En studie av särpartiklar

Storlek: px
Starta visningen från sidan:

Download "En studie av särpartiklar"

Transkript

1 En studie av särpartiklar FYSIKUM Stockholms Universitet Målsättning med denna laboration: 1. Bestämma av massan för den negativa sigmapartikeln (Σ ). 2. Bestämma av massan för lambdapartikeln (Λ 0 ). 3. Bestämma av livstiden för lambdapartikeln. 1 Introduktion All den materia som vi ser omkring oss består som bekant av atomer. Dessa i sin tur är uppbyggda av protoner och neutroner, de s.k. nukleonerna, och elektroner. Med dessa byggstenar, och med hjälp av Bohrs atommodell, kan hela det periodiska systemet byggas upp och de olika ämnenas egenskaper förstås. I och med detta föreföll det på 1930-talet som om naturens mest fundamentala beståndsdelar var funna. I slutet av 1940-talet upptäckte man dock i den kosmiska strålningen ett antal nya partiklar som varken var nukleoner eller elektroner. Under de följande årtiondena började man även använda acceleratorer och en hel kaskad nya partiklar upptäcktes, i vad som kunde tyckas vara en aldrig sinande ström. Ju fler partiklar som hittades desto större blev behovet av en modell som kunde beskriva den flora av partiklar man såg. Flera olika modeller lades fram, men den som klarat sig bäst är den s.k. Standard Modellen, SM. Enligt SM består materien omkring oss av leptoner och kvarkar. Leptonerna antas vara punktformiga partiklar till vilka elektronen och dess syskon myonen och tauonen hör. Dessa har alla samma laddning och egenskaper, förutom att muonen och tauonen har mycket större massa än elektronen. Till leptonerna hör också de s.k. neutrinerna som inte har någon laddning, och mycket liten massa. Neutrinerna kommer i par med de andra leptonerna, d.v.s. till elektronen hör en elektronneutrino, till muonen en muonneutrino, och en till tau en tauneutrino. Leptonerna brukar delas in i familjer enligt följande schema ( )( )( ) e µ τ ν e ν µ ν τ Genom att beskjuta protoner med högenergetiska elektroner har man kunnat visa att nukleoner till skillnad från leptonerna har en inre struktur. Enligt SM är nukleonerna uppbyggda av kvarkar, liksom alla de andra s.k. hadronerna. Det finns sex olika kvarkar och dessa har fått namnen up, down, charm, strange, top och bottom (eller upp, ner, charm, sär, topp respektive botten på svenska). Liksom leptonerna brukar även kvarkarna delas upp i familjer ( u d )( c s )( t b Upp, charm och topp har alla laddningen +2/3e, medan de övriga kvarkarnahar laddningen 1/3e. Protonen och neutronen är båda baryoner och består, liksom de andra baryonerna, av tre kvarkar vardera, uud respektive udd. Antibaryoner å andra sidan är uppbyggda av tre antikvarkar, som t.ex. antiprotonen med ūū d (antipartiklar brukar markeras med ett streck ). Till hadronerna hör förutom baryonerna även mesonerna, vilka består av en kvark och en antikvark, som t.ex. K -mesonen (ūs). Uppgift: Kontrollera att protonen och neutronen verkligen får laddningarna +1 respektive 0 enligt kvarkmodellen. 2 Partikelreaktioner I laborationen används bubbelkammarbilder som tagits på CERN. Vid experimentet utnyttjas en stråle av negativa K -mesoner som stoppar i en bubbelkammare fylld med flytande väte, och därvid reagerar med protoner, väteatomens kärna. Vi är i det här experimentet ) 1

2 intresserade av reaktioner där det bildas en lambdapartikel (Λ 0 = uds), eller en negativ sigmapartikel (Σ = dds). Λ 0 kan bl.a. produceras direkt via reaktionerna K +p + Λ 0 +π 0 Λ 0 p + +π. Λ 0 n 0 +π 0. (1) Den instabila lambdapartikeln sönderfaller i 64% av fallen till en proton och en negativ π-meson och i 36% av fallen till en neutron och en neutral π-meson. Det senare sönderfallet är inte synligt i bubbelkammaren eftersom endast laddade partiklar ger upphov till spår av bubblor. Fig. 1 visar schematiskt hur reaktionen ser ut i bubbelkammaren i det fall då Λ 0 sönderfaller till en proton och en π. Lambdapartikeln kan Figure 1: K + p + Λ 0, Λ 0 p + + π, eller K + p + Σ 0 + π 0,Σ 0 Λ 0 + γ,λ 0 p + + π. (Reaktionerna ser likadana ut i bubbelkammaren.) även produceras indirekt via en sigmapartikels sönderfall. Reaktionen är då K +p + Σ 0 +π 0 Σ 0 Λ 0 +γ Λ 0 p + +π (2) Bubbelkammarbilden ser i det här fallet likadan ut som vid direktproduktion av Λ 0. Λ 0 kan även produceras i ett mer komplicerat reaktionsförlopp, där först en Σ produceras vilken sedan i sin tur reagerar meden proton i vätet och producerar en Λ 0. Reaktionsförloppet är då K +p + Σ +π + Σ +p + Λ 0 +n 0 Λ 0 p + +π. (3) Fig. 2 visar hur ett sådant förlopp kan se ut i bubbelkammaren. Ytterligare ett exempel på Σ -produktion är reaktionen K +p + Σ +π + Σ π +n 0. (4) Denna reaktion förväxlas lätt med någon av följande K +p + Σ + +π Σ + p + +π 0 Σ + π + +n 0. (5) Fig. 3 och Fig. 4 visar schematiskt de konfigurationer som de här reaktionerna kan ge upphov till i bubbelkammaren. Dessa reaktioner kan separeras genom att ett magnetfält placerats vinkelrätt mot kammarens bottenplan, vilket gör att laddade partiklar böjer av längs cirkelbanor. Negativt laddade partiklar böjer av i motsatt riktning jämfört med positivt laddade partiklar, vilket ger laddningens tecken. Med hjälp av magnetfältet kan även partiklarnas rörelsemängd bestämmas. 2

3 Figure 2: K +p + Σ +π +,Σ +p + Λ 0 +n 0,Λ 0 p + +π. Figure 3: K +p + Σ +π +,Σ π +n 0. Figure 4: K +p + Σ + +π,σ + p + +π 0. 3 Härledning av formler 3.1 Lambdapartikelns massa Rörelsemängds- och energiekvationerna för reaktionen i Fig. 5 ges av P Λ 2 = P p 2 +P π 2 +2 P p P π cosω (6) E Λ = E p +E π (7) 3

4 Figure 5: Öppningsvinkeln ω. Figure 6: Beskrivning av öppningsvinkeln och röorelsemängdsvektorer. där ω är vinkeln mellan protonen och pimesonen. Med hjälp av det generella sambandet E i 2 = P i 2 c 2 +M i 2 c 4 (8) erhålles ur (6) och (7), efter eliminering av P Λ, M Λ c 2 = M 2 p c 4 +M 2 π c 4 +2{E p E π P p P π c 2 cosω}. (9) Uppgift 1: Härled formel (9). De beteckningar och enheter som vanligtvis används är energin E, som mäts i GeV, rörelsemängden P, som mäts i GeV/c, och massan M, som mäts i GeV/c 2. Observera att dessa enheter är till för att underlätta beräkningarna! Man behöver alltså oftast inte sätta in c (== 1), t.ex. blir energin för en partikel med massan M och rörelsemängden P E = M 2 +P 2 i GeV. 3.2 Öppningsvinkeln ω I de flesta fall kan öppningsvinkeln ω ej mätas direkt. Man kan däremot mäta (se Fig. 6) θ proj = projicerade öppningsvinkeln i ett plan vinkelrätt mot kamerans axel, β p = protonens elevationsvinkel, och β π = pimesonens elevationsvinkel. Öppningsvinkeln ω kan sedan beräknas enligt formeln cosω = cosθ proj cosβ p cosβ π +sinβ p sinβ π. (10) 4

5 Figure 7: K +p + Σ +π Sigmapartikelns massa Vid reaktionerna K +p + Σ ± +π ± är de två utgående sekundärpartiklarna kolinjära, d.v.s. de går ut rygg mot rygg från produktionspunkten (se Fig. 7). Rörelsemängds- och energiekvationerna kan skrivas P Σ = P π (11) M K c 2 +M p c 2 = E Σ +E π, (12) vilket efter eliminering av P Σ ger M Σ c 2 = (M K c 2 +M p c 2 ) 2 +M 2 π c 4 2E π (M K c 2 +M p c 2 ). (13) Detta i sin tur ger mätfelet i massan Uppgift 2: Härled formlerna (13) och (14). σ MΣc 2 = (M Kc 2 +M p c 2 )P π c M Σ c 2 E π σ Pπc. (14) 3.4 Livstiden för Λ 0 -partikeln Sönderfall instabila partiklar följer en expotentialfunktion under tid och partikel s medla livstid, τ, är en charakteristisk egenskap. Det gäller men bara in partikel s vilosystem. Eftersom i laboratoriet partiklar är inte roende är vilosystem s egenskaper inte direkt tillgängliga, man kan men räkna back fran mättvärdena i laborsystem: Lambdapartikeln i Fig. 9 produceras i A, går i riktningen AC och sönderfaller i punkten B. Beteckningarna i figuren och i följande ekvationer är r i = AB = Λ 0 -partikelns tillryggalagda väg före sönderfallet (labsystemet), R i = AC = potentiella längden i kammaren för Λ 0 (labsystemet), t i = tiden för Λ 0 att passera sträckan r i (Λ 0 -partikelns vilosystem), T i = tiden för Λ 0 att passera sträckan R i (Λ 0 -partikelns vilosystem), t i,lab = tiden för Λ 0 att passera sträckan r i (labsystemet), T i,lab = tiden för Λ 0 att passera sträckan R i (labsystemet), τ = livstiden för Λ 0 (Λ 0 -partikelns vilosystem), (Potentiella in den här samband ska förstås som värde om alla Λ 0 sönderfall exakt efter deras medla livstid har gått.) Man kan visa att sannolikheten att en observerad Λ 0 sönderfaller under tiden (t i,t i +dt i ) är f i (t i,τ)dt i = 5 1 i τ e t τ dt 1 e T i i (15) τ

6 [a.u.] time (s) -9 Figure 8: Andel partiklar som inte har sönderfallit under en vis tid. (mättat i partikel s vilosystem) Figure 9: En typisk bubbelkammarreaktion. där nämnaren anger hur stor del av de producerade lambdapartiklarna med potentiella flykttiden T i som sönderfaller i kammaren. Följande samband gäller också t i,lab = r i, (16) v i t i = = t 1 β 2 i γ i, (17) i där v i är Λ 0 -partikelns hastighet, β i = v i /c, och γ i = 1/ 1 β 2 i, vilket ger där t i = r i γ i v i = r im Λ c 2 M Λ β i γ i c 3 = r im Λ c 2 P i c 2 (18) P i = M i β i γ i c. (19) I det aktuella experimentet är de observerade r i -värdena i genomsnitt cirka 2 cm. R i är mer än tio gånger så stor, varför nämnaren i uttrycket (15) blir mycket nära 1. Detta betyder att samtliga producerade Λ 0 sönderfaller i kammaren och att formel (15) kan skrivas f i (t i,τ)dt i = 1 { τ exp t } i dt i. (20) τ 6

7 Ettantalsönderfallstidert 1,t 2,...,t n observeras. Sannolikhetenattobserveradennaserieavsönderfallstider där livstiden är τ betecknas F(t 1,t 2,...,t n,τ), och ges av F(t 1,t 2,...,t n,τ) = n i=1 τ väljes så att denna sannolikhet blir maximal, d.v.s. f i (t i,τ) = 1 { τ n exp ti τ }. (21) df dτ = 0, (22) vilket ger lösningen τ = 1 n n t i, (23) d.v.s. medelvärdet av de observerade livstiderna. Efter insättning av (18) erhålles livstiden som i=1 τ = M Λc 2 nc n i=1 r i P i c, (24) där lambdapartikelns rörelsemängd P i beräknas enligt formel (6). Slutligen ger fortplantningen av mätfelen i beräkningen av τ upphov till följande fel σ τ = M Λc 2 nc n i=1 ( ri P i c ) [ 2 (σri ) 2 + r i ( σpi P i ) 2 ]. (25) Den observerade längden, r i, beräknas längs lambdans väg i rummet. För att kunna beräkna denna längd måste man känna till den projicerade längden i bubbelkammaren i ett plan vinkelrätt mot kameraaxeln (xy-planet) samt lambdans elevationsvinkel, β Λi, relativt detta plan. Vinkeln β Λi kan naturligtvis beräknas om man känner z-koordinaterna för punkterna A och B samt projektionen av r i i Fig. 9. Eftersom längden r i är mycket kort leder denna metod emellertid fram till ett värde på β Λi som har stor standardavvikelse. Bättre resultat erhålls om man från de mätta sönderfallspartiklarna räknar ut β Λi enligt formeln sinβ Λi = P p i sinβ pi +P πi sinβ πi P Λi (26) Uppgift 3: Härled formel (26). Den projicerade längden i bubbelkammaren blir f r i,proj där f är förstoringsfaktorn, och r i,proj är längden av den projicerade bilden. Längden i rummet ges således av 3.5 Identifiering av lambdapartiklar r i = f r i,proj cosβ Λi. (27) En V-formad händelse i bubbelkammaren kan naturligtvis ha bildats på något annat sätt än genom sönderfall av en lambda, t.ex. vid sönderfall av en K 0 -meson eller vid spridning av en partikel. För att eliminera reaktioner som ej utgör lambdasönderfall utföres en enkel test på de mätdata som erhållits. Energi- och rörelsemängdlagarna är uppfyllda om P p, P π och ω uppfyller sambandet (9). För att underlätta denna identifiering har i grafisk form (Diagram 1 i appendix) givits de samband som måste gälla för de tre mätta storheterna, för att händelsen skall kunna förklaras som ett lambdasönderfall. Endast reaktioner som, med hänsyn tagna till mätfel, uppfyller sambanden i Diagram 1 medtages vid fortsatt behandling. 7

