Lena Alfredsson Kajsa Bråting Patrik Erixon Hans Heikne. Matematik. Kurs 5 Blå lärobok. Natur & Kultur. M5000 Kurs 5 Bla.indb :34

Storlek: px
Starta visningen från sidan:

Download "Lena Alfredsson Kajsa Bråting Patrik Erixon Hans Heikne. Matematik. Kurs 5 Blå lärobok. Natur & Kultur. M5000 Kurs 5 Bla.indb 1 2013-07-11 15:34"

Transkript

1 Lena lfredsson Kajsa råting Patrik Erixon Hans Heikne Matematik 5000 Kurs 5 lå lärobok Natur & Kultur M5000 Kurs 5 la.indb :34

2 NTUR & KULTUR ox , Stockholm Kundtjänst: Tel , Redaktion: Tel , Order och distribution: Förlagssystem, ox , Stockholm Tel , Projektledare: Irene onde Textredaktör: Mats Karlsson/Devella H ildredaktör: Erica Högsborn Grafisk form och omslag: Graffoto och Åsa Lundbom Layout: Måns jörkman/typ & Design och Mats Karlsson/Devella H Sättning: Mats Karlsson/Devella H Kopieringsförbud! Detta verk är skyddat av upphovsrättslagen! Kopiering är förbjuden, utöver lärares begränsade rätt att kopiera för undervisningsbruk enligt avtal med onus Presskopia och den mycket begränsade rätten till kopiering för privat bruk. Den som bryter mot lagen om upphovsrätt kan åtalas av allmän åklagare och dömas till böter eller fängelse i upp till två år samt bli skyldig att erlägga ersättning till upphovsman/rättsinnehavare Lena lfredsson, Jonas jörk, Lars-Eric jörk, Hans rolin, Kajsa råting, Patrik Erixon, Hans Heikne, nna Palbom och Natur & Kultur, Stockholm Tryckt i Lettland 2013 Första utgåvans första tryckning ISN M5000 Kurs 5 la.indb :34

3 Välkommen till Matematik 5000 Matematik 5000 är en läroboksserie för gymnasieskolan och vuxenutbildningen. Den är inriktad på färdigheter, förståelse, kommunikation och problemlösning och erbjuder stora möjligheter till en varierad undervisning. Matematik 5000 ger eleverna goda förutsättningar att utveckla de förmågor och nå de kunskapsmål som beskrivs i den nya ämnesplanen. Denna bok, Kurs 5 lå lärobok, riktar sig främst till elever som studerar på teknikprogrammet eller naturvetenskapsprogrammet. Hur är boken upplagd? Teoriavsnitten utgår ofta från konkreta exempel som framställs och förklaras på ett sätt som ger eleverna möjlighet att förstå och upptäcka matematiken. Teorin avslutas med flera lösta exempel som belyser det viktigaste. Därefter kommer övningsuppgifter i tre nivåer, a, b och c, i stigande svårighetsgrad. ktiviteterna ger stora möjligheter att variera undervisningen. De finns i fyra olika kategorier: Upptäck, Undersök, Diskutera och Laborera. De flesta är avsedda för arbete i grupp. I varje kapitel finns dessutom en kort Inledande aktivitet som introducerar delar av kapitlets innehåll. I Teman finns teori och uppgifter anpassade till naturvetenskapsprogrammet och teknikprogrammet och i Historik, med tillhörande uppgifter, sätts matematiken in i ett historiskt sammanhang. På många sidor blandas uppgifter av standardkaraktär, uppgifter anpassade främst till teknikoch naturvetenskapsprogrammet och uppgifter som kräver matematisk problemlösning. Varje kapitel avslutas med: En ktivitet som uppmuntrar till kommunikation: Sant eller falskt? En kort Sammanfattning av kapitlet. Kan du det här? och Diagnos som tillsammans ger eleverna en god möjlighet till egen kunskapskontroll. I Kan du det här? kan eleverna i par eller smågrupper värdera sina kunskaper om matematiska begrepp och strategier och i Diagnos kan de enskilt testa sina grundläggande kunskaper. Om en elev behöver repetera delar av kapitlet finns Repetitionsuppgifter i slutet av boken. Repetitionsuppgifterna är texten till de lösta uppgifterna i bokens teoriavsnitt. Två olika varianter av landade övningar avslutar varje kapitel. Den första innehåller endast uppgifter från det aktuella kapitlet. Den andra innehåller även uppgifter från tidigare kapitel. landade övningar består av tre delar: Utan räknare, Med räknare och Utredande uppgifter. I Svarsdelen finns ledtrådar och lösningar till många uppgifter. Till läroboken finns en lärarhandledning med kommentarer, ytterligare aktiviteter och övningsuppgifter samt en provbank. Med Matematik 5000 inbjuder vi lärare och elever till en variation av arbetssätt och arbetsformer och erbjuder många olika möjligheter för eleverna att utveckla sina matematiska förmågor. Mer information om läromedlet och digitalt material finns på Lycka till med matematiken! önskar Hans, Kajsa, Lena och Patrik FÖRORD 3 M5000 Kurs 5 la.indb :34

4 Innehåll 1. Diskret matematik I 6 Centralt innehåll 6 Inledande aktivitet: Hur många? Kombinatorik 8 Lådprincipen 8 Multiplikations- och additionsprincipen 11 Permutationer 15 Kombinationer 19 Kommer du ihåg sannolikhetslära? 23 Kombinatorik och sannolikhetslära 26 Tema: Poker och Yatzy 28 inomialsatsen 30 Historik: Pascals triangel Mängdlära 35 Mängder Grundbegrepp 35 Mängdoperatorer 39 Venndiagram 41 ktivitet: Undersök Kan du rita utan att lyfta pennan? Grafteori 46 Inledning 46 Historik: Fyrfärgsproblemet 49 Några klassiska problem 50 Träd 54 ktivitet: Diskutera Sant eller falskt? 57 Sammanfattning 1 58 Kan du det här? 1 60 Diagnos 1 61 landade övningar kapitel Diskret matematik II 66 Centralt innehåll 66 Inledande aktivitet: Hittar du mönstret? Talteori 68 Delbarhet och primtal 68 Gemensamma och icke gemensamma faktorer 71 ktivitet: Upptäck Räkna med rester 74 Kongruens och moduloräkning 75 Historik: Diofantiska ekvationer och Fermats stora sats 79 Talsystem med olika baser 80 Tema: RS-kryptering Talföljder 84 Inledning 84 ktivitet: Undersök Sierpińskis triangel 87 Rekursionsformler 88 ritmetiska talföljder 90 Geometriska talföljder 92 ktivitet: Undersök Hur högt blir trädet? 95 Ekonomiska, natur- och samhällsvetenskapliga tillämpningar 96 ktivitet: Laborera Hur högt studsar bollen? 101 Historik: Fibonaccis talföljd Induktionsbevis 103 ktivitet: Diskutera Sant eller falskt? 108 Sammanfattning Kan du det här? Diagnos landade övningar kapitel landade övningar kapitel INNEHÅLL M5000 Kurs 5 la.indb :34

5 3. Derivator och integraler 118 Centralt innehåll 118 Inledande aktivitet: Finn grafen Derivator 120 Repetition 120 Några bevis 126 Tangenter och linjär approximation 128 Förändringshastigheter och derivator 130 ktivitet: Laborera allongen Extremvärden 137 Tillämpningar och problemlösning 137 Historik: Den första läroboken Integraler 145 Primitiva funktioner, integraler och areaberäkningar 145 Geometriska sannolikheter 150 Partiell integration 151 Volymberäkning med skivmetoden 154 Historik: Kepler och vintunnornas geometri 157 Volymberäkning med cylindriska skal 158 Generaliserade integraler 160 ktivitet: Diskutera Sant eller falskt? 162 Sammanfattning Kan du det här? Diagnos landade övningar kapitel landade övningar kapitel Differentialekvationer 174 Centralt innehåll 174 Inledande aktivitet: estäm en funktion Inledning 176 Grundläggande begrepp 176 Historik: Newton 179 Differentialekvationer och primitiva funktioner 180 Verifiering av en lösning Differentialekvationer av första ordningen 184 Differentialekvationen y + ay = Den inhomogena ekvationen y + ay = f x) 188 ktivitet: Upptäck Riktningsfält 191 Riktningsfält 192 Historik: Euler och hans stegmetod Matematiska modeller med differentialekvationer 198 Enkla förändringsmodeller 198 landningsproblem 200 vsvalning 202 Fritt fall med luftmotstånd 203 Tillväxt med begränsningar 204 Lösning med digitala verktyg 206 ktivitet: Diskutera Sant eller falskt? 210 Sammanfattning Kan du det här? Diagnos landade övningar kapitel landade övningar kapitel Omfångsrika problemsituationer 224 Repetitionsuppgifter 237 Svar, ledtrådar och lösningar 242 Register 283 INNEHÅLL 5 M5000 Kurs 5 la.indb :34

6 1 DISKRET MTEMTIK I Centralt innehåll egreppen permutation och kombination. Metoder för beräkningar av antalet kombinationer och permutationer. egreppet mängd, operationer på mängder, mängdlärans notationer och Venndiagram. egreppet graf, olika typer av grafer och dess egenskaper samt några kända grafteoretiska problem. Strategier för matematisk problemlösning. Matematiska problem med anknytning till matematikens kulturhistoria. I kapitel 3 ska vi arbeta med area, omkrets och volym, skala och likformighet samt trigonometri. M5000 Kurs 5 la.indb :34

7 Inledande aktivitet HUR MÅNG? Diskret matematik är en gren av matematiken som sysslar med objekt som är åtskilda från varandra och som går att räkna upp. 1 a) Hur många tresiffriga tal kan bildas av sifforna 1,2 och 3 om varje siffra bara får förekomma en gång? Skriv upp alla talen. b) Hur många tvåsiffriga tal kan bildas av siffrorna 4 och 7 om varje siffra får förekomma flera gånger? Skriv upp alla talen. c) Du ska bilda en summa av ett av de tresiffriga och ett av de tvåsiffriga talen i uppgift a) och b). Hur många olika summor kan du få? 2 a) Hur många tresiffriga tal kan bildas av sifforna 1, 2 och 3 om varje siffra får förekomma flera gånger? b) Hur många tresiffriga tal kan bildas av sifforna 8, 9 och 0 om varje siffra får förekomma flera gånger? 3 a) Hur många fyrsiffriga tal finns det? b) Hur många fyrsiffriga tal finns det som är delbara med 11? M5000 Kurs 5 la.indb :34

8 1.1 Kombinatorik Lådprincipen kombinatorik Kombinatorik är den gren av matematiken som handlar om hur vi kan välja ut, ordna och kombinera olika föremål. Frågorna Hur många och På hur många sätt är vanliga. Vi visar några generella verktyg som kan användas för att lösa kombinatoriska problem. Exempel lådprincipen Om en brevbärare ska lägga 6 brev i 5 brevlådor, så måste åtminstone en brevlåda innehålla två eller flera brev. Detta är ett exempel på lådprincipen. Om brevbäraren istället har 16 brev att lägga i de 5 lådorna så kommer åtminstone en brevlåda att innehålla 4 eller flera brev. 16 = brev i varje låda och ytterligare 1 brev) Lådprincipen Om n + 1 föremål ska placeras i n lådor, så måste åtminstone en låda innehålla två eller fler av föremålen. Om n k + 1 föremål ska placeras i n lådor, så måste åtminstone en låda innehålla k + 1 eller fler av föremålen. I detta kapitel betecknar n och k positiva heltal. Det är förvånande att denna enkla princip kan användas för att lösa så många olika problem. Som problemlösare ska du försöka identifiera vad som är låda respektive föremål. Tyvärr är detta inte alltid så lätt! KOMINTORIK M5000 Kurs 5 la.indb :34

9 1101 Visa att i en grupp på 13 personer har minst två personer födelsedag i samma månad. Lådor: Årets 12 månader Föremål: De 13 födelsedagarna Placera de 13 födelsedagarna i de 12 månaderna. Enligt lådprincipen innehåller då åtminstone en månad två eller flera födelsedagar Visa att om fem punkter placeras i en liksidig triangel med sidan 6 cm, så finns det minst två punkter vars avstånd är högst 3 cm. Triangeln delas i fyra kongruenta liksidiga deltrianglar med sidan 3 cm. Lådor: De fyra deltrianglarna n = 4) Föremål: De fem punkterna n + 1 = 5) Placera de fem punkterna i de fyra deltrianglarna. Enligt lådprincipen innehåller då minst en triangel två eller fler punkter. vståndet mellan två sådana punkter är högst 3 cm. T ex T ex 6 cm 6 cm 1103 Storstockholm har invånare. Vi antar att en människa har färre än hårstrån på huvudet. Visa att åtminstone 4 av dessa invånare har exakt samma antal hårstrån. Lådor: st, dvs 0, 1, 2,..., hårstrån Föremål: stockholmare Eftersom > så säger lådprincipen att åtminstone en låda innehåller minst föremål. Det innebär att minst 4 stockholmare har samma antal hårstrån på huvudet. 1.1 KOMINTORIK 9 M5000 Kurs 5 la.indb :34

