer