Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10

Storlek: px
Starta visningen från sidan:

Download "Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10"

Transkript

1 Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningarna baseras på boken Björk J. Praktisk statistik för medicin och hälsa, Liber Förlag (2011), som är gemensam kursbok för statistikavsnitten på termin 1, 5 och 10. Till boken hör det webbaserade elabbet med bl.a. kunskapsfrågor, problem, statistikfall och arbetsböcker i Microsoft Excel som kan användas för grundläggande statistiska analyser. Inloggningskod till elabbet finns på pärmens insida i kursboken. Att planera ett forskningsprojekt Läs avsnitt 1.2 i boken. En viktig del av planeringen är att avgöra hur stor undersökningen ska vara. Hur många patienter ska inkluderas? Hur många prover behöver analyseras? Hur många journaler ska granskas? Hur stort registerutdrag behövs etc.? I boken beskrivs sådana dimensioneringsberäkningar ("powerberäkningar") i avsnitt 6.4, 8.4 och Ett enkelt gratisprogram som kan användas för powerberäkningar är PS Samplesize och kan laddas ned på Ska du göra en litteraturöversikt? Metaanalyser och systematiska litteraturöversikter beskrivs kortfattat på sid. 30 i boken. Det finns en utmärkt checklista för systematiska litteraturöversikter på I elabbet som hör till kursboken finns exempel på hur metaanalyser redovisas och tolkas i statistikfall nr 12, Kaffe, te och typ2-diabetes, och nr 20, Rökning och myelodysplastiska syndrom. Statistikfall nr 10, Hudirritationer, ger träning i att dimensioneringsberäkna.

2 Organisera insamlade data Kapitel 2 beskriver grunderna kring hur data bör struktureras för att sedan kunna analyseras med hjälp av statistikprogram (t.ex. SPSS) eller med de arbetsböcker som finns i elabbet. Principen är att man i datatablån (t.ex. i ett kalkylblad i Excel) lägger upp en rad per individ som ingår i undersökningen och en kolumn per uppgift (variabel) som man samlar in: Flödesschema för deltagande Avsnitt 3.1. Det är viktigt att beskriva bortfallet i alla faser av en undersökning. På sid. 51 i boken finns ett exempel på ett mycket användbart flödesschema som bygger på CONSORT - rekommendationerna Flödesschemat är avsett för kliniska prövningar men kan efter smärre modifieringar även användas för epidemiologiska undersökningar. En svensk översättning av CONSORT- flödesschemat finns för nedladdning i elabbet (välj menypunkten Flödesscheman ute i vänsterkanten). Beskrivande statistik Avsnitt Såväl bakgrundsvariabler (t.ex. ålder, kön, kliniska karakteristika), behandlingsrelaterade variabler samt utfallsvariabler (resultatvariabler) ska beskrivas. Sammanfatta genomsnitt och spridning med medelvärde och standardavvikelse endast för kvantitativa variabler som är symmetriskt fördelade (figur 3.2 a; sid. 56). För snedfördelade kvantitativa variabler bör istället median och percentiler användas (figur 3.2 b-c sid. 57). Kategoriska variabler sammanfattas med hjälp av relativa frekvenser (avsnitt 3.3).

3 Det är viktigt att läsaren kan bedöma jämförbarheten i de grupper som studeras. Redovisa bakgrundsvariablerna uppdelade på någon viktig gruppering i din undersökning, t.ex. behandling eller exponering. Tabell 3.7 (sid. 71; klinisk prövning) och tabell 15.6 (kohortundersökning) ger exempel på hur bakgrundsvariabler kan redovisas i tabellform. Utfallsvariabler kan med fördel redovisas med hjälp av figurer, se exempelvis figur 3.3 (sid. 68; lådagram), figur 3.4 (sid. 73; stapeldiagram) eller figur 6.1 (sid. 113; medelvärden med felstaplar som anger 95% konfidensintervall). Däremot är det oftast slöseri med plats i rapporten att redovisa bakgrundsvariabler, t.ex. andelen män eller andelen rökare, i figurer. Tabeller lämpar sig bättre för sådan redovisning. Arbetsboken i Excel som hör till kapitel 3 i elabbet kan användas för att beräkna medelvärde, standardavvikelse, median, kvartiler och percentiler. Konfidensintervall För utfallsvariabler ska den statistiska osäkerheten beskrivas med hjälp av konfidensintervall. Problem 9.1 på sid. 165 ger god träning i att tolka konfidensintervall. Interaktiva diskussioner av bokens problem finns i elabbet. Konfidensintervall kan exempelvis beräknas för medelvärdet i en undersökningsgrupp (kapitel 6) differensen mellan två medelvärden (kapitel 8) medianvärden (kapitel 9) andelar (kapitel 10) incidenstal (avsnitt 15.2) oddskvoter (avsnitt 15.4) Arbetsböckerna i Excel som hör till kapitel 6, 8, 9, 10 och 15 i elabbet kan användas för att beräkna konfidensintervall enligt listan ovan. Statistikfall nr 9, Rotavirus i Latinamerika, ger träning i att beräkna konfidensintervall för binära utfall.