8 Figure 10: Bubbelkammaren och de olika kamerornas läge i förhållande till denna. 4 Rörelsemängder, vinklar, z-koordinater m.m. 4.1 Data om bubbelkammaren Bubbelkammarens dimensioner, koordinatsystem och system av referensmärken framgår av Fig. 10. En reaktion fotograferas med hjälp av tre kameror (vy 1, 2 och 3). (Endast en del av kammaren är synlig på bilderna.) Referensmärkenas läge i de tre vyerna framgår av Fig. 11; referensmärkena i bottenplanet (t.ex. x 1 och x 2 ) är mindre och ej rätvinkliga, medan de övre referensmärkena, som finns på insidan av övre glaset, är stora och rätvinkliga. (Dessutom finns ett antal små rätvinkliga referensmärken omgivna av små ljusare kvadrater på utsidan av övre glaset. Dessa har dock ingen betydelse för vårt experiment.) Avståndet mellan referensmärkena x 1 och x 2 är d n = 17.3 cm och avståndet mellan X 7 och X 8 är dö = 19.2 cm, vilket används vid bestämning av den s.k. förstoringsfaktorn (se Fig. 11). Figure 11: Schematisk skiss över vy 1, vy 2 och vy 3. Referensmärkena X 8 och X 9 syns endast i vy 2. Pilan visar K 0 -messonens infallsriktning. 4.2 Bestämning av förstoringsfaktorn. Förstoringsfaktorn, f, erhålles som kvoten mellan det givna avståndet mellan två bestämda referensmärken i kammaren (x 1 och x 2 samt X 7 och X 8, se Sektion 4.1) och det uppmätta avståndet mellan samma referensmärken på den projicerade bilden. f i = d [ ] i cm (28) r i (pixel) Förstoringsfaktorn blir olika för kammarens övre yta (fö) och bottenyta (f n ), men eftersom de studerade reaktionerna i huvudsak ligger i kammarens mitt väljes f = 1 2 (f ö +f n ). (29) 8

9 4.3 Mätning av z-koordinater i kammaren Figure 12: Bestämning av z-koordinater. I Fig. 12, där ABC och A B C är samma reaktion, skall z-koordinaterna för punkterna A, B och C bestämmas. Referensmärkena x 1 och x 2 i vy 1 (x 1 och x 2 i vy 3) finns i kammarens botten (z = 0) och referensmärket X 7 (X 7) i kammarens övre yta (z = 31.5 cm). Verktygen för att spara och flytta punkter i programmet HyperAktiv (se Sektion 6) används för att mäta projektionen av z-koordinaterna. Klicka på verktyget för att spara punkter och markera i vy 1 lägena av de undre referensmärkena x 1 och x 2, det övre X 7, samt punkterna A, B och C. Klicka därefter på verktyget för att flytta punkter och markera sedan x 1 i vy 3. Programmet ritar därefter upp de sparade punkterna i vy 3. Om vy 1 och 3 inte skulle vara parallella, så att x 2 och x 2 inte sammanfaller, kan punkterna som ritas upp justeras med hjälp av en lutningsvinkel. Avståndet mellan projektionerna av samma övre referensmärke (X 7 och X 7) är därvid s 0. Avståndet mellan de två projektionernas läge av en punkt x, vars z-koordinat skall bestämmas, kallas s x (t.ex. avståndet AA, BB eller CC ). Då blir z-koordinaten för punkten x z x = s x s cm. (30) Specialfall: Om s x == 0 eller s x == s 0 ligger punkten i bottenplanet respektive i övre ytan. Om denna punkt utgör ändpunkten av ett observerat spår betyder detta att partikeln lämnar bubbelkammaren. Omvänt är villkoret för att en partikel stannar i kammaren att 0 < s x < s 0 för spårets slutpunkt. Detta är väsentligt att kunna fastställa vid val av metod för bestämning av partikelns rörelsemängd. 4.4 Bestämning av elevationsvinkeln för ett spår Antag att elevationsvinkeln β för spåret AC i Fig. 12 skall fastställas. I vy 2 (som är mest vinkelrät mot magnetfältet) bestämmes den projicerade längden, r proj. Med hjälp av Sektion 4.3 bestämmes z-koordinaterna för A och C. Följande ekvation ger sedan den sökta vinkeln tanβ = z C z A f r proj. (31) 4.5 Bestämning av en partikels rörelsemängd. Rörelsemängden bestämmes ur räckvidden om partikeln stoppar i bubbelkammaren, annars ur krökningsradien. 9

10 4.5.1 Bestämning av rörelsemängden ur räckvidden I Diagram 2 (i appendix) finns å skådliggjort sambandet mellan räckvidd i flytande väte och rörelsemängd för olika partiklar. Räckvidden ges av R 0 = f R m cosβ, (32) där R m är den projicerade räckvidden mätt i vy 2. (OBS! Krökt sträcka.) Motsvarande rörelsemängd avläses ur Diagram Bestämning av rörelsemängden ur krökningsradien Ett kraftigt magnetfält(15.5 kilogauss) riktat längs z-axeln gör att laddade partiklar följer en cirkelformad bana i xy-planet. Banans radie, ρ, är ett mått på partikelns rörelsemängd. Följande samband gäller P m (MeV/c) = konst f ρ cosβ (33) Uppgift 4: Visa att konstanten är 465 kg 1 s 1 m 2 i detta fall. Den mätta rörelsemängden utgör ett medelvärde av rörelsemängden över den sträcka av spåret som anpassats till en cirkelbåge. Denna rörelsemängd kan därför anses gälla för mittpunkten av det mätta spårelementet. Rörelsemängden vid spårets början beräknas genom att ur Diagram 2 avläsa vilken medel-räckvidd i flytande väte, R m, som P m motsvarar. Den potentiella räckvidden i reaktionspunkten erhålles sedan genom att till den från Diagram 2 erhållna räckvidden addera halva längden av den mätta cirkelbågen L ρ (korrigerad på grund av spårets elevationsvinkel och multiplicerad med faktorn f), d.v.s. R 0 = R m + L ρ 2 f cosβ. (34) Med denna korrigerade potentiella räckvidd erhålles sedan partikelns rörelsemängd genom att återigen avläsa Diagram 2. Detta låter krångligare än vad det är, men det är nödvändigt så missa det inte. 10