10 1104 I en låda ligger enfärgade, osorterade strumpor i färgerna svart, vit, blå och grå. Hur många strumpor måste man ta ur lådan för att vara säker på att få ett par av samma färg? 1105 Visa att det i en klass på 32 elever finns åtminstone två som har födelsedag på samma datum i någon månad Visa att om fem punkter placeras i en kvadrat med sidan 2 cm, så finns det två punkter vars avstånd är högst 2 cm Till en nordisk skolkonferens kom det sammanlagt 31 elever från Sverige, Norge, Danmark, Finland och Island. a) Vilket tal är n antalet lådor )? b) Visa att något land representeras av minst 7 elever EU-parlamentet består av 754 personer från 27 olika stater. Visa att minst 28 personer kommer från samma stat En låda innehåller 50 tröjor i fyra olika färger. Förklara varför det är a) minst 13 tröjor av samma färg b) minst 14 tröjor av samma färg om man vet att det finns exakt 8 röda tröjor År 2010 fanns 7,2 miljoner invånare i Sverige, som var 20 år eller äldre. v dessa hade 47 % en månadsinkomst före skatt som var mindre än kr. Visa att det år 2010 fanns åtminstone 160 svenskar som hade exakt på kronan samma månadsinkomst Enligt SC hade Sverige invånare den 30 november Det finns en dag på året även skottår)då åtminstone x svenska invånare har födelsedag. estäm x Visa att om 10 punkter placeras i en liksidig triangel med sidan 6 cm, så finns det två punkter vars avstånd är högst 2 cm I ett rum finns det n gifta par. Hur många av dessa 2n personer måste väljas ut för att man ska vara säker på att få minst ett gift par? Motivera. I en skål ligger 8 röda och 5 blå kulor. Hur många kulor måste du slumpvis ta upp för att säkert få två av a) samma färg b) olika färg c) varje färg? 1110 En musiker övar 110 timmar under en period på 12 dagar. Visa att hon övar sammanlagt åtminstone 19 timmar under två på varandra följande dagar. Hon övar i hela timmar.) KOMINTORIK M5000 Kurs 5 la.indb :34

11 Multiplikations- och additionsprincipen Exempel 1 När lma ska träna har hon följande kläder att välja på: linne, kortärmad tröja eller långärmad tröja korta byxor, knälånga byxor eller långa byxor löparskor eller inomhusskor. Vi visar med ett träddiagram på hur många olika sätt hon kan klä sig. linne kort lång Tröja korta knä långa korta knä långa korta knä långa yxor Skor löp inom löp inom löp inom löp inom löp inom löp inom löp inom löp inom löp inom Diagrammet visar att lma kan klä sig på 18 olika sätt. Utan träddiagram kan vi tänka att hon har tre val att göra: 3 olika tröjor, 3 olika byxor och 2 olika skor. Detta ger beräkningen = 18. multiplikationsprincipen Den regel inom kombinatoriken som ger det totala antalet möjliga kombinationer när flera val görs oberoende av varandra kallas multiplikationsprincipen. Multiplikationsprincipen Om ett första val kan ske på p sätt och ett andra val kan göras på q sätt, så kan de båda valen utförda efter varandra göras på p q sätt. En förutsättning för detta är att det första valet inte påverkar det andra valet. 1.1 KOMINTORIK 11 M5000 Kurs 5 la.indb :34

12 M E N Y Förrätt: Soppa Sallad Huvudrätt: Fisk Kött Vegetariskt Efterrätt: Glass Tårta Paj Exempel 2 På en restaurang kan man välja förrätt och huvudrätt eller huvudrätt och efterrätt för 200 kr. Erik undrar på hur många sätt man kan välja två rätter. Multiplikationsprincipen ger att: Förrätt + Huvudrätt kan väljas på 2 3 = 6 olika sätt. Huvudrätt + Efterrätt kan väljas på 3 3 = 9 olika sätt. Välj förrätt och huvudrätt eller huvudrätt och efterrätt för 200 kr Sammanlagt finns det alltså = 15 olika sätt att välja 2 rätter på restaurangen. llmänt gäller: dditionsprincipen Om man ska välja 1 föremål från en mängd med p olika föremål eller från en mängd med q olika föremål, så kan detta ske på p + q olika sätt. Obs! En förutsättning är att mängderna inte har något föremål gemensamt När William ska köpa en surfplatta står han inför tre val trots att han har bestäm vilket märke kan ska köpa. Det finns tre olika skärmstorlekar och liten eller stor hårddisk. åda hårddiskarna finns till alla skärmar och surfplattorna finns i färgerna svart, rött, grönt, blått eller vitt. Hur många olika surfplattor har William att välja på? Han står inför tre valsituationer där antalet valmöjligheter är 3, 2 respektive 5. Inget val påverkar det andra. ntalet varianter av surfplattor är = KOMINTORIK M5000 Kurs 5 la.indb :35

13 1117 Conrad ska välja en karamell ur vardera skålen. a) På hur många sätt kan detta ske? b) På hur många sätt kan detta ske om han vill ha minst en röd karamell? a) Multiplikationsprincipen ger 4 5 = 20 sätt. b) Den runda röda kan kombineras med de 5 fyrkantiga karamellerna, vilket ger 5 sätt. Den fyrkantiga röda kan kombineras med de 4 runda karamellerna, vilket ger 4 sätt. Här måste vi minska med 1 sätt eftersom två röda ingår i båda fallen ovan. dditionsprincipen ger = 8 sätt I en klass går det 11 pojkar och 15 flickor. På hur många sätt kan man välja a) en elevrepresentant b) två elevrepresentanter, en pojke och en flicka? 1119 Lukas som ska köpa en cykel ställs inför flera val. Herr eller damcykel? Vilket av fem märken? Mountainbike, streetcykel eller racer? 3, 5, 7, 18 eller 21 växlar? Pakethållare eller inte? Vilken av fyra färger? Lukas leker med tanken på att alla varianter kan kombineras med varandra. Hur många cyklar har han då att välja på? 1120 När man spelar på V75 ska man välja vilken häst som vinner i sju olika lopp. Vid ett tillfälle startade 9, 10, 9, 9, 11, 10 respektive 10 hästar i de olika loppen. På hur många olika sätt kan man skriva en V75-rad till den spelomgången? 1121 Hur många fyrsiffriga pinkoder finns det? 1122 Lubna ska låna ljudböcker på biblioteket. Hon väljer mellan fem deckare, tre självbiografier och fyra fantasyböcker. På hur många sätt kan hon välja a) en bok b) tre böcker med en i varje genre c) två böcker i olika genrer? 1123 Sex personer är med i utlottningen av två lika stora vinster. Det är herr och fru lm, herr och fru Olsson samt herr och fru Raciz. På hur många sätt kan de två vinsterna fördelas om åtminstone en av personerna i familjen lm vinner? 1124 Hur många olika svenska bilregistreringsskyltar för bilar kan man göra enligt modellen först 3 bokstäver och sedan 3 siffror? okstäverna I, Q, V, Å, Ä och Ö används inte. 1.1 KOMINTORIK 13 M5000 Kurs 5 la.indb :35

14 1125 En kokbok innehåller 50 förrätter, 100 huvudrätter och 50 efterrätter. På hur många sätt kan man ur boken komponera en två- eller trerättersmiddag som innehåller en huvudrätt? 1126 En myra kryper kortaste vägen från till längs kubens kantlinjer. Hur många vägar kan myran krypa? 1127 I en av två parallellklasser går 17 killar och 9 tjejer. I den andra klassen går 13 killar och 15 tjejer. En elev från vardera klassen ska utses till elevrepresentanter. På hur många olika sätt kan detta ske om a) båda representanterna ska vara killar b) en kille och en tjej ska utses c) åtminstone en tjej ska utses? 1128 Evy har gjort en tipspromenad med 16 frågor som ska besvaras med 1, X eller 2. Hon påstår att a) det finns fler än 16 miljoner olika möjligheter att skriva en sådan tipsrad. Stämmer det? b) det bara finns 17 tipsrader med minst 15 rätt. Stämmer det? Motivera dina svar Ett binärt tal skrivs med enbart nollor och ettor. T ex = två Hur många binära tal med sex eller färre siffror finns det? 1130 I sin garderob har Kim 1 röd, 1 blå, 1 vit och 1 grön skjorta 2 par blå jeans, ett par grå finbyxor och ett par chinos 1 par stumpor vardera av färgerna röd, blå, svart och vit 1 par boots, 1 par sneakers och ett par svarta lackskor. På hur många sätt kan han klä sig, om a) alla skjortor, byxor, strumpor och skor kan användas tillsammans b) bootsen bara kan användas till jeans eller chinos c) han bara kan ha svarta strumpor till lackskorna och alltid vit skjorta till finbyxorna? På fredag ska Kim på födelsedagsfest till sin faster som fyller 34 år. d) Vad tycker du han ska ha på sig? 1131 Visa att ett val bland p föremål följt av ett val bland q föremål alltid leder till fler valmöjligheter, än ett val bland p + q föremål, förutsatt att p 2 och q > Hur många binära tal mindre än 256 börjar och/eller slutar med två ettor? KOMINTORIK M5000 Kurs 5 la.indb :35

15 Permutationer Exempel 1 permutation Johannes har en spellista som innehåller 10 favoritlåtar. Om han trycker shuffle blandning) spelas varje låt en gång i slumpartad ordning. Varje sådant ordnat urval utan upprepning kallas en permutation. Varje låt på listan spelas endast en gång. På hur många olika sätt kan listans låtar spelas? När den första låten ska väljas finns det 10 valmöjligheter. Den andra låten kan sedan väljas på 9 sätt och den tredje på 8 sätt osv. ntalet möjliga sätt blir då enligt multiplikationsprincipen = ntalet permutationer av 10 föremål element) kan skrivas 10! 10! = n -fakultet Produkten av alla heltal från 1 till n kallas n-fakultet och betecknas n! llmänt gäller: ntalet permutationer av n element ntalet permutationer av n element är n! = n n 1) n 2) där n är ett positivt heltal. Exempel 2 Om endast 3 låtar ska väljas från listan med 10 låtar kan detta göras på = 720 olika sätt. ntalet permutationer ordnade urval) av 3 låtar bland 10 låtar kan skrivas P10, 3) = = ! = 10! 10! = 7! 7! 10 3)! Vi förlänger med 7! 1.1 KOMINTORIK 15 M5000 Kurs 5 la.indb :35

16 llmänt gäller: ntalet permutationer av k element bland n ntalet permutationer av k element bland n givna element är n! P n, k ) = n n 1) n k + 1) = n k)! Elementen väljs endast en gång och med hänsyn till ordningen. Två specialfall: Om vi väljer n element av n får vi Pn, n) = n! n n)! = n! = n! om vi definierar 0! = 1 0! Om vi väljer 0 element av n får vi Pn, 0) = n! = 1 med tolkningen: noll element kan väljas på ett sätt. n! 1133 C Julia ska sätta upp förstoringar av tre fotografier i sitt rum. De ska hänga på rad. a) Utgå från det tre fotona, och C och gör en lista över de olika permutationerna. b) Hur många permutationer finns det? c) Julia lägger till fem foton och har nu åtta att välja på. På hur många sätt kan då tre foton hängas upp? a) C C C C C C b) ntalet permutationer av 3 element är 3! = = 6 Svar: Det finns 6 permutationer. c) ntalet permutationer av 3 element bland 8 är P 8, 3) = = 336 eller P 8, 3) = 8! 8 3)! = 8! 5! = 336 Svar: På 336 olika sätt KOMINTORIK M5000 Kurs 5 la.indb :35

17 1134 Hur många olika ord kan man bilda av bokstäverna i ordet a) KEMI b) MTTE a) Fyra bokstäver kan ordnas på 4! = 24 olika sätt. De flesta orden saknar dock betydelse.) b) Fem bokstäver kan ordnas på 5! = 120 olika sätt. Eftersom det finns två T i ordet MTTE kommer flera av de 120 orden att vara lika. Två bokstäver kan ordnas på 2! = 2 sätt så antalet olika ord ges av 5! 2! = = 60 Svar: a) 24 ord b) 60 ord 1135 Tolka och beräkna a) P 6, 6) b) P 8, 5) c) P 8, 1) d) P 8, 0) a) P 6, 6) är antalet permutationer ordnade urval) av 6 element. P 6, 6) = 6! = = 720 b) P 8, 5) är antalet permutationer när man väljer 5 element av 8. P 8, 5) = = eller P 8, 5) = 8! 8 5)! = 8! 3! = c) P 8, 1) är antalet sätt att välja 1 element bland 8. P 8, 1) = 8 d) P 8, 0) är antalet sätt att välja 0 element bland 8. P 8, 0) = 1 På många räknare finns verktyg för beräkning av n! och P n, k). T ex 9 npr 4 ger att P 9, 4) = KOMINTORIK 17 M5000 Kurs 5 la.indb :35

18 1136 Sju personer ska skriva sitt namn på en lista. På hur många sätt kan listan se ut om man tar hänsyn till namnens inbördes ordning? 1137 eräkna utan räknare a) 4! c) 2! 3! b) 11! d) 100! 11 2)! 100 1)! 1138 I styrelsen till en idrottsförening ska man välja ordförande, sekreterare och kassör. På hur många sätt kan dessa väljas om styrelsen består av a) 6 personer b) 12 personer? 1139 eräkna och tolka a) P 9, 3) c) P 15, 1) b) P 4,4) d) P 100, 0) 1140 En vanlig kortlek innehåller 52 olika kort. På hur många sätt kan man dra fem kort om man tar hänsyn till ordningen och a) lägger tillbaka kortet efter varje dragning b) inte lägger tillbaka korten? 1141 Hur många tresiffriga tal a) finns det b) med endast jämna siffror finns det c) med endast udda siffror finns det, om varje siffra endast får förekomma en gång? 1142 a) Teckna och beräkna antalet permutationer av tre element bland fem. b) Förklara vad du beräknat i a) a) Hur många olika ord kan man bilda av bokstäverna i ordet NN? b) Hur många av orden i uppgift a) börjar med N? 1145 Tolv damer och tolv herrar kommer till en danskurs. a) Först hälsar alla på varandra genom att ta i hand. Hur många handskakningar innebär detta? b) Sedan bildas danspar av en dam och en herre. Hur många olika danspar kan bildas? 1146 a) estäm värdet på k utan räknare då 5 9! + 5 8! = k 8! b) Visa att a n! + an + 1)! kan skrivas a n!n + 2) I ett klassrum med 30 bänkar och 30 elever säger läraren: Vi prövar en ny placering varje dag. Hur många läsår dröjer det innan alla tänkbara placeringar är prövade? Vi antar att ett läsår har 200 dagar.) 1148 Ett spelbolag har ett spel, där det gäller att bland åtta deltagare i en tävling tippa de n första i rätt ordning. Hur stort måste n minsta vara, om antalet olika tipsrader ska bli mer än 1 000? 1149 Visa att P n, n) = P n, n 1) genom att a) förenkla båda uttrycken b) använda multiplikationsprincipen Hur många fyrsiffriga koder finns det med a) siffrorna 0, 6, 8, 9 b) olika siffror c) siffrorna 3, 5, 5, KOMINTORIK M5000 Kurs 5 la.indb :35

19 Kombinationer Exempel 1 Vi återvänder till exemplet med Julias fotografier se uppgift 1133). Den här gången ska hon välja ut tre fotografier av totalt fyra. Vi skriver upp permutationerna av tre av fotografierna,, C och D: C D CD CD C D DC DC C D CD CD C D CD CD C D DC DC C D DC DC I den första kolumnen finns alla permutationer av, och C, i den andra alla permutationer av, och D, i den tredje alla permutationer av, C och D och i den sista alla permutationer av, C och D. Men nu är vi inte längre intresserade av i vilken ordning fotografierna ska hänga på väggen. Vi är bara intresserade av vilka tre fotografier Julia väljer ut. Varje kolumn motsvarar då en av Julias valmöljigheter. I varje kolumn finns 3! = 6 permutationer av de tre fotografierna överst i kolumnen. ntalet val får vi om vi delar det totala antalet permutationer 24) med 6. ntal permutationer av 3 element bland 4 = P4, 3) = ntal sätt att ordna 3 element 3! = 4! 4 3)! 3! = 4! 3!4 3)! = = 4 kombination Varje urval, utan hänsyn till ordningen, kallas en kombination. ntalet kombinationer av 3 element av 4 betecknas C 4, 3) eller 4 3 ) som läses 4 över 3. llmänt gäller: ntalet kombinationer ntalet kombinationer av k element bland n element är C n, k ) = n k ) = n! k!n k)! Elementen väljs utan hänsyn till ordningen. 1.1 KOMINTORIK 19 M5000 Kurs 5 la.indb :35

20 Exempel 2 Hur tolkar vi och hur beräknar vi 8 3 )? 8 3 ) = 8! 3!8 3)! = = = 56 Tre faktorer i både täljare och nämnare. Varje gång vi väljer 3 element bland 8 så blir 5 element kvar. ntalet sätt att välja 3 element bland 8 är alltså lika många som att välja 5 element bland ) = = 56 Symmetri Talen n k ) har den viktiga symmetriegenskapen n ) k = n n k ) På många räknare finns ett verktyg för n k ) T ex 8 ncr 3 ger att 8 3 ) = eräkna a) 20 3 ) a) 20 3 ) b) ) c) = = b) ) = ) = = c) P30,4) 4! d) P5,5) 5! P30,4) 4! d) P5,5) 5! = 30 4 ) = = = 5 5 ) = 1 Vi utnyttjar symmetrin KOMINTORIK M5000 Kurs 5 la.indb :35