4 Val av statistiskt test Grundprinciperna i statistisk hypotesprövning beskrivs i kapitel 7. Ett flödesschema som underlättar valet av statistiska test finns i figur 7.1 på sid Goda råd kring val av statistisk metod i olika studiesituationer finns också i faktaruta 1.7 på sid. 29. Avsnitt diskuterar rapportering och tolkning av p-värden. En interaktiv version av flödesschemat ovan finns i elabbet (välj menypunkten Flödesscheman ute i vänsterkanten). Kunskapsfrågorna som hör till kapitel 10 i elabbet ger god träning i att välja rätt statistiskt test i olika studiesituationer. Är du osäker på hur p-värden och konfidensintervall tolkas? Kunskapsfrågor i kapitel 9 kan avhjälpa detta. Epidemiologisk metodik I kapitel 15 finns exempel på tvärsnittsundersökningar (problem 15.1, sid. 287), kohortundersökningar (problem 15.2, sid 289; exempel 15.4; sid 303) och fallkontrollundersökningar (problem 15.4, sid 304; problem 15.7, sid 316). Interaktiva diskussioner av bokens problem finns i elabbet. I fall-kontrollundersökningar beskrivs effekten av exponeringen med hjälp av oddskvoter, se formel 15.4 på sid. 305 i boken samt faktarutor på nästföljande sidor.

5 Överlevnadsanalyser används i kohortundersökningar men också i kliniska prövningar (se avsnitt 15.3 i boken). Dessa analysmetoder kan användas även för andra typer av utfall än överlevnad, t.ex. tid till återfall, tid till graviditet, tid till utskrivning från vårdavdelning etc. Man brukar rita s.k. Kaplan-Merierkurvor för att jämföra överlevnaden i olika grupper: Grupper som jämförs i en epidemiologisk undersökning är sällan jämförbara vilket kan snedvrida resultaten (s.k. confounding; se avsnitt 15.5). Statistisk regressionsmodellering kan användas för att justera resultaten för bristande jämförbarhet mellan grupperna. Om utfallsvariabeln är kontinuerlig (t.ex. blodtryck) används linjär regression (problem 11.5, sid 221; exempel 15.7, sid. 312). Är utfallet binärt används istället logistisk regression (problem 15.7; sid. 316). Bland statistikfallen i elabbet finns ett flertal exempel på epidemiologiska undersökningar. Grundläggande epidemiologiska dataanalyser kan göras med hjälp av arbetsboken i Excel som hör till kapitel 15 i elabbet. En mer omfattande Excel-arbetsbok för epidemiologiska dataanalyser är Episheet som kan laddas ned gratis på Ett bildspel visar hur man kan göra en linjär regressionsanalys (finns under Bonus- och fördjupningsmaterial i menyn ute i vänsterkanten). Statistikprogram måste användas för andra typer av regressionsanalys.

6 Odds Ratio (OR) Oddskvoter (odds ratios) används först och främst i fall-kontrollstudier för att uppskatta den relativa risken, dvs. hur många gånger högre risken att drabbas av sjukdomen är om man utsätts för en viss riskfaktor ("exponerade") jämfört med dem som inte utsatts för riskfaktorn ("oexponerade"). OR är en kvot mellan två odds och uppför sig en aning antiintuitivt när dess storlek inte ligger nära 1 (OR = 0.5 är en lika kraftig effekt av exponeringen som OR = 2). Exempel. Anta att vi i en fall-kontrollstudie jämför förekomsten av en exponering X hos 100 personer som drabbats av en viss sjukdom (fall) med 100 personer som inte drabbats av sjukdom (kontroller, dvs. jämförelsepersoner): Sjukdomsstatus Exponerade Oexponerade Totalt Fall Kontroller Bland fallen är 85 av 100 exponerade. Oddset för exponering bland fallen är därför 85/15. Bland kontrollerna är 35 av 100 exponerade. Oddset för exponering bland kontrollerna är därför 35/65. Oddskvot = Oddset för exponering bland fallen / Oddset för exponering bland kontrollerna = 85/15 / (35/65) 10. En oddskvot på 10 innebär att risken att drabbas av sjukdom är 10 gånger högre om man är exponerad jämfört med om man är oexponerad. Lägg märke till att endast relativa risker (Hur många gånger högre är risken om man är exponerad?) och inte absoluta risker (Hur stor är risken om man är exponerad?) kan skattas direkt utifrån fall-kontrolldata. Anledningen till att absoluta risker inte kan skattas är att förhållandet mellan antalet fall och kontroller är godtyckligt valt. I exemplet ovan valde vi att rekrytera lika många kontroller som fall till studien. Om vi istället hade inkluderat dubbelt så många kontroller som fall hade vi fått lägre andelar sjukdomsfall både bland de exponerade och de oexponerade trots att samma underliggande sjukdomsrisker studeras. Oddskvoten påverkas däremot inte av förhållandet mellan antalet fall och antalet kontroller som inkluderats i studien.