11 5 Utförandet av experimentet För att visa bubbelkammarbilderna och utföra mätningar på dem används programmet HyperAktiv som beskrivs utförligt i Sektion 6. För in uppmätta data i programmets tabeller efter hand. 5.1 Massan för den negativa sigmapartikeln 1. Sök rätt på en reaktion där en Σ produceras och där pimesonens spår är tillräckligt långt för att möjliggöra mätning av rörelsemängden. Kontrollera att sigmapartikeln och pimesonen är kolinjära. Undvik att mäta på reaktioner där partiklarna bildar stor vinkel med xy-planet, d.v.s. reaktioner där den observerade längden av sigmapartikelns spår är mycket kort. Utför punkt 2 9 nedan för cirka fem Σ. 2. Mät avståndet mellan de nedre referensmärkena x 1 och x 2 samt de övre X 7 och X 8. Beräkna förstoringsfaktorn f (formel 29). Uppskatta felet i f. 3. Mät s 0, d.v.s. avståndet mellan de projicerade bilderna av samma övre referensmärke X 7, enligt metoden i sektion Gör en enkel figur (vy 2) över reaktionen; notera laddning på sigmapartikeln och pimesonen. 5. Mät i vy 2 ρ = pimesonens krökningsradie (uppskatta felet i ρ), = den projicerade längd över vilken ρ beräknats. (OBS! Krökt sträcka.) L ρ 6. Mät i enlighet med Sektion 4.3 s x för pimesonens startpunkt och en punkt längs spåret, d.v.s stopppunkten, en δ-elektron, eller en karakteristisk bubbla som går att känna igen i alla tre vyerna. 7. Mät i vy 2 det projicerade avståndet mellan de två punkter på pimesonspåret för vilka s x fastställts. (OBS! Krökt sträcka.) 8. Beräkna z-koordinaterna (formel 30), β π (formel 31), P π (formel 32 + Diagram 2 om du har med π-spårets stopp-punkt, annars formel 33 + Diagram 2 + formel 34 + Diagram 2 se Sektion 4.5). Uppskatta felet i P π. 9. Beräkna massan för Σ med fel (formel 13 och 14). 5.2 Lambdapartikelns massa och livstid 10. Sök rätt på fem Λ 0 -kandidater. Behandla dessa fem lambdakandidater enligt nedan (punkt 11 20). 11. Mät avståndet mellan de nedre referensmärkena x 1 och x 2 samt de övre X 7 och X 8. Beräkna förstoringsfaktorn f (formel 29). Uppskatta felet i f. 12. Mät s 0, d.v.s. avståndet mellan de projicerade bilderna av samma övre referensmärke X 7, enligt metoden i sektion Rita en enkel figur över reaktionen (vy 2). 14. Mät i vy 2 följande storheter θ proj = den projicerade öppningsvinkeln mellan p och π vid produktionspunkten. r Λ,proj = den projicerade längd Λ 0 tillryggalagt före sönderfallet, r p,proj = protonens projicerade räckvidd (protonen stannar alltid), ρ = pimesonens krökningsradie. = den projicerade längd över vilken ρ beräknats. L ρ 15. Mät i enlighet med Sektion 4.3 s x för lambdans produktions- och sönderfallspunkt, protonens stopppunkt och en karakteristisk punkt på pimesonspåret (se punkt 6). 11

12 16. Mät i vy 2 det projicerade avståndet mellan de två punkter på pimesonspåret för vilka s x fastställts. (OBS! Krökt sträcka.) 17. Beräkna z-koordinaterna (formel 30), β p och β π (formel 31), ω (formel 10), P p (formel 32 + Diagram 2), P π (formel 32 + Diagram 2 eller formel 33 med korrektion se punkt 8 ovan.) 18. Kontrollera i Diagram 1 att reaktionen utgör ett lambdasönderfall (gäller alla lambdorna). 19. Beräkna P Λ (formel 6), M Λ (formel 9), β Λ (formel 26), r Λ (formel 27). 20. Beräkna livstiden τ (formel 24) med standardavvikelse (formel 25). Uppgift 5: Om många lambdasönderfall mätes erhålles följande rörelsemängdsfördelning för Λ 0. Försök attförklarafördelningensutseendemedutgångspunktfråndeolikareaktionervidvilkaλ 0 kanproduceras (se Sektion 2). Figure 13: Rörelsemängdsfördelning för Λ 0. 6 Bruksanvisning för programmet HyperAktiv Det interaktiva programmet HyperAktiv är skrivet i MATLAB och har verktyg för att visa de tre olika vyerna i bubbelkammaren och utföra mätningar och beräkningar. 6.1 Allmänt om programmet Det interaktiva programmet körs i MATLAB och startas med kommandot: >> HyperAktiv Programmet är uppbyggt som ett kontrollbord som består av knappar, rullgardinsmenyer, dragreglar och rutor för inmatning av värden. Kontrollbordet består i huvudsak av tre fält, som visas i figur 14. I fält I, som upptar ungefär hälften av kontrollbordets yta, visas antingen bubbelkammarbilder eller tabeller. Fält II och III består av kontroller och dessa beskrivs i avsnitt 6.2 och 6.3 nedan. 12

13 I II III Figure 14: Kontrollbordets tre delar. I fält I visas bubbelkammarbilder och tabeller. I fält II och III finns olika typer av kontroller. 6.2 Att titta på bubbelkammarbilderna I fält II finns kontroller som används för att titta på bubbelkammarbilderna. Välj en kontroll genom att klicka på den med musen. Kontrollerna i detta fält beskrivs nedan: Ladda bilder Använd denna knapp för att ladda in de tre vyer som avbildar vald händelse. Välj händelse Välj händelse att studera antingen genom att dra i dragregeln eller skriva in den önskade händelsens nummer i rutan. Det finns 70 händelser att välja mellan. Välj vy eller tabell Välj mellan antigen någon av de tre vyerna eller någon av de två tabellerna genom att klicka på knapparna. Tabellerna beskrivs mer utförligt i avsnitt 6.4. Zoom Aktivera zoomen genom att klicka på zoomknappen. Knappen kommer då att visa Zoom på. Zooma in eller ut genom att klicka i bilden med vänster respektive höger musknapp. För att zooma in ett eget valt område: placera muspekaren på bilden och håll sedan in vänster musknapp och dra till önskad storlek. För att avaktivera verktyget klicka på zoomknappen en andra gång. Knappen kommer då att visa Zoom av. Klicka på återställknappen för att återfå de ursprungliga proportionerna. Välj markör Välj markörtyp och markörfärg bland alternativen i respektive rullgardinsmeny. Välj linje Välj linjetyp och linjefärg bland alternativen i respektive rullgardinsmeny. Avsluta Denna knapp avslutar programmet. 6.3 Att använda verktygen I fält III finns fem verktyg för att göra mätningar på bilderna. Välj ett verktyg genom att klicka på det med musen. Verktygen beskrivs nedan: Mät koordinater Mät koordinaterna för en punkt genom att markera den i bilden. Mät avstånd Mät avståndet mellan två punkter genom att markera dem i bilden. 13

14 Mät vinklar Mät vinkeln ABC genom att markera tre punkter A, B och C i bilden. Resultatet av mätningen och dess komplementvinkel visas i grader. Anpassa cirkelbåge. Anpassa en cirkelbåge till punkter markerade i bilden. Antalet punkter i anpassningen kan ändras med hjälp av den intilliggande dragregeln. Resultatet av mätningen ger den anpassade cirkelbågens radie ρ och längd L ρ. Cirkelbågens längd beräknas från den först till den sist markerade punkten. Spara och flytta punkter Markera de punkter i bilden som skall sparas och sedan förflyttas. Antalet punkter som skall sparas kan ändras med hjälp av den intilliggande dragregeln. Välj verktyget för att flytta punkter och markera därefter en punkt i bilden dit de sparade punkterna ska flyttas. De sparade punkterna ritas sedan upp utifrån den markerade punkten. Verktyget kan även rita de flyttade punkterna så att de lutar i en viss vinkel i förhållande till de sparade punkterna. Lutningsvinkeln i grader ska då skrivas in i den intilliggande rutan. Programmet kan även hantera negativa vinklar. Verktygen för att spara och flytta punkter kan framför allt användas för att bestämma s X (se sektion 4.3) som i sin tur används för att beräkna en punkts z-koordinat. 6.4 Att använda tabellerna Det finns två tabeller att välja mellan: sigma eller lambda. Med hjälp av tabellerna kan massor och livstider för de två hyperonerna enkelt beräknas. Anteckna mätvärdena i tabellerna och tryck sedan på beräkningsknappen. Följande knappar är gemensamma för de båda tabellerna: Beräkna Beräknamassorochlivstidergenomatttryckapådennaknapp. Ävenendelandraanvändbara storheter, som rörelsemängder och vinklar, beräknas vid knapptryckningen. Av utrymmesskäl skrivs dock dessa resultat inte ut på skärmen. Då data sparas till en fil skrivs även dessa resultat till filen. De massor och livstider som anges i tabellernas nedre del är medelvärden. En rad med data kan exkluderas från beräkningarna genom att värdet i händelsekolumnen sätts till 0. Spara Spara en tabells innehåll i en fil. Även delresultat från programmets beräkningar, som inte syns på skärmen, skrivs till filen. Kom ihåg att spara data och resultaten av programmets beräkningar regelbundet! Ladda Ladda in en tabell från en fil. Sigmatabellens data Följande värden skall antecknas i sigmatabellen: händelse = händelsens nummer D12 = avståndet mellan de nedre referensmärkena x 1 och x 2 D78 = avståndet mellan de övre referensmärkena X 7 och X 8 s 0 = s X för det övre referensmärket X 7 ρ = krökningsradien L ρ = den projicerade längd över vilken ρ bestämts, OBS! krökt sträcka = s X för pionens produktionspunkt π p π k = s X för pionens karakteristiska punkt r proj = π p π k = det projicerade avståndet mellan π p och π k, (OBS! krökt sträcka) Lambdatabellens data Följande värden skall antecknas i lambdatabellen: 14

15 händelse = händelsens nummer D12 = avståndet mellan de nedre referensmärkena x 1 och x 2 D78 = avståndet mellan de övre referensmärkena X 7 och X 8 s 0 = s X för det övre referensmärket X 7 ρ = krökningsradien L ρ = den projicerade längd över vilken ρ bestämts, OBS! krökt sträcka Λ p = s X (se figur 11 i laborationshandledningen) för Λ 0 -partikelns produktionspunkt Λ s = s X för Λ 0 -partikelns stoppunkt p s = s X för protonens stoppunkt π k = s X för pionens karakteristiska punkt r proj = Λ p Λ s = det projicerade avståndet mellan Λ p och Λ s, OBS! spåret är neutralt Λ s p s = det projicerade avståndet mellan Λ s och p s Λ s π k = det projicerade avståndet mellan Λ s och π k, OBS! krökt sträcka 15

16 7 Redovisning Redovisningen av laborationen skall som brukligt inkludera in en strukturerad set: en inledande sammanfattning (abstract), kort teoretisk bakgrund, frågeställning, beskrivning av experimentet 1, metod, analys, resultat och diskussion. Utöver detta skall redovisningen även innehålla: (a) Lösningar på uppgifterna 1 4 i laborationsinstruktionen. (Uppgift 5 är överkurs.) (b) En beräkning för hand av massa och flyktid (time of flight) hos en lambdapartikel. En beräkning av massan och osäkerheten i massaberäkningen hos en sigmapartikel. Redovisa alla steg i beräkningarna. (c) En beräkning för hand av lambdapartikelns livstid(lifetime) samt osäkerheten i densamma(formel 23 och 24). Här använder ni data från alla lambdahändelser ni studerat. Vid beräkningarna kan resultat(t.ex. rörelsemängder) från dataprogrammet användas. Dessa återfinns i txt-filen som ni sparat under laborationens gång. På detta vis slipper man alltså återupprepa punkt b för alla lambdahändelser. (d) Uppmätta data samt resultaten av dataprogrammets beräkningar. Här räcker det med en tabelarisk utskrift. OBS! Om laborationen redovisas muntligt så skall resultatet av punkterna a-d ovan ändå lämnas in i kort form skriftligt till assistenten. /L.L. -99 /J.J. -04 /B.N. -08 /M.Z En trevlig beskrivning av bubbelkammarexperiment finns under denna länk: 16

17

18

En studie av särpartiklar

En studie av särpartiklar En studie av särpartiklar FYSIKUM Stockholms Universitet (updated Nov 2012 MZ) Målsättning med denna laboration: 1. Bestämma av massan för den negativa sigmapartikeln (Σ ). 2. Bestämma av massan för lambdapartikeln

Läs mer

Standardmodellen. Figur: HANDS-ON-CERN

Standardmodellen. Figur: HANDS-ON-CERN Standardmodellen Den modell som sammanfattar all teoretisk kunskap om partikelfysik i dag kallas standardmodellen. Standardmodellen förutspådde redan på 1960-talet allt det som man i dag har lyckats bevisa

Läs mer

Higgsbosonens existens

Higgsbosonens existens Higgsbosonens existens Ludvig Hällman, Hanna Lilja, Martin Lindberg (9204293899) (9201120160) (9003110377) SH1012 8 maj 2013 Innehåll 1 Sammanfattning 2 2 Standardmodellen 2 2.1 Kraftförmedlarna.........................

Läs mer

Theory Swedish (Sweden)

Theory Swedish (Sweden) Q3-1 Large Hadron Collider (10 poäng) Läs anvisningarna i det separata kuvertet innan du börjar. I denna uppgift kommer fysiken i partikelacceleratorn LHC (Large Hadron Collider) vid CERN att diskuteras.

Läs mer

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5

Läs mer

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5

Läs mer

Introduktion till partikelfysik. CERN Kerstin Jon-And Stockholms universitet

Introduktion till partikelfysik. CERN Kerstin Jon-And Stockholms universitet Introduktion till partikelfysik CERN 2008-10-27 Kerstin Jon-And Stockholms universitet elektron (-1) 1897 Thomson (Nobelpris 1906) 1911 Rutherford (Nobelpris kemi 1908!) proton +1 1919 Rutherford neutron

Läs mer

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten

Läs mer

Higgspartikeln. och materiens minsta beståndsdelar. Johan Rathsman Teoretisk Partikelfysik Lunds Universitet. NMT-dagar i Lund

Higgspartikeln. och materiens minsta beståndsdelar. Johan Rathsman Teoretisk Partikelfysik Lunds Universitet. NMT-dagar i Lund och materiens minsta beståndsdelar Teoretisk Partikelfysik Lunds Universitet NMT-dagar i Lund 2018-03-14 Översikt 1 och krafter 2 ska partiklar och krafter 3 på jakt efter nya partiklar 4 och krafter materiens

Läs mer

Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar

Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar 1. Den ryska fysikern P.A. Čerenkov upptäckte att om en partikel rör sig snabbare än ljuset i ett medium, ger den ifrån sig ljus. Denna effekt

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner Bevarandelagar i reaktioner MP 13-3 Elementarpartiklarnas periodiska system Standard Modellen och kraftförening MP 13-4 Vad härnäst? MP 13-5

Läs mer

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar elativitetsteorins grunder, våren 2016 äkneövning 6 Lösningar 1. Gör en Newtonsk beräkning av den kritiska densiteten i vårt universum. Tänk dig en stor sfär som innehåller många galaxer med den sammanlagda

Läs mer

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T.

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T. 1. En elektron rör sig med v = 100 000 m/s i ett magnetfält. Den påverkas av en kraft F = 5 10 15 N vinkelrätt mot rörelseriktningen. Rita figur och beräkna den magnetiska flödestätheten. Förslag: En laddad

Läs mer

Tentamen i FUF050 Subatomär Fysik, F3

Tentamen i FUF050 Subatomär Fysik, F3 Tentamen i FUF050 Subatomär Fysik, F3 Tid: 013-05-30 fm Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

Lösningsförslag Inlämningsuppgift 1 elstatikens grunder

Lösningsförslag Inlämningsuppgift 1 elstatikens grunder Inst. för fysik och astronomi 017-11-08 1 Lösningsförslag Inlämningsuppgift 1 elstatikens grunder Elektromagnetism I, 5 hp, för ES och W (1FA514) höstterminen 017 (1.1) Laddningen q 1 7,0 10 6 C placeras

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen

Läs mer

Fysikum Kandidatprogrammet FK VT16 DEMONSTRATIONER MAGNETISM II. Helmholtzspolen Elektronstråle i magnetfält Bestämning av e/m

Fysikum Kandidatprogrammet FK VT16 DEMONSTRATIONER MAGNETISM II. Helmholtzspolen Elektronstråle i magnetfält Bestämning av e/m DEMONSTRATIONER MAGNETISM II Helmholtzspolen Elektronstråle i magnetfält Bestämning av e/m Uppdaterad den 10 november 015 Introduktion I litteraturen och framför allt på webben kan du enkelt hitta ett

Läs mer

Tentamen: Atom och Kärnfysik (1FY801)

Tentamen: Atom och Kärnfysik (1FY801) Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

Lösningar del II. Problem II.3 L II.3. u= u MeV = O. 2m e c2= MeV. T β +=

Lösningar del II. Problem II.3 L II.3. u= u MeV = O. 2m e c2= MeV. T β += Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett γ

Läs mer

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i Modern fysik, TFYA11/TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 29/8 2013 kl. 14.00-18.00 i TER2 Tentamen består av 2 A4-blad (inklusive detta)

Läs mer

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik en ny värld av partiklar att upptäcka, Lunds Universitet NMT-dagar, Lund, 2014-03-10 1 i fysik 2 och krafter 3 ska partiklar och krafter 4 på jakt efter nya partiklar Newtons 2:a lag i fysik Newtons andra

Läs mer

Preliminärt lösningsförslag till Tentamen i Modern Fysik,

Preliminärt lösningsförslag till Tentamen i Modern Fysik, Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs

Läs mer

14. Elektriska fält (sähkökenttä)

14. Elektriska fält (sähkökenttä) 14. Elektriska fält (sähkökenttä) För tillfället vet vi av bara fyra olika fundamentala krafter i universum: Gravitationskraften Elektromagnetiska kraften, detta kapitels ämne Orsaken till att elektronerna

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det

Läs mer

r 2 C Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 C Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

Andra EP-laborationen

Andra EP-laborationen Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med

Läs mer

Föreläsning 12 Partikelfysik: Del 1

Föreläsning 12 Partikelfysik: Del 1 Föreläsning 12 Partikelfysik: Del 1 Vad är de grndläggande delarna av material? Hr växelverkar de med varandra? Partikelkolliderare Kvarkar Gloner Vi är nästan i sltet av historien Med den här krsen har

Läs mer

Dopplereffekt och lite historia

Dopplereffekt och lite historia Dopplereffekt och lite historia Outline 1 Lite om relativitetsteorins historia 2 Dopplereffekt och satelliter 3 Dopplereffekt och tidsdilatation L. H. Kristinsdóttir (LU/LTH) Dopplereffekt och lite historia

Läs mer

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

Partikelfysik och Kosmologi

Partikelfysik och Kosmologi Partikelfysik Partikelfysik och Kosmologi Materiepartiklar (spinn = ½ ): kvarkar och leptoner Leptoner ν e e Laddning massa leptontal ingen < 3 ev/c 2 L e = + 1-1 511 kev/c 2 L e = + 1 upp ner Kvarkar

Läs mer

BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin

BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag till Repetitionsuppgifter BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/

Läs mer

Dubbelintegraler och volymberäkning

Dubbelintegraler och volymberäkning ubbelintegraler och volymberäkning Volym och dubbelintegraler över en rektangel Alla funktioner nedan antas vara kontinuerliga. Om f (x) i intervallet [a, b], så är arean av mängden {(x, y) : y f (x),

Läs mer

Integraler av vektorfält Mats Persson

Integraler av vektorfält Mats Persson Föreläsning 1/8 Integraler av vektorfält Mats Persson 1 Linjeintegraler Exempel: En partikel rör sig längs en kurva r(τ) under inverkan av en kraft F(r). i vill då beräkna arbetet som kraften utövar på

Läs mer

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall

Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även

Läs mer

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00 FK2003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du

Läs mer

Uppdrag för LEGO projektet Hitta en vattensamling på Mars

Uppdrag för LEGO projektet Hitta en vattensamling på Mars LEGO projekt Projektets mål är att ni gruppvis skall öva på att genomföra ett projekt. Vi använder programmet LabVIEW för att ni redan nu skall bli bekant med dess grunder till hjälp i kommande kurser.

Läs mer

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik en ny värld av partiklar att upptäcka, Lunds Universitet NMT-dagar, Lund, 2011-03-10 1 i fysik 2 och krafter 3 ska partiklar och krafter 4 på jakt efter nya partiklar Newtons 2:a lag i fysik Newtons andra

Läs mer

Laborationsrapport. Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A. 22 april Ballistisk pendel

Laborationsrapport. Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A. 22 april Ballistisk pendel Laborationsrapport Ballistisk pendel Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A 22 april 2017 1 1 Introduktion Den här laborationen genomförs för att undersöka en pils hastighet innan den

Läs mer

1.5 Våg partikeldualism

1.5 Våg partikeldualism 1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens

Läs mer

s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2?

s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2? FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 7e mars 018, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar

Läs mer

Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen

Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk

Läs mer

Repetition kapitel 1, 2, 5 inför prov 2 Ma2 NA17 vt18

Repetition kapitel 1, 2, 5 inför prov 2 Ma2 NA17 vt18 Repetition kapitel,, 5 inför prov Ma NA7 vt8 Prov tisdag 5/6 8.00-0.00 Algebra När man adderar eller subtraherar uttryck, så räknar man ihop ensamma siffror för sig, x-termer för sig, och eventuella x

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Materiens Struktur Räkneövning 4 Lösningar 1. Sök på internet efter information om det senast upptäckta grundämnet. Vilket masstal och ordningsnummer har det och vilka är de angivna egenskaperna? Hur har

Läs mer

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R 1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,

Läs mer

Lösningar del II. Problem II.3 L II.3. u u MeV O. 2m e c2= MeV T += MeV Rekylkärnans energi försummas 14N

Lösningar del II. Problem II.3 L II.3. u u MeV O. 2m e c2= MeV T += MeV Rekylkärnans energi försummas 14N Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett kvantum

Läs mer

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00 FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 015, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av:

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av: Hållfasthetslära Böjning och vridning av provstav Laboration 2 Utförs av: Habre Henrik Bergman Martin Book Mauritz Edlund Muzammil Kamaly William Sjöström Uppsala 2015 10 08 Innehållsförteckning 0. Förord

Läs mer

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 17 mars 2017 8:00 12:00 Tentamen består av 6 uppgifter som vardera kan ge upp till 4

Läs mer

ALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och " kan beskriva rörelsen i ett xyplan,

ALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och  kan beskriva rörelsen i ett xyplan, KOMIHÅG 8: --------------------------------- Rörelsemängd: p = mv, Kinematiska storheter: r ( t), v ( t), a ( t) Kinematiska samband med begynnelsevillkor 1 Föreläsning 9: ALTERNATIVA KOORDINATSYSTEM -Cylindriska

Läs mer

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4.

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4. Moment 4.2.1, 4.2.2, 4.2., 4.2.4 Viktiga exempel 4.1, 4., 4.4, 4.5, 4.6, 4.1, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4., 4.4, 4.5, 4.7 Många av de objekt man arbetar med i matematiken och naturvetenskapen

Läs mer

Vektorgeometri. En vektor v kan representeras genom pilar från en fotpunkt A till en spets B.

Vektorgeometri. En vektor v kan representeras genom pilar från en fotpunkt A till en spets B. Vektorgeometri En vektor v kan representeras genom pilar från en fotpunkt A till en spets B. Två pilar AB, A B tilllhör samma vektor om de har samma riktning och samma längd. Vi skriver v = AB = B A B

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Övningar. Nanovetenskapliga tankeverktyg.

Övningar. Nanovetenskapliga tankeverktyg. Övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Gör en skiss av funktionen f(t) = t, t [ π, π] (med period 2π) och beräkna dess fourierserie. 2. Gör en skiss

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Om ellipsen och hyperbelns optiska egenskaper

Om ellipsen och hyperbelns optiska egenskaper Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer

Läs mer

Lösningar till utvalda uppgifter i kapitel 1

Lösningar till utvalda uppgifter i kapitel 1 Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSKPRS FNALTÄVLNG 3 maj 2014 SVENSKA FYSKERSAMFUNDET LÖSNNGSFÖRSLAG 1. a) Fasförskjutningen ϕ fås ur P U cosϕ cosϕ 1350 1850 ϕ 43,1. Ett visardiagram kan då ritas enligt figuren nedan. U L

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

1. Mätning av gammaspektra

1. Mätning av gammaspektra 1. Mätning av gammaspektra 1.1 Laborationens syfte Att undersöka några egenskaper hos en NaI-detektor. Att bestämma energin för okänd gammastrålning. Att bestämma den isotop som ger upphov till gammastrålningen.

Läs mer

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Tisdagen den 27:e maj 2008, kl 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

Partiklars rörelser i elektromagnetiska fält

Partiklars rörelser i elektromagnetiska fält Partiklars rörelser i elektromagnetiska fält Handledning till datorövning AST213 Solär-terrest fysik Handledare: Magnus Wik (2862125) magnus@lund.irf.se Institutet för rymdfysik, Lund Oktober 2003 1 Inledning

Läs mer

4-8 Cirklar. Inledning

4-8 Cirklar. Inledning Namn: 4-8 Cirklar Inledning Du har arbetat med fyrhörningar (parallellogrammer) och trehörningar (trianglar). Nu skall du studera en figur som saknar hörn, och som består av en böjd linje. Den kallas för

Läs mer

Väteatomen. Matti Hotokka

Väteatomen. Matti Hotokka Väteatomen Matti Hotokka Väteatomen Atom nummer 1 i det periodiska systemet Därför har den En proton En elektron Isotoper är möjliga Protium har en proton i atomkärnan Deuterium har en proton och en neutron

Läs mer

===================================================

=================================================== AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avståndet mellan två punkter Låt A ( x1, och B ( x, y, z) vara två punkter i rummet Avståndet d mellan A och B är d AB ( x z x1)

Läs mer

Christian Hansen CERN BE-ABP

Christian Hansen CERN BE-ABP Christian Hansen CERN BE-ABP LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision 1952

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. XYZ Matematisk problemlösning

Läs mer

Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola

Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Tid: Måndagen 5/3-2012 kl: 8.15-12.15. Hjälpmedel: Räknedosa. Bifogad formelsamling. Lösningar: Lösningarna skall vara väl

Läs mer

Laborationsuppgift om Hertzsprung-Russell-diagrammet

Laborationsuppgift om Hertzsprung-Russell-diagrammet Laborationsuppgift om Hertzsprung-Russell-diagrammet I denna uppgift kommer du att tillverka ett HR-diagram för stjrärnorna i Orions stjärnbild och dra slutsatser om stjärnornas egenskaper. HR-diagrammet

Läs mer

Karta över Jorden - viktigt exempel. Sfär i (x, y, z) koordinater Funktionen som beskriver detta ser ut till att vara

Karta över Jorden - viktigt exempel. Sfär i (x, y, z) koordinater Funktionen som beskriver detta ser ut till att vara Föreläsning 1 Jag hettar Thomas Kragh och detta är kursen: Flervariabelanalys 1MA016/1MA183. E-post: thomas.kragh@math.uu.se Kursplan finns i studentportalens hemsida för denna kurs. Där är två spår: Spår

Läs mer

Kvantmekanik. Kapitel Natalie Segercrantz

Kvantmekanik. Kapitel Natalie Segercrantz Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!

Läs mer

Poincarés modell för den hyperboliska geometrin

Poincarés modell för den hyperboliska geometrin Poincarés modell för den hyperboliska geometrin Niklas Palmberg, matrikelnr 23604 Uppsats för kandidatexamen i naturvetenskaper Matematiska institutionen Åbo Akademi 12.2.2001 Innehåll 1 Presentation av

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

Murray Gell-Mann och

Murray Gell-Mann och Matriser Institute of Geometry, Algebra and Topology Ecole Polytechnique Fédérale de Lausanne Sonja Kovalevskydagarna Uppsala, den 7 november 2008 Matriser Översikt 1 Matriser 2 Matriser 3 Kvarkar Kvarkar

Läs mer

Final i Wallenbergs Fysikpris

Final i Wallenbergs Fysikpris Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov Lösningsförslag 1. a) Vattens värmekapacitivitet: Isens värmekapacitivitet: Smältvärmet: Kylmaskinen drivs med spänningen och strömmen. Kylmaskinens

Läs mer

October 9, Innehållsregister

October 9, Innehållsregister October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

Introduktion till Biomekanik, Dynamik - kinetik VT 2006

Introduktion till Biomekanik, Dynamik - kinetik VT 2006 Kinetik Kinematiken: beskrivning av translationsrörelse och rotationsrörelse Kinetik: Till rörelsen kopplas även krafter och moment liksom massor och masströghetsmoment. Kinetiken är ganska komplicerad,

Läs mer

Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri,

Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri, Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad Institutionen för Astronomi och teoretisk fysik Lunds Universitet S:t Petri, 12.09.05 Higgs 1 Leif Lönnblad Lund University Varför är Higgs viktig?

Läs mer

Strålningsfält och fotoner. Våren 2016

Strålningsfält och fotoner. Våren 2016 Strålningsfält och fotoner Våren 2016 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från KEMA00 Magnus Ullner Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från http://www.kemi.lu.se/utbildning/grund/kema00/dold Användarnamn: Kema00 Lösenord: DeltaH0 F2 Periodiska systemet

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1

Läs mer

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår

Läs mer

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) =

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) = 1.15. UPPGIFTER 1 1.15 Uppgifter Uppgift 1.1 a) isa att transformationen x i = a ikx k med (a ik ) = 1 0 1 1 1 1 1 1 1 är en rotation. b) Bestäm komponenterna T ik om (T ik ) = 0 1 0 1 0 1 0 1 0 Uppgift

Läs mer

Rörelsemängd och energi

Rörelsemängd och energi Föreläsning 3: Rörelsemängd och energi Naturlagarna skall gälla i alla interial system. Bl.a. gäller att: Energi och rörelsemängd bevaras i all växelverkan mu p = Relativistisk rörelsemängd: 1 ( u c )

Läs mer

Lösningar - Rätt val anges med fet stil i förekommande fall (obs att svaren på essäfrågorna inte är uttömmande).

Lösningar - Rätt val anges med fet stil i förekommande fall (obs att svaren på essäfrågorna inte är uttömmande). STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Materiens Minsta Byggstenar, 5p. Lördag den 15 juli, kl. 9.00 14.00 Lösningar - Rätt val anges med fet stil i förekommande fall (obs att svaren på essäfrågorna

Läs mer

Experimentell fysik. Janne Wallenius. Reaktorfysik KTH

Experimentell fysik. Janne Wallenius. Reaktorfysik KTH Experimentell fysik Janne Wallenius Reaktorfysik KTH Återkoppling från förra mötet: Många tyckte att det var spännade att lära sig något om 1. Osäkerhetsrelationen 2. Att antipartiklar finns och kan färdas

Läs mer

Datorprogrammet MagneFiC, Magnetic Field Calculations

Datorprogrammet MagneFiC, Magnetic Field Calculations Bilaga D Datorprogrammet MagneFiC, Magnetic Field Calculations Figur 1. Startfönster. Programmet är en tillämpning av den teori för magnetfältberäkning som redovisats i rapporten och det verktyg som använts

Läs mer

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära, Tentamen i El- och vågrörelselära, 05-0-05. Beräknastorlekochriktningpådetelektriskafältetipunkten(x,y) = (4,4)cm som orsakas av laddningarna q = Q i origo, q = Q i punkten (x,y) = (0,4) cm och q = Q i

Läs mer

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers : FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet

Läs mer

Experimentella metoder 2014, Räkneövning 1

Experimentella metoder 2014, Räkneövning 1 Experimentella metoder 04, Räkneövning Problem : Tio mätningar av en resistans gav följande resultat: Mätning no. Resistans (Ω) Mätning no Resistans (Ω) 0.3 6 0.0 00.5 7 99.98 3 00.0 8 99.80 4 99.95 9

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys 1 / 28 SF1626 Flervariabelanalys Föreläsning 2 Hans Thunberg Institutionen för matematik, KTH VT 2018, Period 4 2 / 28 SF1626 Flervariabelanalys Dagens lektion: avsnitt 11.1 11.3 Funktioner från R till

Läs mer