21 1151 gnes har 30 pocketböcker i sin bokhylla. 10 av dem är på engelska och resten är på svenska. Hon ska låna ut sex böcker till en kompis som vill ha två engelska böcker. På hur många sätt kan gnes välja böckerna hon ska låna ut? Svenska Engelska ntal pocketböcker ntal att låna ut 4 2 ntal sätt 20 4 ) 10 2 ) Multiplikationsprincipen ger antalet urval med 4 svenska och 2 engelska böcker ) ) = 10 9 = Svar: Det finns urval med 4 svenska och 2 engelska böcker Poker spelas med en vanlig kortlek som har 13 valörer i 4 färger spader, hjärter, ruter och klöver ). En pokerhand har fem kort. a) Hur många pokerhänder finns det? b) Hur många pokerhänder innehåller minst ett hjärterkort? a) Vi söker antalet kombinationer oordnade urval) av 5 kort bland ) = = Svar: Det finns olika pokerhänder. b) Vi börjar med att beräkna antalet pokerhänder som inte innehåller något hjärterkort alls. ntalet kort som inte är hjärter är = 39 Vi söker antalet kombinationer av 5 kort bland ) = = ntalet händer med minst ett hjärter = = Totala antalet händer ntalet händer utan hjärter = = 52 5 ) 39 5 ) = = Svar: Det finns olika pokerhänder som innehåller minst ett hjärterkort. 1.1 KOMINTORIK 21 M5000 Kurs 5 la.indb :35

22 1153 eräkna a) 10 3 ) b) 10 7 ) 1154 eräkna utan räknare a) ) b) ) c) 25 4 ) c) 10 0 ) 5th venue Madison venue Park venue Chrysler building Lexington venue 41st Street 40th Street 39th Street 38th Street 3rd venue 42nd Street 1155 I en skål ligger fyra kulor med olika färger. På hur många sätt kan man dra två kulor ur skålen a) om ingen hänsyn tas till ordningen b) om hänsyn tas till ordningen? 1156 En person är ledig två dagar varje vecka. Hur många olika sätt finns det att ordna ledigheten om han inte vill vara ledig både lördag och söndag? 1157 Lasse ska göra en bukett. Han har 15 olika blommor att välja bland. På hur många sätt kan han välja blommor till buketten om den ska bestå av a) 10 blommor b) 5 blommor c) Kommentera resultatet i a) och b) Ett test består av två delar med totalt 24 frågor. Del innehåller 8 frågor och del 16 frågor. För att få godkänt krävs att totalt minst 10 frågor är rätt, varav minst 4 rätt på del. På hur många sätt kan man få precis 10 rätt och bli godkänd? 1159 Lena ska bjuda 7 personer till en fest. Hon väljer bland 12 kompisar, där Nils och Erik ingår. Hon vet att det inte är lyckat att bjuda dem på samma fest. På hur många sätt kan hon göra sitt val om hon tar hänsyn till detta? You 37th Street 36th Street 35th Street 34th Street 1160 På Manhattan i New York är gatorna i kvarteren parallella. nta att du ska gå från korsningen 5th venue och 35th Street till Chrysler building. På hur många sätt kan du då gå den kortaste vägen? 1161 Ett innebandylag med 23 ungdomar och tre tränare har fått tio biljetter till en -lagsmatch. De undrar på hur många sätt de kan lotta ut de tio biljetterna om minst en tränare ska med. Erik föreslår beräkningen: C3, 1) C25, 9) Filip föreslår beräkningen: C26, 10) C23, 10). Förklara hur Erik respektive Filip kan ha tänkt. Har någon av dem tänkt rätt? 1162 Linn bakar tio cupcakes som kan dekoreras på fyra olika sätt. På hur många sätt kan dekorationerna fördelas? KOMINTORIK M5000 Kurs 5 la.indb :35

Kombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1

Kombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1 Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13

Läs mer

Sannolikhetsbegreppet

Sannolikhetsbegreppet Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34

Läs mer

Kapitel 2. Grundläggande sannolikhetslära

Kapitel 2. Grundläggande sannolikhetslära Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Att beräkna en sannolikhet I många slumpförsök gäller att alla utfall i S är lika sannolika. Exempel: Tärningskast, slantsingling.

Läs mer

Kombinatorik. Bilder: Akvareller gjorda av Ramon Cavallers, övriga diagram och foton av Nils-Göran. Nils-Göran Mattsson och Bokförlaget Borken, 2011

Kombinatorik. Bilder: Akvareller gjorda av Ramon Cavallers, övriga diagram och foton av Nils-Göran. Nils-Göran Mattsson och Bokförlaget Borken, 2011 Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13

Läs mer

7-2 Sammansatta händelser.

7-2 Sammansatta händelser. Namn: 7-2 Sammansatta händelser. Inledning Du vet nu vad som menas med sannolikhet. Det lärde du dig i kapitlet om just sannolikhet. Nu skall du tränga lite djupare i sannolikhetens underbara värld och

Läs mer

LARS JAKOBSSON KLAS NILSON. Kapitel 1 med tillhörande facit

LARS JAKOBSSON KLAS NILSON. Kapitel 1 med tillhörande facit JONS SJUNNESSON MRTIN HOLMSTRÖM EV SMEDHMRE LRS JKOSSON KLS NILSON Kapitel med tillhörande facit ISN 978-9-47-0928-9 203 Jonas Sjunnesson, Martin Holmström, Eva Smedhamre, Lars Jakobsson, Klas Nilson och

Läs mer

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av Kapitel 2 Kombinatorik Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av det antal sätt, på vilket elementen i en given mängd kan arrangeras i delmängder på något sätt.

Läs mer

Planering i matematik 5 för NA11 och ITT11. V Datum Kapitel Moment Anmärkning. Tis Övning 11:30-12: 40

Planering i matematik 5 för NA11 och ITT11. V Datum Kapitel Moment Anmärkning. Tis Övning 11:30-12: 40 1.1 Diskret Matematik s. 8 1.1 Delbarhetsregler och division med rest s. 12 3 11:30-12: 40 4 1.1 Kongruens s. 16 1.1 Beräkningar med kongruenser s. 19 11:30-12: 40 1 Talteori 1.2 Talföljder och summor

Läs mer

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar. Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

PROBLEMLÖSNINGSUPPGIFTER

PROBLEMLÖSNINGSUPPGIFTER PROBLEMLÖSNINGSUPPGIFTER ADDERA RÄTT 1. Bestäm vilka siffror bokstäverna A, B, C, och D bör bytas ut mot i additionen nedan för att additionen ska vara riktig. A 6 3 7 B 2 + 5 8 C D 0 4 2 2. Gör ett eget

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7

Läs mer

7-1 Sannolikhet. Namn:.

7-1 Sannolikhet. Namn:. 7-1 Sannolikhet. Namn:. Inledning Du har säkert hört ordet sannolikhet förut. Hur sannolikt är det att få 13 rätt på tipset eller 7 rätt på lotto? I detta kapitel skall du lära dig vad sannolikhet är för

Läs mer

Sannolikhet DIAGNOS SA3

Sannolikhet DIAGNOS SA3 Sannolikhet DIAGNOS SA3 Grundläggande sannolikhet Diagnosen omfattar 9 uppgifter där eleverna ska ges möjlighet att visa om de förstår innebörden av begreppet sannolikhet och slump samt om de har strategier

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov OSÄKERHET Sannolikhetslära: Om det i ett område finns 32 % med universitetsexamen, vad är sannolikheten att ett stickprov kommer att innehålla 31-33 % med universitetsexamen? Om medelåldern i en population

Läs mer

Lösningar och lösningsskisser

Lösningar och lösningsskisser Lösningar och lösningsskisser Diskret matematik för gymnasiet, :a upplagan, Liber AB Kapitel, Sannolikhetslära och Kombinatorik 0. a) ( ) ( ) h!! ( )!!! 9!! 9!!! h! ( h)!! h! ( h)!! h! ( h)! Likheten är

Läs mer

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om

Läs mer

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR Känguru 2010 Junior (gymnasiet åk 1) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Kap 2: Några grundläggande begrepp

Kap 2: Några grundläggande begrepp Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de

Läs mer

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,

Läs mer

Svar och lösningar. Kängurutävlingen 2009 Cadet för gymnasiet

Svar och lösningar. Kängurutävlingen 2009 Cadet för gymnasiet Svar och lösningar 1: D 200 9 Ett tal är jämnt om entalssiffran är jämn. Det enda talet som uppfyller det villkoret är 200 9 = 1800 2: C 18 cm Stjärnans yttre består av 12 lika långa sidor med sammanlagd

Läs mer

Studiehandledning, LMN100, Del 3 Matematikdelen

Studiehandledning, LMN100, Del 3 Matematikdelen Studiehandledning, LMN100, Del 3 Matematikdelen Kurslitteratur Staffan Stukat: Statistikens grunder (c:a 150:-) Vretblad: Algebra och geometri, utdrag (Delas ut på marsträffen) Britton-Garmo: Sannolikhet

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

Betingad sannolikhet och oberoende händelser

Betingad sannolikhet och oberoende händelser Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger

Läs mer

geometri och statistik

geometri och statistik Svikten geometri och statistik Innehåll Mönster Geometriska figurer Del av Matematiska ord Längd runt om Tredimensionella figurer Tabeller och diagram Problemlösning Kan du? Hur gick det? 2-3 4-5 6-7 8-9

Läs mer

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 )

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 ) epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet Känguru 2012 Student sid 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 2013-06-25 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng

Läs mer

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 2011-12-21 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng

Läs mer

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor Våren 010 PRÖVNINGSANVISNINGAR Prövning i Matematik B Kurskod MA 10 Gymnasiepoäng 50 Läromedel Prov Muntligt prov Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag Skriftligt

Läs mer

3 Grundläggande sannolikhetsteori

3 Grundläggande sannolikhetsteori 3 Grundläggande sannolikhetsteori Ämnet sannolikhetsteori har sin grund i studier av hasardspel utförda under 1500- och 1600-talen av bland andra Gerolamo Cardano, Pierre de Fermat och Blaise Pascal. Mycket

Läs mer

Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se

Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se May 0, 0 Sannolikhetslära Kristina.Wallin@kau.se May 0, 0 Centralt innehåll Sannolikhet Åk Slumpmässiga händelser i experiment och spel. Åk 6 Sannolikhet, chans och risk grundat på observationer, experiment

Läs mer

Planering Geometri år 7

Planering Geometri år 7 Planering Geometri år 7 Innehåll Övergripande planering... 2 Bedömning... 2 Begreppslista... 3 Metodlista... 6 Arbetsblad... 6 Facit Diagnos + Arbeta vidare... 10 Repetitionsuppgifter... 11 Övergripande

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem Avdelning 1, trepoängsproblem 1. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Var är kängurun? A: I cirkeln och i triangeln, men inte i kvadraten. B: I cirkeln

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Med anledning av de nya kursplanerna har Strävorna reviderats. Formen, en matris med rutor, är densamma men istället för att som tidigare anknyta till mål att sträva

Läs mer

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p.

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p. HH / Georgi Tchilikov DISKRET MATEMATIK,5p. 8 juni 007, 40 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 5p. för Godkänd, 4p. för Väl Godkänd (av maximalt 36p.). Förenkla (så mycket som

Läs mer

Matematikcirkel Katedralskolan 4 december 2013 Gott och Blandat

Matematikcirkel Katedralskolan 4 december 2013 Gott och Blandat Liten tävling Matematikcirkel Katedralskolan 4 december 2013 Gott och Blandat Uttryck talet 2013 genom att bara använda fyror. Försök att använda så få fyror som möjligt. Tillåtna operationer är de fyra

Läs mer

5Chans och risk. Mål. Grunddel K 5. Ingressen

5Chans och risk. Mål. Grunddel K 5. Ingressen Chans och risk ål När eleverna har studerat det här kapitlet ska de kunna: förklara vad som menas med begreppet sannolikhet räkna ut sannolikheten för att en händelse ska inträffa känna till hur sannolikhet

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Hur många registreringsskyltar finns det som inte innehåller samma tecken mer än en

Hur många registreringsskyltar finns det som inte innehåller samma tecken mer än en Föreläsning 10 Multiplikationsprincipen Additionsprincipen Permutationer Kombinationer Generaliserade permutationer och kombinationer. Binomialsatsen Multinomialsatsen Lådprincipen (Duvslagsprincipen)

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental. Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går

Läs mer

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76 Ellips Sannolikhet och statistik lösningar till övningsprov sid. 38 Övningsprov.. i) P(:a äss och :a äss och 3:e äss och 4:e äss ) P(:a äss) P(:a äss :a äss) P(3:e äss :a och :a äss) antal P(4:a äss :a

Läs mer

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning Absolutbelopp, summor och binomialkoefficienter Johan Thim 15 augusti 015 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0 x

Läs mer

Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5

Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5 Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Student för elever på kurs Ma 4 och Ma 5 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter Johan Thim 2 augusti 2016 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0

Läs mer

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod: SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på

Läs mer

Matematikplanering 3 geometri HT-12 VT-13 7 a KON

Matematikplanering 3 geometri HT-12 VT-13 7 a KON Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

5.3 Sannolikhet i flera steg

5.3 Sannolikhet i flera steg 5.3 Sannolikhet i flera steg När man singlar slant kan man få utfallen krona eller klave. Sannolikheten att få klave är - och krona ^. Vad är sannolikheten att fä krona två. kast i rad? Träddlagram För

Läs mer

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin,

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Centralt innehåll. I årskurs 1.3

Centralt innehåll. I årskurs 1.3 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Svar och arbeta vidare med Cadet 2008

Svar och arbeta vidare med Cadet 2008 Svar och arbeta vidare med Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att arbeta vidare med. Känguruproblemen

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill vi modellera och kvantifiera de risker som finns

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att...