7 Odds Ratio (OR) i genetiska studier I fall-kontrollstudier inom genetisk epidemiologi arbetar man ofta med en multiplikativ riskmodell (kan också benämnas log-additiv eftersom modellen är additiv på logskalan). Denna riskmodell innebär att oddskvoten, dvs. den relativa risken, ökar med en konstant faktor per risk-allel som man har av den genvariant som undersöks. En individ kan ha 0, 1 eller 2 risk-alleler för en given genvariant. En oddskvot på exempelvis 1,5 innebär att man har 1,5 gånger högre risk att drabbas av den studerade sjukdomen om man är bärare av en risk-allel av genvarianten och 1,5 1,5 = 2,25 gånger högre risk om man är bära av två risk-alleler, jämfört med om man inte har någon risk-allel alls av den undersökta genvarianten. Exempel. Anta att vi i en fall-kontrollstudie jämför förekomsten av en genvariant X hos 100 0personer som drabbats av en viss sjukdom (fall) med 1000 personer som inte drabbats av sjukdom (kontroller, dvs. jämförelsepersoner): Antal alleler av genvarianten X Sjukdomsstatus Totalt Fall Kontroller Man kan använda s.k. logistisk regressionsanalys som finns i statistikprogramvara för att räkna ut oddskvoten utifrån en multiplikativ riskmodell tillsammans med 95% konfidensintervall: Oddskvot = 1,375 (95% konfidensintervall 1,16-1,63). Resultatet i exemplet innebär att den uppskattade risken att drabbas av sjukdomen är 1,375 gånger högre (37,5% högre) om man har en allel och 1,375 1, gånger högre (89% högre) om mar två alleler, jämfört om man inte har någon allel alls av genvarianten X. Eftersom konfidensintervallet för oddskvoten i sin helhet är tydligt över ett ger studien starka belägg för att genvarianten ökar sjukdomsrisken. Det är viktigt att vara medveten om att beräkningarna i exemplet ovan bygger på förutsättningen att den valda riskmodellen (multiplikativ riskmodell) är korrekt. Alternativa riskmodeller, ex. dominanta eller recessiva riskmodeller, kan ge andra resultat. Det är därför viktigt att undersöka hur väl den valda riskmodellen stämmer med insamlade data.

Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016

Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016 Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016 Jonas Björk E-post: jonas.bjork@med.lu.se Medicinsk statistik III Innehåll och läsanvisningar Statistik för binära utfall Kapitel 12 Dimensionering

Läs mer

VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK

VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK TERM Analytisk statistik Bias Confounder (förväxlingsfaktor)) Deskriptiv statistik Epidemiologi Fall-kontrollstudie (case-control study)

Läs mer

TENTAMEN TEORI. EXAMENSARBETE 1 (LÄLA53/LÄMA53) TERMIN 5, HT 2012, , kl

TENTAMEN TEORI. EXAMENSARBETE 1 (LÄLA53/LÄMA53) TERMIN 5, HT 2012, , kl TENTAMEN TEORI. EXAMENSARBETE 1 (LÄLA53/LÄMA53) TERMIN 5, HT 2012, 2012-11-27, kl. 09.00-11.00 Namn: Pers.nr: Bokstavskombination: VIKTIGT: Skriv ovannämnda bokstavskombination plus de fyra sista siffrorna

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Epidemiologi (II) Läkarprogrammet Termin 5, VT Lars Rylander. Avdelningen för arbets- och miljömedicin, Lund

Epidemiologi (II) Läkarprogrammet Termin 5, VT Lars Rylander. Avdelningen för arbets- och miljömedicin, Lund Epidemiologi (II) Läkarprogrammet Termin 5, VT 2015 Lars Rylander Avdelningen för arbets och miljömedicin, Lund Epost: Lars.Rylander@med.lu.se Tel: 046 222 1631 Exempel: Sjukdomsmått 1990 2000 2010 Antal

Läs mer

Grundläggande Biostatistik. Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet

Grundläggande Biostatistik. Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet Grundläggande Biostatistik Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet Formell analys Informell data analys Design and mätning Problem Formell analys Informell data analys Hur

Läs mer

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 11, Läkarprogrammet, VT14 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 10, Läkarprogrammet, VT15 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Statistik Termin 10, Läkarprogrammet, HT16

Statistik Termin 10, Läkarprogrammet, HT16 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Statistik Termin 10, Läkarprogrammet, HT16 Martin Cernvall martin.cernvall@pubcare.uu.se Måndag 29/8 -

Läs mer

Medicinsk statistik I

Medicinsk statistik I Medicinsk statistik I Läkarprogrammet T5 VT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Medicinsk statistik Varför behöver Ni kunskap i medicinsk statistik? Självständigt arbete Framtida

Läs mer

EPIDEMIOLOGI. Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell)

EPIDEMIOLOGI. Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell) EPIDEMIOLOGI Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell) Läran om utbredningen av och orsakerna till hälsorelaterade tillstånd eller förhållanden i specifika populationer och tillämpningen

Läs mer

Epidemiologi T5. Kursmål epidemiologi. Kursmål epidemiologi. Kunna förklara och använda grundläggande epidemiologiska begrepp

Epidemiologi T5. Kursmål epidemiologi. Kursmål epidemiologi. Kunna förklara och använda grundläggande epidemiologiska begrepp Epidemiologi T5 Kursmål epidemiologi Kunna förklara och använda grundläggande epidemiologiska begrepp Prevalens Incidens Riskanalys Kursmål epidemiologi Kunna beräkna en diagnostisk metods informationsvärde

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

Resursfördelningsmodellen

Resursfördelningsmodellen PCA/MIH Johan Löfgren Rapport 25-6-26 (6) Resursfördelningsmodellen Växjös skolor våren 25 Inledning Underlag för analyserna utgörs av ett register som innehåller elever som gått ut årskurs nio 2 24. Registret

Läs mer

Studiedesign: Observationsstudier

Studiedesign: Observationsstudier Studiedesign: Observationsstudier Kvantitativa metoder II: Teori och tillämpning Folkhälsovetenskap 4, termin 6 Hanna Hultin hanna.hultin@ki.se Disposition Introduktion Kohortstudie Fall-kontrollstudie

Läs mer

Till ampad statistik (A5) Förläsning 13: Logistisk regression

Till ampad statistik (A5) Förläsning 13: Logistisk regression Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.

Läs mer

Analys av proportioner

Analys av proportioner Analys av proportioner Innehåll Proportion konfidensintervall Jämförelse av två proportioner Två oberoende stickprov Relativ risk Parvisa observationer Jämförelse av tre eller flera proportioner x² (chi-två)

Läs mer

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,

Läs mer

KLEINLEKTION. Område statistik. Lektionens upplägg. Lämplig inom kurserna Matematik 2b och 2c. Engage (Väck intresse) Explore (Upptäck laborera)

KLEINLEKTION. Område statistik. Lektionens upplägg. Lämplig inom kurserna Matematik 2b och 2c. Engage (Väck intresse) Explore (Upptäck laborera) KLEINLEKTION Område statistik. Lämplig inom kurserna Matematik 2b och 2c. Centralt innehåll i Matematik 2b och 2c: Statistiska metoder för rapportering av observationer och mätdata från undersökningar

Läs mer

Statistisk styrka Dimensioneringsberäkningar

Statistisk styrka Dimensioneringsberäkningar Statistisk styrka Dimensioneringsberäkningar Jonas Björk Arbets- och miljömedicin vid Lunds universitet och FoU-centrum Skåne E-post: jonas.bjork@skane.se Tel: 046 17 79 30 FoU-Centrum Skåne (verksamhetschef:

Läs mer

Examinationsuppgift 2014

Examinationsuppgift 2014 Matematik och matematisk statistik 5MS031 Statistik för farmaceuter Per Arnqvist Examinationsuppgift 2014-10-09 Sid 1 (5) Examinationsuppgift 2014 Hemtenta Statistik för farmaceuter 3 hp LYCKA TILL! Sid

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?

Läs mer

Att mäta hälsa och sjukdom med tillgänglig information Kvantitativa metoder II: Teori och tillämpning Folkhälsovetenskap 4, termin 6

Att mäta hälsa och sjukdom med tillgänglig information Kvantitativa metoder II: Teori och tillämpning Folkhälsovetenskap 4, termin 6 Att mäta hälsa och sjukdom med tillgänglig information Kvantitativa metoder II: Teori och tillämpning Folkhälsovetenskap 4, termin 6 Hanna Hultin hanna.hultin@ki.se Disposition Mortalitet Morbiditet Standardisering

Läs mer

LUFTFÖRORENINGAR-DET OSYNLIGA HOTET MOT DEN HAVANDE KVINNAN?

LUFTFÖRORENINGAR-DET OSYNLIGA HOTET MOT DEN HAVANDE KVINNAN? LUFTFÖRORENINGAR-DET OSYNLIGA HOTET MOT DEN HAVANDE KVINNAN? Bakgrund Flera studier har tittat på luftföroreningar och födelsevikt/graviditetslängd. Få har tittat på graviditetskomplikationer. Vad händer

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

17/10/14. Kvantitativ metod och grundläggande statistik. Varför. Epidemiologi

17/10/14. Kvantitativ metod och grundläggande statistik. Varför. Epidemiologi Kvantitativ metod och grundläggande statistik Varför Sjuksköterskans yrkesutövning skall vila på vetenskaplig grund Kritiskt förhållningssätt, att kunna läsa artiklar och bedöma om slutsatser är rimliga

Läs mer

FACIT (korrekta svar i röd fetstil)

FACIT (korrekta svar i röd fetstil) v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta

Läs mer

Namn: Pers.nr: G: Minst 65 % Kod: T5V16 -

Namn: Pers.nr: G: Minst 65 % Kod: T5V16 - TENTAMEN TEORI - EXAMENSARBETE 1 (LÄLA53/LÄMA53) TERMIN 5, VT 2016 2016-04-19 Kl. 09.00-11.00 Namn: Pers.nr: Ma: 63 poäng G: Minst 65 % Kod: T5V16 - Poäng: VIKTIGT! Skriv ovannämnda kodkombination överst

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

Beskrivande statistik Kapitel 19. (totalt 12 sidor)

Beskrivande statistik Kapitel 19. (totalt 12 sidor) Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande

Läs mer

Kvantitativa metoder och datainsamling

Kvantitativa metoder och datainsamling Kvantitativa metoder och datainsamling Kurs i forskningsmetodik med fokus på patientsäkerhet 2015-09-23, Peter Garvin FoU-enheten för närsjukvården Kvantitativ och kvalitativ metodik Diskborsten, enkronan

Läs mer

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik.

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik. Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik Urvalsstorlek Mätnivå/skaltyp Fördelning av data Studiedesign Frida Eek

Läs mer

Introduktion till Biostatistik. Hans Stenlund, 2011

Introduktion till Biostatistik. Hans Stenlund, 2011 Introduktion till Biostatistik Hans Stenlund, 2011 Modellbaserad analys Regression Logistisk regression Överlevnadsanalys Hitta misstag Hantera extremvärden Bortfall Hur samlas data in? Formell analys

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195.

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195. Lägesmått Det kan ibland räcka med ett lägesmått för att beskriva datamaterial Lägesmåttet kan vara bra att använda då olika datamaterial skall jämföras Vilket lägesmått som skall användas: Typvärde Median

Läs mer

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två

Läs mer

Studiedesign och effektmått

Studiedesign och effektmått Studiedesign och effektmått Kohortstudier och randomiserade studier Disposition Mått på association Studiedesign Randomiserade kliniska/kontrollerade prövningar Kohortstudier Mått på sjukdomsförekomst

Läs mer

2011-09-02. Grunderna i epidemiologi. Innehåll: Vad är epidemiologi? Epidemiologins tillämpningsområden

2011-09-02. Grunderna i epidemiologi. Innehåll: Vad är epidemiologi? Epidemiologins tillämpningsområden Innehåll: Grunderna i epidemiologi Vad är epidemiologi? Beskriva 5 olika typer av studiedesign Beskriva 3 olika typer av sjukdomsmått Emilie.agardh@ki.se Diskutera orsaker och samband Varför är epidemiologi

Läs mer

Datorövning 1 Statistik med Excel (Office 2010, svenska)

Datorövning 1 Statistik med Excel (Office 2010, svenska) Datorövning 1 Statistik med Excel (Office 2010, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet

Läs mer

Datorövning 1 Statistik med Excel (Office 2007, svenska)

Datorövning 1 Statistik med Excel (Office 2007, svenska) Datorövning 1 Statistik med Excel (Office 2007, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

Pivottabeller. Del 2. Dan-Rune Hanssen

Pivottabeller. Del 2. Dan-Rune Hanssen Pivottabeller Del 2 Dan-Rune Hanssen Innehållsförteckning Beräknade fält... 3 Använd kalkylbladsfunktioner i beräknade fält... 6 Ändra formel i beräknat fält... 7 Autoformat i pivottabell... 8 Pivotdiagram...

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 2

ÖVNINGSUPPGIFTER KAPITEL 2 ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?

Läs mer

Deskription (Kapitel 2 i Howell) Moment 1: Statistik, 3 poäng

Deskription (Kapitel 2 i Howell) Moment 1: Statistik, 3 poäng Kognitiv psykologi Moment 1: Statistik, 3 poäng VT 27 Lärare: Maria Karlsson Deskription (Kapitel 2 i Howell) Beskrivande mått, tabeller och diagram 1 2 Tabeller Tabell- och kolumnrubriker bör vara fullständiga

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Regressionsanalys handlar om att estimera hur medelvärdet för en variabel (y) varierar med en eller flera oberoende variabler (x). Exempel: Hur

Läs mer

Är sjukvården jämställd och går det åt rätt håll?

Är sjukvården jämställd och går det åt rätt håll? Inledning Som titeln antyder är syftet med den här undersökningen att ta reda på om svensk hälso- och sjukvård är jämställd. Det är en fråga som kan analyseras utifrån olika perspektiv, vilka i huvudsak

Läs mer

Datorövning 1 Statistik med Excel (Office 2007, svenska)

Datorövning 1 Statistik med Excel (Office 2007, svenska) Datorövning 1 Statistik med Excel (Office 2007, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet

Läs mer

POPULATION OCH BORTFALL

POPULATION OCH BORTFALL RAPPORT POPULATION OCH BORTFALL En teknisk rapport om populationen och bortfallet i den internetbaserade Örebro-undersökningen om mobbning vid mätningarna 2012 och 2013. Björn Johansson Working Papers

Läs mer

Föreläsning 1. 732G60 Statistiska metoder

Föreläsning 1. 732G60 Statistiska metoder Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt

Läs mer

Svensk Dialysdatabas. Blodtryck och blodtrycksbehandling PD. Klinikdata hösten 2005 Översikt åren 2002 2005

Svensk Dialysdatabas. Blodtryck och blodtrycksbehandling PD. Klinikdata hösten 2005 Översikt åren 2002 2005 Svensk Dialysdatabas Blodtryck och blodtrycksbehandling PD Klinikdata hösten 5 Översikt åren 2 5 Innehållsförteckning Läsanvisningar och kommentarer...3 Figur 1. Systoliskt BT 5...4 Figur 2. Andel med

Läs mer

Biostatistik har en central roll i epidemiologi

Biostatistik har en central roll i epidemiologi Biostatistik har en central roll i epidemiologi Introduktion till begrepp och metoder utifrån kliniska observationella studier ANDREAS PETTERSSON, med dr, leg läkare, enheten för klinisk epidemiologi,

Läs mer

Multivariabel statistik

Multivariabel statistik Multivariabel statistik beware of the wolf Johan Lindbäck Uppsala Clinical Research Center Kvalitetsregisterforskningskonferens Arlanda 26 maj 2015 J Lindbäck (UCR) Multivariabla modeller 26/5 2015 2/36

Läs mer

Epidemiologi 2. Ragnar Westerling

Epidemiologi 2. Ragnar Westerling Epidemiologi 2 Ragnar Westerling Analytiska studier Syftar till att undersöka vilken/vilka faktorer som ökar risken för sjukdom Två huvudtyper av studier: Kohortstudie Fall-kontrollstudie Kohortstudie

Läs mer

Cancerepidemiologisk forskning kring leukemi och myelodysplastiska syndrom

Cancerepidemiologisk forskning kring leukemi och myelodysplastiska syndrom NFT 3/2000 Cancerepidemiologisk forskning kring leukemi och myelodysplastiska syndrom av Jonas Björk, doktorand i epidemiologi vid Lunds universitet Jonas Björk Leukemi och myelodysplastiska syndrom är

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik 1, 7.5 hp Antal uppgifter: 5 Krav för G: 11 Lärare: Robert Lundqvist, tel

Läs mer

Statistiska undersökningar

Statistiska undersökningar Arbetsgång vid statistiska undersökningar Problemformulering, målsättning Statistiska undersökningar Arbetsgången mm Definition av målpopulation Framställning av urvalsram Urval Utformning av mätinstrument

Läs mer

Statistik Lars Valter

Statistik Lars Valter Lars Valter LARC (Linköping Academic Research Centre) Enheten för hälsoanalys, Centrum för hälso- och vårdutveckling Statistics, the most important science in the whole world: for upon it depends the applications

Läs mer

Svensk Dialysdatabas. Blodtryck och blodtrycksbehandling HD. Klinikdata hösten 2005 Översikt åren 2002 2005

Svensk Dialysdatabas. Blodtryck och blodtrycksbehandling HD. Klinikdata hösten 2005 Översikt åren 2002 2005 Svensk Dialysdatabas Blodtryck och blodtrycksbehandling HD Klinikdata hösten 5 Översikt åren 2 5 Innehållsförteckning Läsanvisningar och kommentarer...3 Figur 1. Systoliskt BT (mm Hg) före dialys...4 Figur

Läs mer

Kodkombination: T5H De sista fyra siffrorna i pers.nr:... Namn: Pers.nr:

Kodkombination: T5H De sista fyra siffrorna i pers.nr:... Namn: Pers.nr: TENTAMEN TEORI. EXAMENSARBETE 1 (LÄLA53/LÄMA53) TERMIN 5, HT 2015 2015-11-24, kl. 09.00-11.00 Namn: Pers.nr: Kodkombination: T5H15 - VIKTIGT: Skriv ovannämnda kodkombination plus de fyra sista siffrorna

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

1 Mätdata och statistik

1 Mätdata och statistik Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt

Läs mer

Grunderna i epidemiologi.

Grunderna i epidemiologi. Grunderna i epidemiologi emilie.agardh@ki.se Innehåll: Vad är epidemiologi? Beskriva 4 olika typer av studiedesign Beskriva 3 olika typer av sjukdomsmått Diskutera orsaker och samband Varför är epidemiologi

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Bilaga 2. Metod logistisk regression

Bilaga 2. Metod logistisk regression 45 Bilaga 2 Metod logistisk regression Till analyserna i avsnitten Vad styr barnlöshet? och Vad styr antal barn? har vi med hjälp av logistiska regressionsmodeller försökt att förklara dels vad det är

Läs mer

TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp

TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp UMEÅ UNIVERSITET Tentamen 2016-08-24 Sid 1 TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp Skrivtid: 16-22 Tillåtna hjälpmedel: Miniräknare. Formelblad och tabeller bifogas till tentamen. Studenterna

Läs mer

Liten handledning i Excel och StarOffice Calc i anslutning till Datorövning 1

Liten handledning i Excel och StarOffice Calc i anslutning till Datorövning 1 STOCKHOLMS UNIVERSITET 2004-11-04 MATEMATISK STATISTIK Sannolikhetslära och statistik för lärare Liten handledning i Excel och StarOffice Calc i anslutning till Datorövning 1 Programmet StarOffice Calc

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Klinisk forskningsmetodik. Olof Akre, läkare, forskare, Enheten för klinisk epidemiologi, KS

Klinisk forskningsmetodik. Olof Akre, läkare, forskare, Enheten för klinisk epidemiologi, KS Klinisk forskningsmetodik Olof Akre, läkare, forskare, Enheten för klinisk epidemiologi, KS Klinisk forskning vad är det? Forskning som sker på sjukhus och/eller på patienter Svarar på patientens frågor:

Läs mer

Statistik för Brandingenjörer. Laboration 1

Statistik för Brandingenjörer. Laboration 1 LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Statistik för Brandingenjörer Laboration 1 Beskrivande statistik VT 2012 2 En marknadsundersökning Bakgrund Uppgiften kommer att omfatta en del av en marknadsundersökning

Läs mer

Datorövning 2 Statistik med Excel (Office 2007, svenska)

Datorövning 2 Statistik med Excel (Office 2007, svenska) Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

Mata in data i Excel och bearbeta i SPSS

Mata in data i Excel och bearbeta i SPSS Mata in data i Excel och bearbeta i SPSS I filen enkät.pdf finns svar från fyra män taget från en stor undersökning som gjordes i början av 70- talet. Ni skall mata in dessa uppgifter på att sätt som är

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2008-12-22 Skrivtid 0900 1400 Tentamen i: Statistik 1, 7.5 hp Antal uppgifter: 5 Krav för G: 11 Lärare: Jour: Robert Lundqvist,

Läs mer

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet.

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet. PM315 HT016 Emma äck Formelsamling Centralmått Typvärde T Median Md ritmetiska medelvärdet Det mest frekventa värdet Det mittersta värdet i en rangordnad fördelning = n Spridningsmått Variationsvidd (Range)

Läs mer

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt. KOD: Kurskod: PC1244 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2013-09-27 Tillåtna hjälpmedel: Miniräknare Tentamen består

Läs mer

Studiedesign MÅSTE MAN BLI FORSKARE BARA FÖR ATT MAN VILL BLI LÄKARE? 2/13/2011. Disposition. Experiment. Bakgrund. Observationsstudier

Studiedesign MÅSTE MAN BLI FORSKARE BARA FÖR ATT MAN VILL BLI LÄKARE? 2/13/2011. Disposition. Experiment. Bakgrund. Observationsstudier Studiedesign eller, hur vet vi egentligen det vi vet? MÅSTE MAN BLI FORSKARE BARA FÖR ATT MAN VILL BLI LÄKARE? Disposition Bakgrund Experiment Observationsstudier Studiedesign Experiment Observationsstudier

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 2

ÖVNINGSUPPGIFTER KAPITEL 2 ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?

Läs mer

Epidemiologi FoU-kurs för ST-läkare

Epidemiologi FoU-kurs för ST-läkare Peter Garvin? Epidemiologi FoU-kurs för ST-läkare Peter Garvin Avdelningen för Samhällsmedicin Inst för Medicin och Hälsa Linköpings universitet Grundutbildning: 95-99 Biologi och

Läs mer

8 Ordlista. Svårbehandlat smärttillstånd 2 3 dagar efter en tanduttagning, Patientens egen redogörelse, t ex för sin sjukdom eller sina symtom.

8 Ordlista. Svårbehandlat smärttillstånd 2 3 dagar efter en tanduttagning, Patientens egen redogörelse, t ex för sin sjukdom eller sina symtom. 8 Ordlista Alveolit Anamnes Bortfall Confounder Distans Svårbehandlat smärttillstånd 2 3 dagar efter en tanduttagning, oftast visdomständer. Patientens egen redogörelse, t ex för sin sjukdom eller sina

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Biostatistik: Begrepp & verktyg. Kvantitativa Metoder II: teori och tillämpning.

Biostatistik: Begrepp & verktyg. Kvantitativa Metoder II: teori och tillämpning. Biostatistik: Begrepp & verktyg Kvantitativa Metoder II: teori och tillämpning Lovisa.Syden@ki.se BIOSTATISTIK att hantera slumpmässiga variationer! BIO datat handlar om levande saker STATISTIK beskriva

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

Institutionen för beteendevetenskap Tel: 0733-633 266 013-27 45 57/28 21 03. Tentamen i kvantitativ metod Psykologi 2 HPSB05

Institutionen för beteendevetenskap Tel: 0733-633 266 013-27 45 57/28 21 03. Tentamen i kvantitativ metod Psykologi 2 HPSB05 Linköpings Universitet Jour; Ulf Andersson Institutionen för beteendevetenskap Tel: 0733-633 266 013-27 45 57/28 21 03 Tentamen i kvantitativ metod Psykologi 2 HPSB05 Torsdagen den 3/5 2007, kl. 14.00-18.00

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 5 Statistiska metoder 1 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2 Introduktion När man beräknar

Läs mer

Skrivning/skriftlig eksamen till statistikdelen av kursen i forskningsmetodik maj 2002

Skrivning/skriftlig eksamen till statistikdelen av kursen i forskningsmetodik maj 2002 Skrivning/skriftlig eksamen till statistikdelen av kursen i forskningsmetodik maj 2002 Skriv läsligt! Utrymmet/pladsen på pappret bör räcka att svara på. Om du fortsätter på något annat ställe, ange detta

Läs mer

Konfidensintervall i populationsbaserade studier varför behövs de? Therese Andersson Sandra Eloranta

Konfidensintervall i populationsbaserade studier varför behövs de? Therese Andersson Sandra Eloranta Konfidensintervall i populationsbaserade studier varför behövs de? Therese Andersson Sandra Eloranta Bakgrund Populations-baserad cancerpatientöverlevnad skattas med hjälp av data från det svenska cancer

Läs mer

1 Grundläggande begrepp vid hypotestestning

1 Grundläggande begrepp vid hypotestestning Matematikcentrum Matematisk statistik MASB11: Biostatistisk grundkurs Datorlaboration 3, 6 maj 2015 Statistiska test och Miniprojekt II Syfte Syftet med dagens laboration är att du ska träna på de grundläggande

Läs mer

Konsten att fånga, sammanfatta och tolka resultat och mätningar. Marie Lindkvist Epidemiologi och global hälsa

Konsten att fånga, sammanfatta och tolka resultat och mätningar. Marie Lindkvist Epidemiologi och global hälsa Konsten att fånga, sammanfatta och tolka resultat och mätningar Marie Lindkvist Epidemiologi och global hälsa Vetenskap Vad är vetenskap? Systematisk kunskap Vad är skillnaden mellan vardaglig kunskap

Läs mer

Studiedesign MÅSTE MAN BLI FORSKARE BARA FÖR ATT MAN VILL BLI LÄKARE? 5/7/2010. Disposition. Studiedesign två huvudtyper

Studiedesign MÅSTE MAN BLI FORSKARE BARA FÖR ATT MAN VILL BLI LÄKARE? 5/7/2010. Disposition. Studiedesign två huvudtyper Gustaf Edgren Post doc, institutionen för medicinsk epidemiologi och biostatistik Läkarstudent, termin 11 gustaf.edgren@ki.se Hur vet vi egentligen vad vi vet? Vad beror skillnaden på? 60 min 20 min 60

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Statistik. Statistik. Statistik. Statistics, Lars Walter. Forsknings- och utvecklingsenheten för närsjukvård. Folkhälsocentrum

Statistik. Statistik. Statistik. Statistics, Lars Walter. Forsknings- och utvecklingsenheten för närsjukvård. Folkhälsocentrum Statistics, the most important science in the whole world: for upon it depends the applications of every other science and of every art: the one science essential for all political and social administration,

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL) Innehåll: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3

Läs mer

Kan fysisk aktivitet förebygga hjärtinfarkt?

Kan fysisk aktivitet förebygga hjärtinfarkt? Kan fysisk aktivitet förebygga hjärtinfarkt? -en prospektiv incident fall-kontrollstudie i ett populationsbaserat material i norra Sverige Patrik Wennberg, Bureå VC Handledare: Jan-Håkan Jansson, Medicin-Geriatrikkliniken,

Läs mer

Svensk Dialysdatabas. Anemibehandling PD. Klinikdata hösten 2005 Översikt åren

Svensk Dialysdatabas. Anemibehandling PD. Klinikdata hösten 2005 Översikt åren Svensk Dialysdatabas Anemibehandling PD Klinikdata hösten 5 Översikt åren 2 5 Innehållsförteckning Läsanvisningar och kommentarer...3 Figur 1. Hb-värden...5 Figur 2. Andel med Hb >100...6 Figur 3. Andel

Läs mer