Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel"

Transkript

1 Lösningsförslag till deltentamen i IM601 Fasta tillståndets fysi Onsdagen den 5 maj, 011 Teoridel Magnetism i MnF 1. a) Vi ser från enhetscellen att den innehåller 8 1 =1 Mn-atom med spinn upp (hörnen) 8 och en Mn-atom med spinn ner (centralatomen). En ordnad strutur med lia många atomer av samma slag med spinn upp som med spinn ner är antiferromagnetis. b) Då struturen är antiferromagnetis under T N, så ommer den att vara paramagnetis ovanför T N. Eftersom den ordnade struturen av magnetisa moment under 67 K ommer att oordnas vid fasövergången, betyder detta att de magnetisa momenten hos Mn ommer att vara stoastist orienterade och helt oberoende av varandra ovanför 67 K, vilet leder till ett paramagnetist tillstånd (Mn har fortfarande ett magnetist moment!). c) Susceptibiliteten i det paramagnetisa tillståndet hos en antiferromagnet följer approximativt evationen: c = C T + q ; q ª T N fi 1 c ª T + T N C c c -1 T T T N -T N d) Att neutronerna är änsliga för magnetisa moment betyder att spridningen ommer att vara olia beroende på ifall Mn-atomerna i planen har spinn upp eller ifall de har spinn ner. Vid höga temperaturer är de magnetisa momenten helt oberoende av varandra och spridningen från Mn-atomerna ommer att avspegla deras inbördes lägen, vila ligger i en mittcentrerad tetragonal srtutur. I en sådan strutur ommer struturfatorn att ge utsläcning för samma typ av refletioner som i bcc, dvs. man ommer endast att se refletioner från de h, och l som uppfyller h++l är ett jämnt heltal. De lägsta refletionerna som sanas är (100), (001), (111) etc. Vid låga temperaturer (T<< 67 K), finns det en ordnad magnetis strutur. Refletionen (100) försvann på grund av att vi hade evivalenta atomer i de plan som går genom mittpositionerna i enhetscellen som i de plan som går genom hörnen av enhetscellen. I den ordnade magnetisa struturen är dessa båda atompositioner inte längre evivalenta, eftersom alla mittatomer har spinn ner och alla hörnatomer har spinn upp och därför har de olia spridningsfator för neutroner, vilet gör att man ommer att se (100)-refletionen i ett diffratogram då temperaturen är mindre än 67 K.

2 Kisel. a) Donatorer avger eletroner till ledningsbandet och har således en eletron mer än Si i sitt yttersta sal. Lämpliga atomslag är t.ex. P (fosfor) eller As (arseni). b) För att unna tillvera en halvledarlaser rävs ett diret bandgap och isel har indiret bandgap. En laser bygger dels på principen om populationsinvers, dvs. att det finns fler eletroner i ett högre energitillstånd än i ett lägre, och dels på principen om stimulerad emission, dvs. att en foton som rör sig genom materialet an stimulera utsändandet av ytterligare en foton med exat samma fas och energi. I en halvledare med diret bandgap an en foton emitteras diret vid en övergång mellan ledningsbandet och valensbandet (och därigenom ge stimulerad emission), medan i en halvledare med indiret bandgap rävs det medveran av en fonon för att en sådan övergång sa unna se. Därför ommer tillgången på fononer med lämplig vågvetor raftigt att reducera effeten av den stimulerade emissionen i en halvledare med indiret bandgap och omöjliggöra laserveran. c) Vid T = 0 K finns inga termist exciterade eletroner i isel och valensbandet är således fyllt. Fyllda band ger inga paramagnetisa bidrag. Dessutom finns det inga ledningseletroner, så Paulis paramagnetism ger inget bidrag. Doc, eftersom alla material har ett diamagnetist bidrag, är det enbart detta bidrag som återstår i isel vid T = 0 K. Blochs teorem 3. a) Eftersom vi har att potentialen U( r ) = U( r + T ) är gitterperiodis, så måste det gälla att =  U e U r Eftersom i r i r { e } =  U e = U r + T i r +T utgör en mängd av inbördes ortogonala funtioner, finns det inga linjärombinationer mellan funtionerna med olia och därför måste vi räva att e i T =1 för alla. Denna relation uppfylls om och endast om = G, eftersom relationen definierar det reciproa gittret med gittervetorer G. Detta visar påståendet. b) Insättning i Schrödingerevationen ger att: h m C ( ) e i r i ( +G ) r  + ÂÂC ( )U G e -  EC ( ) e i r = 0 G Om vi nu byter betecningar så att Æ i den första och den sista termen, samt Æ - G i den mellersta termen, så får vi att: e i r È h Â Í m C ( ) + ÂU G C( - G ) - EC( ) = 0 Î Í G i r Återigen utnyttjar vi att { e } utgör en mängd av inbördes ortogonala funtioner, varför det måste gälla att ( l - E)C + U G C( - G )  = 0 där vi har satt l = h G m.

3 Rimliga värden 4. a) Energigapet hos en halvledare: 0,5 ev b) Energigapet hos en supraledare: mev c) Mättnadsmagnetiseringen hos en ferromagnet: 0,5-3,5 T d) Penetrationsdjupet hos en supraledare: 0,1-10 mm Fermiytan hos en bcc-metall Beräningsdel 1. Det reciproa gittret till en bcc-strutur har fcc-strutur. De ortaste gittervetorerna ugörs av de 1 G (110)-vetorerna i reciproa gittret och BZ-gränsen ligger på halva avståndet mellan origo och dessa gittervetorer. Om a är gitterparametern i den ubisa enhetscellen, så = p ( x a ˆ + y ˆ ) (Kittel sid. 36). Detta ger minsta -värdet på BZ-gränsen bestäms av är G 110 BZ = 1 G ( 100 ) = p a Ê I frieletronmodellen har vi att Fermivågvetor an tecnas F = 3p N ˆ Á. Sätts dessa Ë V evationer samman med N V = Z ( atomer i enhetscellen hos bcc och Z fria eletroner per 3 a atom) får vi slutligen att: p a = Ê 3p ˆ Á Z Ë a ( fi Z = p 3 ) 6p = p 3 =1, Effetiv massa i (100)-ritningen hos Ge. Med den givna evationen och begränsningen att vi enbart sa titta i (100)-ritningen där y = z = 0, an evationen srivas om som: e( ) = h Ê m A ± B 4 ˆ Á = h Ë m ( A ± B ) Den effetiva massan definieras av evationen e( ) = h x m ( A ± B ) fi 1 vilet med insatta värden ger m* = m * = 1 h e x 1 m * = 1 h e = A ± B m fi m* = m A ± B, varför vi får att: m -13,38 + 8,48 = -0,04m respetive m* = m -13,38-8,48 = -0,046m

4 Paramagnetism i TmAgSn 3. a) Av de metaller som ingår i den intermetallisa föreningen gäller följande: Tm: har oparade inre f-eletroner, vila ger ett start magnetist bidrag Ag: har ett fullt sal av d-eletroner och avger endast sin 5s-eletron till eletrongasen vilet totalt sett ger ett litet magnetist bidrag Sn: avger sina oparade 5p-eletroner till eletrongasen, vilet ger ett litet magnetist bidrag Slutsatsen är att Tm står för det dominerande magnetisa bidraget i TmAgSn. b) Tm avger 3 eletroner till eletrongasen och har då den atomära onfigurationen 4f 1 5s p 6. Påfyllnad med 1 eletroner i enlighet med Hunds regler (maximera m s först och maximera m L sedan ger följande diagram: m L m S +1/ -1/ Totalt spinn respetive totalt banimpulsmoment för Tm blir således: S = Â m S = =1; L = Â m L = = 5 För mer än halvfullt sal gäller vidare enligt Hunds regler att: J = L + S = 6 Landé-fatorn för Tm an nu beränas g =1+ J J +1 + S( S +1) - L( L +1) J( J +1) fi g = =1,167 vilet medför att effetiva antalet Bohrmagnetoner är p = g J( J +1) fi p =1, = 7,56 c) Enligt Curies lag gäller att den ära susceptibiliteten ( N = N A ) hos ett paramagnetist flernivåsystem an tecnas (i CGS). c = C T ; C = N A p m B 3 B fi p = 3 B C N A m B È Í SI : p = Î Í 3 B C N A m 0 m B Curieonstanten beränas utgående från lutningen i grafen: 1 c = T C fi 1 C = emu K = 0,15 È emu K SI : 0,15 Í Î 4p 10-6 m 3 K =11937 m 3 K Mätningen ger således att: p = 3 1, = 7,30 0,15 6, ,

5 I SI-enheter: p = 3 1, = 7, , p , d) Ur figuren får man diret att den ära susceptibiliteten uttryct i CGS-enheter ges av: 1 = 43 c emu fi c = 1 emu 43 Enligt bildtexten betyder detta att den ära susceptibiliteten uttryc i m 3 / blir: c(si) = 4p p 10-6 c( CGS) = 43 m 3 För att räna om den ära susceptibiteten till volymsusceptibitet sa vi dividera med volymen. Eftersom vi vet att struturen är hexagonal, så är volymen av enhetscellen V c = 3 a c Eftersom varje enhetscell innehåller 3 formelenheter av materialet, så blir volymen hos en av materialet: V m = N A V c 3 = N A a c 3 fi fi V m = 6, , Slutligen får vi att: 443, p 10-6 c = = 7, ,07 10 m 3 = 4, m 3

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ.

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ. Lösningsförslag till deltentamen i IM60 Fasta tillståndets fysik Paramagnetism i ett tvånivåsystem Onsdagen den 30 maj, 0 Teoridel. a) För m S = - är m S z = -m B S z = +m B och energin blir U = -m B B

Läs mer

Atomer, ledare och halvledare. Kapitel 40-41

Atomer, ledare och halvledare. Kapitel 40-41 Atomer, ledare och halvledare Kapitel 40-41 Centrala begrepp Kvantiserade energinivåer i atomer Elektronspinn och finstruktur Elektronen i en atom både banimpulsmoment, som karakteriseras av kvanttalet

Läs mer

Lösningsförslag Dugga i Mekanik, grundkurs för F, del 2 September 2014

Lösningsförslag Dugga i Mekanik, grundkurs för F, del 2 September 2014 Lösningsförslag Dugga i Meani, grundurs för F, del 2 Septemer 2014 Till varje uppgift finns det ett lösningsförslag som exempel på hur uppgiften an lösas. Lösningsförslaget visar även hur lösningen ungefärligt

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning det finns ett tal k så att A=kB

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning det finns ett tal k så att A=kB MATEMATISK MODELLERING Att ställa upp en differentialevation som besriver ett förlopp Följande uttryc används ofta i olia problem som leder till differentialevationer: Text A är proportionell mot B (A

Läs mer

Lösningar till problemtentamen

Lösningar till problemtentamen KTH Meani 2006 05 2 Meani b och I, 5C03-30, för I och BD, 2006 05 2, l 08.00-2.00 Lösningar till problemtentamen Uppgift : En platta i form av en lisidig triangel BC med sidolängderna a och massan m står

Läs mer

Lösningar till Matematisk analys

Lösningar till Matematisk analys Lösningar till Matematis analys 0820. Stationära punter. f (x, y) = 8x(x 2 y), f 2(x, y) = 4(y x 2 )). Vi ar alltså att f (x, y) = f 2(x, y) = 0 { x(x 2 y) = 0 y x 2 = 0. Första evationen ovan är uppfylld

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt

Läs mer

Hur Keplers lagar för planetrörelser följer av Newtons allmänna fysikaliska lagar.

Hur Keplers lagar för planetrörelser följer av Newtons allmänna fysikaliska lagar. Hur Keplers lagar för planetrörelser följer av Newtons allmänna fysialisa lagar. 1. Newtons gravitationslag och Newtons andra lag. Vi placerar ett rätvinligt oordinatsystem i solsystemet med solens medelpunt

Läs mer

6.4 Svängningsrörelse Ledningar

6.4 Svängningsrörelse Ledningar 6.4 Svängningsrörelse Ledningar 6.166 b) Krafterna i de båda fjädrarna är lia stora och lia med raften på roppen (inses genom att man frilägger roppen och de två fjädrarna var för sig). Kroppens förflyttning

Läs mer

Uppgifter övning I8: Uppgift nr 1 Sealine AB

Uppgifter övning I8: Uppgift nr 1 Sealine AB Uppgifter övning I8: Uppgift nr 1 Sealine AB Rederiet Sealine AB har undersöt specialfartygsmarnaden under senaste året för 700 000 r och funnit en lämplig fartygsstorle, som det an tecna ontrat på. Vid

Läs mer

L HOSPITALS REGEL OCH MACLAURINSERIER.

L HOSPITALS REGEL OCH MACLAURINSERIER. L HOSPITALS REGEL OCH MACLAURINSERIER Läs avsnitten 73 och 8-82 Lös övningarna 78-75, 82, 84a,b, 85a,c, 89, 80 samt 8 Avsnitt 73 L Hospitals regel an ibland vara till en viss nytta, men de flesta gränsvärden

Läs mer

HALVLEDARE. Inledning

HALVLEDARE. Inledning HALVLEDARE Inledning Halvledare har varit den i särklass viktigaste materialkategorin för den högteknologiska utvecklingen under 1900-talet. Man kan också säga att inget annat exempel kan mer tydligt visa

Läs mer

a k . Serien, som formellt är följden av delsummor

a k . Serien, som formellt är följden av delsummor Kapitel S Mer om serier I dettapitel sall vi fortsätta att studera serier, ett begrepp som introducerades i Kapitel 9.5 i boen, framförallt sa vi bevisa ett antal onvergensriterier. Mycet ommer att vara

Läs mer

Tentamen i Mekanik SG1130, baskurs. Problemtentamen

Tentamen i Mekanik SG1130, baskurs. Problemtentamen 013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på

Läs mer

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och

Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136

Läs mer

RSA-kryptering. Torbjörn Tambour

RSA-kryptering. Torbjörn Tambour RSA-rytering Torbjörn Tambour RSA-metoden för rytering har den seciella och betydelsefulla egensaen att metoden för rytering är offentlig, medan metoden för derytering är hemlig. Detta an om man funderar

Läs mer

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet. Avsikten med laborationen är att studera de elektriska ledningsmekanismerna hos i första hand halvledarmaterial. Från mätningar av konduktivitetens temperaturberoende samt Hall-effekten kan en hel del

Läs mer

N atom m tot. r = Z m atom

N atom m tot. r = Z m atom Räkneövning fri elektroner och reciprok gittret 1. Silver, Ag, hr fcc-struktur, tomnummer 47, tomvikten 17,87 u, yttre elektronkonfigurtionen 4d 1 5s 1 och densiteten 149 kg/m 3. ) Beräkn tätheten n v

Läs mer

IM2601 Fasta tillståndets fysik

IM2601 Fasta tillståndets fysik IM2601 Fasta tillståndets fysik Introduktion Kursen i ett större perspektiv Klassificering av fasta material Klassificering av kristallina material - atomstruktur 1 Forskning inom fysik idag - en översikt

Läs mer

Digital signalbehandling Kamfilter och frekvenssamplande filter

Digital signalbehandling Kamfilter och frekvenssamplande filter Institutionen för eletroteni 999--9 Kamfilter och frevenssamplande filter I frevenssamplande filter utgår vi från en filterstrutur som har ett stort antal nollställen i frevensgången och modellerar filtrets

Läs mer

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Torsdagen den 5:e juni 2008, kl. 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag:

Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans Ohms lag: 530117 Materialfysik Ht 2010 8. Materials elektriska egenskaper 8.1 Bandstruktur 8.1.1. Allmänt Med ett materials elektriska egenskaper förstår man helt allmänt dess ledningsförmåga, konduktans, och resistans

Läs mer

Räkneövning 1 atomstruktur

Räkneövning 1 atomstruktur Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren

Läs mer

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00 FK2003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du

Läs mer

Kvantbrunnar Kvantiserade energier och tillstånd

Kvantbrunnar Kvantiserade energier och tillstånd Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar:

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar: Bandmodellen Som vi såg i föreläsningen om atommodeller lägger sig elektronerna runt en atom i ett gasformigt ämne i väldefinierade energinivåer. Dessa kan vara svåra att beräkna, men är i allmänhet experimentellt

Läs mer

Lecture 6 Atomer och Material

Lecture 6 Atomer och Material Lecture 6 Atomer och Material Bandstruktur Ledare Isolatorer Halvledare Påminnelse Elektronerna ordnas i skal (n) och subskal (l) En elektron specificeras med 4 kvanttalen n,lm l,m s Två elektroner kan

Läs mer

Om användning av potensserier på kombinatorik och rekursionsekvationer

Om användning av potensserier på kombinatorik och rekursionsekvationer Om användning av potensserier på ombinatori och reursionsevationer Anders Källén MatematiCentrum LTH andersallen@gmailcom Sammanfattning Vid analys av både ombinatorisa problem och för att lösa reursionsevationer

Läs mer

Experiment Swedish (Sweden) Studsande kulor - En modell för fasövergångar och instabiliteter

Experiment Swedish (Sweden) Studsande kulor - En modell för fasövergångar och instabiliteter Q2-1 Studsande kulor - En modell för fasövergångar och instabiliteter (10 poäng) Läs de allmänna anvisningarna i det separata kuvertet innan du börjar. Inledning Många ämnen, exempelvis vatten, kan förekomma

Läs mer

Exciterat tillstånd hos β-naftol.

Exciterat tillstånd hos β-naftol. Exciterat tillstånd hos β-naftol. Laboration på ursen emis fysi Exciterat tillstånd hos β-naftol. nledning den här laborationen sa vi med hjälp av absorptions- och fluorescensmätningar studera protolysen

Läs mer

9. Materiens magnetiska egenskaper. 9.0 Grunder: upprepning av elektromagnetism

9. Materiens magnetiska egenskaper. 9.0 Grunder: upprepning av elektromagnetism 530117 Materialfysik vt 2010 9. Materiens magnetiska egenskaper [Callister, Ashcroft-Mermin, Kittel, etc. Se också anteckningarna för Fasta Tillståndets fysik kapitel 14-15] 9.0 Grunder: upprepning av

Läs mer

Inlämningsuppgifter i Funktionsteori, vt 2016

Inlämningsuppgifter i Funktionsteori, vt 2016 Inlämningsuppgifter i Funtionsteori, vt 2016 För att man sa bli godänd på ursen rävs att såväl tentamen som inlämningsuppgifter och laborationer är godända. Inlämningsuppgifterna är alltså obligatorisa.

Läs mer

3.2.1 Grundämnes-metallers struktur Materialfysik vt CuAg nanostructur ed alloy. 3. Materials struktur 3.2 Metallers struktur

3.2.1 Grundämnes-metallers struktur Materialfysik vt CuAg nanostructur ed alloy. 3. Materials struktur 3.2 Metallers struktur 3.2.1 Grundämnes-metallers struktur 530117 Materialfysik vt 2010 Rena metall-grundämnen är alltid kristallina i fast form Ga är möjligen ett undantag 3. Materials struktur 3.2 Metallers struktur Typiskt

Läs mer

3.2.1 Grundämnes-metallers struktur

3.2.1 Grundämnes-metallers struktur 530117 Materialfysik vt 2010 3. Materials struktur 3.2 Metallers struktur 3.2.1 Grundämnes-metallers struktur Rena metall-grundämnen är alltid kristallina i fast form Ga är möjligen ett undantag Typiskt

Läs mer

Diagnostiskt test 1 tid: 2 timmar

Diagnostiskt test 1 tid: 2 timmar Diagnostist test tid: timmar Detta är ditt första diagnostisa test i matemati å den är reetitionsursen. Ge dig själv oäng för varje rätt svar. (ge inga ½ oäng). edömning: - oäng Du ar tillräcliga förunsaer

Läs mer

Identification Label. Student ID: Student Name: Elevenkät Fysik. Skolverket Bo Palaszewski, Projektledare 106 20 Stockholm

Identification Label. Student ID: Student Name: Elevenkät Fysik. Skolverket Bo Palaszewski, Projektledare 106 20 Stockholm Identification Label Student ID: h Student Name: Elevenät Fysi Solveret Bo Palaszewsi, Proetledare 106 20 Stocholm International Association for the Evaluation of Educational Achievement Copyright IEA,

Läs mer

Introduktion till halvledarteknik

Introduktion till halvledarteknik Introduktion till halvledarteknik Innehåll 4 Excitation av halvledare Optisk absorption och excitation Luminiscens Rekombination Diffusion av laddningsbärare Optisk absorption och excitation E k hv>e g

Läs mer

Materialfysik vt Materials struktur 3.2 Metallers struktur

Materialfysik vt Materials struktur 3.2 Metallers struktur Materialfysik vt 2014 3. Materials struktur 3.2 Metallers struktur Nota bene Transparanger som omges med streckade parenteser innehåller data eller specifika strukturer som behandlas inte på föreläsningen,

Läs mer

SF2715 Tillämpad kombinatorik Kompletterande material och övningsuppgifter Del I

SF2715 Tillämpad kombinatorik Kompletterande material och övningsuppgifter Del I SF2715 Tillämpad ombinatori Kompletterande material och övningsuppgifter Del I Jaob Jonsson 2 augusti 2009 Detta häfte innehåller ompletterande material till Del I av ursen SF2715 Tillämpad ombinatori,

Läs mer

Riktlinjer för rapportering av räntestatistikblankett MIR

Riktlinjer för rapportering av räntestatistikblankett MIR (5) Ritlinjer för rapportering av räntestatistiblanett MIR (200-09-30) 2 2(5) Innehållsförtecning sida Posternas innehåll... 3. Referensperiod... 3.2 Löptidsfördelning av utlåning... 4.3 Definition av

Läs mer

4.5 LOKALBUSSTERMINAL PÅ LAHOLMSVÄGEN, ALT B1, B2 OCH B3

4.5 LOKALBUSSTERMINAL PÅ LAHOLMSVÄGEN, ALT B1, B2 OCH B3 an Kungsgatan HALMSTADS 4.5 LOKALTERMINAL Å LAHOLMSVÄGEN, ALT B1, B2 OCH B3 Sysonhamnsgatan 30 05 65 +5 Lof Samtliga dessa förslag bygger på att man behåller befintlig järnvägsbro över. Docningsterminalen

Läs mer

BANDGAP 2009-11-17. 1. Inledning

BANDGAP 2009-11-17. 1. Inledning 1 BANDGAP 9-11-17 1. nledning denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive

Läs mer

x(t) =A cos(!t) sin(!t)

x(t) =A cos(!t) sin(!t) Lösningsförslag. Rörelseevationen för roen ger som vanligt ẍ +! =,! = som tillsamman med begynnelsevilloren () = A, ẋ() = ger a) Så varför mavärdet av hastighetens belo är!a. q m A (t) =A cos(!t) ẋ(t)

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Materiens Struktur Räkneövning 3 Lösningar 1. Studera och begrunda den teoretiska förklaringen till supralednigen så, att du kan föra en diskussion om denna på övningen. Skriv även ner huvudpunkterna som

Läs mer

Tentamen i FUF050 Subatomär Fysik, F3

Tentamen i FUF050 Subatomär Fysik, F3 Tentamen i FUF050 Subatomär Fysik, F3 Tid: 2012-08-30 em Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60

Läs mer

betecknas = ( ) Symmetriska egenskaper hos derivator av andra ordningen. (Schwarzs sats)

betecknas = ( ) Symmetriska egenskaper hos derivator av andra ordningen. (Schwarzs sats) PARTIELLA DERIVATOR Partiella derivator deinieras enom ränsvärden Deinition Låt vara en reellvärd untion deinierad på en öppen mänd n n Ω R Den partiella derivatan av i punten Aa a n Ω med avseende på

Läs mer

5 Klämkraft och monteringsmoment

5 Klämkraft och monteringsmoment 5 Klämraft och monteringsmoment 5 Klämraft och monteringsmoment Målsättningen med ett sruvförband är att sapa en lämraft mellan de sammanfogade delarna. Sruvförbandets målvärde är således dess lämraft.

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

Introduktionsföreläsning i FTF Kristallstruktur, elekronstruktur+excitationer, egenskaper (optiska, magnetiska )

Introduktionsföreläsning i FTF Kristallstruktur, elekronstruktur+excitationer, egenskaper (optiska, magnetiska ) Introduktionsföreläsning i FTF 2008 02 06 Kursen i FTF inehåller 3st områden Kristallstruktur, elekronstruktur+excitationer, egenskaper (optiska, magnetiska ) Uppgifter: 1. Isolatorer 2. Fononer 3. Metaller

Läs mer

Föreläsning 3 Atomära grunder

Föreläsning 3 Atomära grunder Föreläsning 3 Atomära grunder (huvudkvantal n, bankvantal l, spinnkvantal s, magnetiska kvantal m l och m s ) i) Magnetiskt moment för fri atom med ofyllt elektronskal bestäms av totala impulsmomentet

Läs mer

Topologiska material. Kvantmekaniska effekter med stora konsekvenser. Annica Black-Schaffer.

Topologiska material. Kvantmekaniska effekter med stora konsekvenser. Annica Black-Schaffer. Topologiska material Kvantmekaniska effekter med stora konsekvenser Annica Black-Schaffer annica.black-schaffer@physics.uu.se Lärardag i fysik, Kungl. Vetenskapsakademien 29 oktober 2014 Materiefysik Material

Läs mer

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090

Tentamen i Komponentfysik ESS030, ETI240/0601 och FFF090 011-01-10 08 00-13 00 Tentamen i Komponentfysik ESS030, ETI40/0601 och FFF090 Hjälpmedel: TEFYMA, ordlista, beteckningslista, formelsamlingar och räknare. Max 5p, för godkänt krävs 10p. Om inget annat

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,

Läs mer

Matematik 5 Kap 1 Diskret matematik I

Matematik 5 Kap 1 Diskret matematik I Matemati 5 Kap 1 Disret matemati I Inledning Konretisering av ämnesplan (län) http://www.ioprog.se/public_html/ämnesplan_matemati/strutur_äm nesplan_matemati/strutur_ämnesplan_matemati.html Inledande ativitet

Läs mer

LABORATION ENELEKTRONSPEKTRA

LABORATION ENELEKTRONSPEKTRA LABORATION ENELEKTRONSPEKTRA Syfte och mål Uppgiften i denna laboration är att studera atomspektra från väte och natrium i det synliga våglängdsområdet och att med hjälp av uppmätta våglängder från spektrallinjerna

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,

Läs mer

Instruktioner för rapportering av räntestatistikblankett MIR

Instruktioner för rapportering av räntestatistikblankett MIR 1 1(13) Instrutioner för rapportering av räntestatistiblanett MIR NOVEMBER 2014 Rapporteringen av räntestatisti för monetära finansinstitut (MFI) görs i den så allade MIR-blanetten. I RBFS 2014:2 ges generella

Läs mer

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även

Läs mer

Föreläsning 2 Modeller av atomkärnan

Föreläsning 2 Modeller av atomkärnan Föreläsning 2 Modeller av atomkärnan Atomkärnan MP 11-1 Protonens och neutronens egenskaper Atomkärnors storlek och form MP 11-2, 4-2 Kärnmodeller 11-6 Vad gör denna ovanlig? Se även http://www.lbl.gov/abc

Läs mer

Snabba accelerationers inverkan på gods under transport

Snabba accelerationers inverkan på gods under transport Snabba accelerationers inveran på gods under transport November 2001 Prof. Christian Högfors CENTRE FOR BIOMECHANICS P. O. Box 36046 SE-40013, Göteborg, Sweden 0 Eje Flodström, Anders Sjöbris MariTerm

Läs mer

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana

Läs mer

Figure 1: Ríontgenspektrum frçan katodstrçaleríor. de elektroner som infaller mot ríontgenríorets anod íandrades till XY kv, díar XY íar

Figure 1: Ríontgenspektrum frçan katodstrçaleríor. de elektroner som infaller mot ríontgenríorets anod íandrades till XY kv, díar XY íar CHALMERS TEKNISKA H íogskola Avdelningarna fíor tillíampad, teoretisk och experimentell fysik samt MINA Bengt Lundqvist ètfybil@fy.chalmers.seè 2003-09-01 KVANTFYSIK fíor F3 och KF3 2003 Inlíamningsuppgifter

Läs mer

15. Ferromagnetism. [HH 8, Kittel 15] Fasta tillståndets fysik, Kai Nordlund 2015 1

15. Ferromagnetism. [HH 8, Kittel 15] Fasta tillståndets fysik, Kai Nordlund 2015 1 15. Ferromagnetism [HH 8, Kittel 15] Fasta tillståndets fysik, Kai Nordlund 2015 1 15.1. Allmänt Med ferromagnetiska material menas sådana som har spontant ett makroskopiskt magnetiskt moment, även då

Läs mer

Informationsteknologi

Informationsteknologi Bengt Carlsson Informationstenologi En översit av Kap 7 Systemteni Informationstenologi Tillbaablic, återoppling Reglering av vätsenivån i en tan Nivågivare Reglerventil Inflöde TANK Varierande utflöde

Läs mer

David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.

David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Jämviktsvillkor Om vi har ett stort system som består av ett litet system i kontakt med en värmereservoar. Storheter för det lilla systemet

Läs mer

file:///c:/users/engström/downloads/resultat.html

file:///c:/users/engström/downloads/resultat.html M 6 0 M F Ö R S Ö K 1 2 0 1 2-0 1-2 1 1 J a n W o c a l e w s k i 9 3 H u d d i n g e A I S 7. 0 9 A F 2 O s c a r J o h a n s s o n 9 2 S p å r v ä g e n s F K 7. 2 1 A F 3 V i c t o r K å r e l i d 8

Läs mer

Arbetsutvecklingsrapport

Arbetsutvecklingsrapport Arbetsutveclingsrapport Vad tycer bruarna? Den andra länsgemensamma bruarundersöningen för personer med insatsen bostad med särsild service enligt LSS Författare: Eva Rönnbäc Rapport: nr 2011:7 ISSN 1653-2414

Läs mer

Välkomna till kursen i elektroniska material! Martin Leijnse

Välkomna till kursen i elektroniska material! Martin Leijnse Välkomna till kursen i elektroniska material! Martin Leijnse Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare,

Läs mer

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Fredagen den 29:e maj 2009, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt

Läs mer

Laboration i röntgendiffraktion och laserdiffraktion för E

Laboration i röntgendiffraktion och laserdiffraktion för E Laboration i röntgendiffraktion och laserdiffraktion för E Mats Göthelid Plats: Forum Kista. Samma som för laborationerna i Fysik1. Hiss A våning 8 Uppgifter: Laborationen består av två delar: 1) strukturbestämning

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Vågrörelselära & Kvantfysik, FK januari 2012

Vågrörelselära & Kvantfysik, FK januari 2012 Räkneövning 10 Vågrörelselära & Kvantfysik, FK2002 9 januari 20 Problem 42.1 Vad är det orbitala rörelsemängdsmomentet, L, för en elektron i a) 3p-tillståndet b) 4f-tillståndet? Det orbitala rörelsemängdsmomentet

Läs mer

0. Lite om ämnet och kursen

0. Lite om ämnet och kursen 0. Lite om ämnet och kursen Fasta tillståndets fysik (FTF) Vad är det? FTF förvaltar och utvecklar det centrala kunskapsstoffet rörande fasta ämnens olika egenskaper: - Elektriska - Optiska - Termiska

Läs mer

Tentamen i fysik B2 för tekniskt basår/termin VT 2014

Tentamen i fysik B2 för tekniskt basår/termin VT 2014 Tentamen i fysik B för tekniskt basår/termin VT 04 04-0-4 En sinusformad växelspänning u har amplituden,5 V. Det tar 50 μs från det att u har värdet 0,0 V till dess att u har antagit värdet,5 V. Vilken

Läs mer

HALVLEDARES ELEKTRISKA KONDUKTIVITET

HALVLEDARES ELEKTRISKA KONDUKTIVITET HALVLEDARES ELEKTRISKA KONDUKTIVITET 1 Inledning I fasta ämnen ockuperar ämnens elektroner s.k. energiband. För goda elektriska ledare är det översta ockuperade energibandet endast delvis fyllt vilket

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller $ KTH Matematik 1 5B1134 Matematik och modeller 2 oktober 26 5 Femte veckan Integraler med tillämpningar Veckans begrepp Primitiva funktioner, integraler, area Trapetsmetoden för numerisk integration Partiell

Läs mer

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även

Läs mer

Institutionen för matematiska vetenskaper Chalmers tekniska högskola. Skissartade lösningsförslag till tentamen TMA976.

Institutionen för matematiska vetenskaper Chalmers tekniska högskola. Skissartade lösningsförslag till tentamen TMA976. Institutionen för matematisa vetensaper Chalmers tenisa högsola Sissartade lösningsförslag till tentamen TMA976 Datum: 2015 01 14 1. Lös differentialevationen y y = e x (x + e x ) y(0) = 1 y (0) = 0 Differentialevationen

Läs mer

Kap 6 Partikelns kinetik

Kap 6 Partikelns kinetik 6.1 Histori, grundläggande lagar och begrepp 6.13 Använd resultaten i 6.1 a) och c). 6.6 Uttryc noralaccelerationen för en planet i dess banradie och oloppstid. Kraften är uttryct i banradien = avståndet

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn O0039K/K0023K Fasta tillståndets kemi och geologi Datum 12 05 29 Material Tentamen Kursexaminator Betygsgränser 3: 50%, 4; 70%, 5; 90% Tentamenspoäng

Läs mer

lindab ventilation Lindab Comfort Samlade k-faktorer till alla Lindabs donlådor och mätdon

lindab ventilation Lindab Comfort Samlade k-faktorer till alla Lindabs donlådor och mätdon lindab ventilation Lindab Comfort Samlade -fatorer till alla Lindabs donlådor och mätdon q = p m Mätning och injustering av ventilation Formler för omvandling mellan mättryc och luftflöde q = p m = ( q

Läs mer

ÖVNINGSEXEMPEL FASTA TILLSTÅNDETS FYSIK F3, 2005 STRUKTUR

ÖVNINGSEXEMPEL FASTA TILLSTÅNDETS FYSIK F3, 2005 STRUKTUR 1 2 STRUKTUR S1. Atomerna i ett grundämne är ordnade i ett gitter med en atom per gitterpunkt. Betrakta atomerna som hårda sfärer i kontakt med närmsta grannar. a) Visa att packningstätheten, dvs atom

Läs mer

4. Optimal styrning. 4. Optimal styrning. Vad är optimal styrning?

4. Optimal styrning. 4. Optimal styrning. Vad är optimal styrning? reglerteni Reglerteni II / KEH. Optimal styrning. Optimal styrning Vad är optimal styrning? I allmänna termer an reglertenisa problem formleras på följande sätt: Välj styrsignaler så att systemet beter

Läs mer

Driftskostnader -150 tkr

Driftskostnader -150 tkr Uppgift övning I4: Uppgift nr 1 Bima AB Bima AB tär öppna en biltvättanläggning och har därför öpt in en anläggning som är installerad och färdig att tas i drift vid årssiftet. Följande gäller för biltvättanläggningens

Läs mer

Ett M/M/1 betjäningssystem har följande egenskaper: 1. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde 1 μ

Ett M/M/1 betjäningssystem har följande egenskaper: 1. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde 1 μ M/M/ ösystem M/M/ ösystem Ett M/M/ betjäningssystem har följande egensaper:. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde x =.. Kunder anommer enligt Poissonprocess

Läs mer

Vad är KiselGermanium?

Vad är KiselGermanium? Vad är KiselGermanium? Kiselgermanium, eller SiGe, får nog sägas vara den nya teknologin på modet inom området integrerade kretsar för radiofrekvenser, RF-ASIC. Det kan vara på sin plats med en genomgång

Läs mer

Elektronik 2015 ESS010

Elektronik 2015 ESS010 Elektronik 2015 ESS010 Föreläsning 16 Halvledare PN-diod: likriktare Information inför tentamen Repetition 2015-10-21 Föreläsning 16, Elektronik 2015 1 USA Chicago Notre Dame New Orleans Tunneltransistorer

Läs mer

3.7 Energiprincipen i elfältet

3.7 Energiprincipen i elfältet 3.7 Energiprincipen i elfältet En laddning som flyttas från en punkt med lägre potential till en punkt med högre potential får även större potentialenergi. Formel (14) gav oss sambandet mellan ändring

Läs mer

Vad är elektricitet?

Vad är elektricitet? Vad är elektricitet? Vad är elektricitet? Grundämnenas elektriska egenskaper avgörs av antalet elektroner i det yttersta skalet - valenselektronerna! Skol-modellen av en Kiselatom. Kisel med atomnumret

Läs mer

12 Elektromagnetisk strålning

12 Elektromagnetisk strålning LÖSNINGSFÖRSLAG Fysik: Fysik oc Kapitel lektromagnetisk strålning Värmestrålning. ffekt anger energi omvandlad per tidsenet, t.ex. den energi ett föremål emitterar per sekund. P t ffekt kan uttryckas i

Läs mer

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

10. MEKANISKA SVÄNGNINGAR

10. MEKANISKA SVÄNGNINGAR 10. MEKANISKA SVÄNGNINGAR 10.1 Den enla harmonisa oscillatorn. Ett föremål med massan m, som hängs upp i en lätt fjäder, får svänga ring sitt jämvitsläge. Under svängningen påveras föremålet av en raft

Läs mer

Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge.

Mätning av Halleffekten och elektriska ledningsförmågan som funktion av temperaturen hos halvledarna InSb / Ge. Laborationsinstruktion laboration Halvledarfysik UPPSALA UNVERSTET delkurs Fasta tillståndets fysik 1 lokal 4319 innehåll delkurskod 1TG100 labkod HF UPPGFTER: Mätning av Halleffekten och elektriska ledningsförmågan

Läs mer

Tentamen i mekanik TFYA kl

Tentamen i mekanik TFYA kl TEKISKA ÖGSKOA I IKÖPIG Institutionen för ysi, Kei och Biologi Galia Pozina Tentaen i eani TYA6 -- l. 4-9 Tillåtna jälpedel: Physics andboo eller Tefya utan egna antecningar, avprograerad ränedosa enligt

Läs mer

Biomekanik, 5 poäng Kinetik

Biomekanik, 5 poäng Kinetik Teori: F = ma Dessutom gäller, som i statien, Newtons 3: lag! Newtons lagar 1. Tröghetslagen: En ropp utan yttre raftpåveran förblir i sitt tillstånd av vila eller liformig, rätlinjig rörelse.. Accelerationslagen:

Läs mer

BANDGAP 2013-02-06. 1. Inledning

BANDGAP 2013-02-06. 1. Inledning 1 BANDGAP 13--6 1. Inledning I denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 3

TILLÄMPAD ATOMFYSIK Övningstenta 3 TILLÄMPAD ATOMFYSIK Övningstenta 3 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

Centrala gränsvärdessatsen (CGS). Approximationer

Centrala gränsvärdessatsen (CGS). Approximationer TNG006 F7 25-04-2016 Centrala gränsvärdessatsen (CGS. Approximationer 7.1. Centrala gränsvärdessatsen Vi formulerade i Sats 6.10 i FÖ6 en vitig egensap hos normalfördelningen som säger att en linjär ombination

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Linko pings Universitet Institutionen fo r fysik, kemi och biologi Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2015 14:00

Läs mer