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att... Innehållsförteckning 2 Innehåll 3 Mina matematiska minnen 4 Korsord - Lodrätt - Vågrätt 5 Chiffer med bokstäver 6 Lika med 8 Formel 1 10 Konsumera mera? 12 Potenser 14 Omkretsen 16 Lista ut mönstret 18

Läs mer

Målet i sikte åk 1 3. Målet i sikte 1 3. kartläggning i matematik. Lgr11

Målet i sikte åk 1 3. Målet i sikte 1 3. kartläggning i matematik. Lgr11 Må Målet i sikte åk Målet i sikte Målet i sikte är ett kopieringsmaterial som kartlägger elevernas kunskaper i matematik. Utgångspunkt är det centrala innehållet och kunskapskraven i Lgr. För varje område

Läs mer

Matematik 1B. Taluppfattning, aritmetik och algebra

Matematik 1B. Taluppfattning, aritmetik och algebra Matematik 1a Centralt innehåll Metoder för beräkningar med reella tal skrivna på olika former inom vardagslivet och karaktärsämnena, inklusive överslagsräkning, huvudräkning och uppskattning samt strategier

Läs mer

Diskret matematik: Övningstentamen 4

Diskret matematik: Övningstentamen 4 Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs

Läs mer

Kombinatorik 6.19. Förenkla C(n+1,2)-C(n,2) och C(n+1,3)-C(n,3)

Kombinatorik 6.19. Förenkla C(n+1,2)-C(n,2) och C(n+1,3)-C(n,3) Kombinatorik 6.19 Förenkla C(n+1,2)-C(n,2) och C(n+1,3)-C(n,3) S: Sitter med med uppgift 6.19 a och b i EA och trots att det finns lösningsförslag till a på hemsidan så förstår jag inte. C(n+1,2) - C(n,2)

Läs mer

en femma eller en sexa?

en femma eller en sexa? REPETITION 3 A Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sea? 2 Eleverna i klass C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18 Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna

Läs mer

Tankenötter. från a till e

Tankenötter. från a till e Tankenötter från a till e H O L M S T R Ö M S M E D H A M R E Matematikserier av Holmström och smedhamre Kära Läsare Det här är den 4:e boken med tankenötter. Vissa nötter är enkla att knäcka, medan andra

Läs mer

Polynomekvationer (Algebraiska ekvationer)

Polynomekvationer (Algebraiska ekvationer) Polynomekvationer (Algebraiska ekvationer) Faktorsatsen 1. Pettersson: teori och exempel på sid. 21-22 Det intressanta är följande idé: Om man på något sätt (Vilket det är en annan fråga, se nedan!) har

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

Matematikboken UTMANINGEN. Lennart Undvall Kristina Johnson Conny Welén

Matematikboken UTMANINGEN. Lennart Undvall Kristina Johnson Conny Welén Matematikboken UTMANINGEN Lennart Undvall Kristina Johnson Conny Welén ISBN 978-91-47-08519-4 2011 Lennart Undvall, Kristina Johnson, Conny Welén och Liber AB Projektledare och redaktör: Sara Ramsfeldt

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6 freeleaks NpMaB vt2001 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2001 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 9 uppgifter med miniräknare 6 Förord Skolverket har endast

Läs mer

Matteklubben Vårterminen 2015, lektion 6

Matteklubben Vårterminen 2015, lektion 6 Matteklubben Vårterminen 2015, lektion 6 Regler till Matematisk Yatzy Matematisk Yatzy är en tävling där man tävlar i att lösa matematikproblem. Målet i tävlingen är att få så mycket poäng som möjligt

Läs mer

MATEMATIK 5.5 MATEMATIK

MATEMATIK 5.5 MATEMATIK 5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Lokala betygskriterier Matematik åk 8

Lokala betygskriterier Matematik åk 8 Lokala betygskriterier Matematik åk 8 Mer om tal För Godkänt ska du: Kunna dividera och multiplicera med 10, 100 och 1000. Kunna räkna ut kilopriset för en vara. Kunna multiplicera och dividera med positiva

Läs mer

A: 100 B: 1000 C: 10000 D: 100000 E: 1000000 (Tyskland) A: 10 B: 11 C: 13 D: 14 E: 15 (Tyskland) a 2 A: B: C: D: E:

A: 100 B: 1000 C: 10000 D: 100000 E: 1000000 (Tyskland) A: 10 B: 11 C: 13 D: 14 E: 15 (Tyskland) a 2 A: B: C: D: E: Kängurutävlingen 015 Junior Trepoängsproblem 1. Vilket av följande tal är närmast produkten 0,15 51,0? A: 100 B: 1000 C: 10000 D: 100000 E: 1000000. Linda har hängt upp T-tröjor i en lång rad på tvättlinan

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

MATEMATIKENS SPRÅK. Avsnitt 1

MATEMATIKENS SPRÅK. Avsnitt 1 Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en

Läs mer

Terminsplanering årskurs 6 Matematik Ärentunaskolan

Terminsplanering årskurs 6 Matematik Ärentunaskolan Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

Känguru 2012 Junior sivu 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

Känguru 2012 Junior sivu 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet Känguru 2012 Junior sivu 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90 2 VOLYM OCH SKALA / REP 1 FACIT TILL ELEVBOKEN 125 a dl b ml c cl d l 126 5 st 127 200 cm 3 (2 dl = 0,2 l = 0,2 dm 3 = 200 cm 3 ) Sidan 85 128 A B C D Vas tom 235 g 528 g 0,85 kg 1,250 kg Vas med vatten

Läs mer

KOMBINATORIK OCH BINOMIALSATSEN

KOMBINATORIK OCH BINOMIALSATSEN KOMBINATORIK OCH BINOMIALSATSEN PERMUTATIONER (Ordnade listor med n element, så kallade n- tipplar) 1. (permutationer av n olika element) Vi betraktar ordnade listor med n olika element,,, Varje bestämd

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer