MATEMATIK OCH OPTIONER

Storlek: px
Starta visningen från sidan:

Download "MATEMATIK OCH OPTIONER"

Transkript

1 MATEMATIK OCH OPTIONER Matematikkurs vid CTH och GU Christer Borell Matematiska institutionen CTH&GU Göteborg (Version: sep 99)

2 Innehåll kap sid 1 Några inledande ord om nansiella derivat 1 Konvexitet 9 3 Måtteori 9 4 Stokastiska grundbegrepp 53 5 Konstruktion av Brownsk rörelse och Gaussiska processer 73 6 Centrala gränsvärdessatsen 97 7 Black-Scholes di erentialekvation 17 8 Utdelningsprocesser 15 9 Paley-Wiener-Zygmunds stokastiska integral Translation av Wienermått och prissättning av derivat Stokastiska integraler av Itôs typ Själv nansierande portföljstrategier Flera underliggande aktier Stopptid 9 15 HJM-modellen vid deterministisk volatilitetsstruktur 3 Tentamensskrivningar med lösningar 39 Referenser 73

3 1 1. Några inledande ord om nansiella derivat Ett värdepapper som de nieras i termer av andra värdepapper kallas ett - nansiellt derivat. Inledningsvis betraktar vi endast nansiella derivat, som de nieras av ett enda värdepapper, nämligen en aktie. Aktiens pris vid tiden t betecknas med S(t). Låt nu T vara ett givet framtida datum och antag att ett visst derivat i aktien kan inlösas vid tiden T och då utbetalar beloppet f(s(t )). Ett sådant derivat sägs vara ett enkelt derivat av europeisk typ eller ett enkelt kontrakt av europeisk typ. Här kallas f utbetalningsfunktion eller kontraktsfunktion och T kallas slutdag eller mognadsdag för kontraktet. Ett motsvarande amerikanskt kontrakt med utbetalningsfunktionen f kan inlösas vid vilken tidpunkt t som helst före eller på slutdagen T om kontraktsinnehavaren så önskar och utbetalar då beloppet f(s(t)). Antag nu att K är ett givet positivt tal. En europeisk köpoption i aktien med lösenpris K och slutdag T är rättigheten, men ej skyldigheten, att köpa en aktie till priset K vid tiden T. En europeisk säljoption i aktien med lösenpris K och slutdag T är rättigheten, men ej skyldigheten, att sälja en aktie till priset K vid tiden T: På liknande sätt är en amerikansk köpoption (säljoption) i aktien med lösenpris K och slutdag T rättigheten, men ej skyldigheten, att vid ett tillfälle köpa (sälja) en aktie till priset K under tidsperioden från nu fram till och med tidpunkten T. Slutdagen för en aktieoption kallas också lösendag. Ett enkelt derivat av europeisk typ med utbetalningsfunktionen c(s) = max(; s K) och slutdagen T är på en friktionsfri marknad ekvivalent med en europeisk köpoption med lösenpriset K och lösendagen T: Notera också att på en friktionsfri marknad är ett enkelt derivat av europeisk typ med utbetalningsfunktionen p(s) = max(; K s) och slutdagen T ekvivalent med en europeisk säljoption med lösenpriset K och lösendagen T. Köpoption heter call på engelska och säljoption put, vilket ligger till grund för våra beteckningar. I begreppet friktionsfri marknad inbegripes gratis transaktioner av värdepapper samt att in- och utlåningsräntan är lika. Därutöver antas att lån av värdepapper är gratis samt att

4 handel förekommer i delar av värdepapper. Vi bortser också från alla typer av skatter. I denna framställning förutsätts att alla kapitalmarknader är friktionsfria. Om inte annat anges förutsätts också att aktien ej ger utdelning och att räntan är konstant. Aktier och optionskontrakt är mycket gamla företeelser. Aktier har varit kända under minst 75 år. Merton berättar i sin bok Continuous-Time Finance [M ER1] om handel i köpoptionsliknande instrument på Amsterdams fondbörs för 35 år sedan. Optionskontrakt på jordbruksprodukter användes för övrigt redan av medeltidens köpmän [GEM] : Att värdera - nansiella derivat på ett teoretiskt övertygande sätt har emellertid varit svårt i historien och problemet ck ingen tillfredsställande lösning förrän under 197-talet. Begreppet arbitrage dvs riskfri vinst är här mycket centralt. Det mest komplicerade momentet i detta sammanhang består dock i att förstå de underliggande värdepapperens prisdynamik. Den matematiska teorin för stokastiska processer har hittills spelat en avgörande roll för de framsteg som gjorts. En kombination av värdepapper kallas för en portfölj. Vi tillåter värdepappersinnehav i delar av värdepapper, som eventuellt kan vara negativa. Vi antar alltid att marknaden erbjuder obligationer. Betrakta en godtycklig portfölj A med värdet V A (t) vid tiden t. Om V A (T ) medför att V A (t) för alla tider t < T så sägs dominansprincipen gälla (jmfr [S]). På en arbitragefri marknad gäller dominansprincipen. Om en portfölj består av aktier, obligationer och derivat av europeisk typ och portföljen är värdelös vid en viss tid, så medför dominansprincipen att portföljen är värdelös vid alla tidigare tidpunkter. En portföljstrategi där byte av värdepapper tillåts utan att portföljvärdet ändras i samband med bytet kallas själv nansierande. Dominansprincipens de nition kan generaliseras till denna allmännare situation. Vi utnyttjar i denna framställning ofta en obligation vars värde B(t) vid tiden t ges av ekvationen B(t) = Ce rt där C och r är positiva konstanter. Observera B(t) = B()e rt : Vi uppfattar här storheten r som kontinuerlig ränta. Stokastisk ränta studeras först i kapitel 15.

5 För att belysa dominansprincipen betraktar vi ett enkelt europeiskt derivat i aktien med slutdagen T och utbetalningsfunktionen f(s) = s: Låt v(t) beteckna derivatets värde vid tiden t. Antag först att v(t) > S(t): Detta leder till följande handlingsplan: utfärda derivatet och köp aktien vid tiden t; sälj aktien vid tiden T och ge likviden till innehavaren av kontraktet. Vid tiden t erhålls därvid beloppet v(t) för utfärdandet av derivatet och efter köp av aktien kvarstår nettot v(t) S(t): Strategin ökar således portföljvärdet från noll till (v(t) S(t))e r i tidsintervallet från t till T där 3 = T t och r är räntan. Antag nu att v(t) < S(t): Denna olikhet leder till följande handlingsplan: låna aktien vid tiden t och sälj den omedelbart; köp därefter derivatet; vid tiden T utbetalar derivatet en summa som betalar köp av aktien, som lämnas tillbaka till långivaren. Strategin ger nettot S(t) v(t) vid tiden t. Vi har alltså funnit en strategi som ökar portföljvärdet från noll till (S(t) v(t))e r i tidsintervallet från t till T. En själv nansierande strategi som under ett givet tidsintervall ökar portföljvärdet från noll till ett positivt värde kallas för en arbitragestrategi. Sådana strategier är naturligtvis populära och en e ektiv värdepappershandel eliminerar alla arbitragestrategier. På en e ektiv marknad har det aktuella derivatet därför värdet v(t) = S(t) vid tiden t. Att låna aktier som säljs och senare köps tillbaka för att kunna lämnas tillbaka till långivaren kan eventuellt komma i kon ikt med regler för värdepappershandel. Dessa regler växlar från tid till annan och från land till land. Aktieägaren kan dock alltid resonera som i exemplet genom att rent ktivt låna av sig själv. Vi tar dominansprincipen som given i detta kapitel. Betrakta nu ett enkelt europeiskt derivat med lösendatum T och med utbetalningsfunktionen f(s) = s K

6 4 där K är en positiv konstant. På en marknad där dominansprincipen gäller får detta derivat värdet S(t) Ke r vid tiden t där som ovan = T t: Vid tiden T har nämligen derivatet ifråga samma värde som en portfölj bestående av en aktie och K obligationer. Väljs K så att motsvarande kontrakt är värdelöst vid teckningstiden t kallas K för aktiens terminspris vid tiden t för leverans vid tiden T och betecknas med Sterm(t). T Alltså gäller S T term(t) = S(t)e r : Vi kan som exemplen ovan visar värdera en del derivat av intresse med mycket enkla medel. Svårigheten ökar dock snabbt. Antag att en europeisk köpoption i aktien med lösenpriset K och lösendagen T har värdet c(t; S(t); K) vid tiden t. Det nns inte något enkelt sätt att bestämma detta värde. I själva verket kräver problemet en mycket ingående analys av aktieprisets dynamik. Om p(t; S(t); K) betecknar värdet för en motsvarande europeisk säljoption, så nns inte heller här någon enkel metod att bestämma optionsvärdet. Värdena för motsvarande optioner av amerikansk typ betecknas med C(t; S(t); K) respektive P (t; S(t); K). Inte heller dessa värden är enkla att bestämma. Om slutdagen T behöver betonas skriver vi p(t; S(t); K) = p(t; S(t); K; T ) och på motsvarande sätt för de övriga optionsvärdena. Följande relation mellan aktiepris, europeiskt köpoptionspris, europeiskt säljoptionspris och obligationspris är dock möjlig att visa utan kännedom om aktieprisets dynamik, nämligen S(t) c(t; S(t); K) = Ke r p(t; S(t); K): Vi behöver bara konstatera att relationen ifråga är sann för t = T samtidigt som vi noterar att vänstra ledet representerar värdet av en aktie och en utfärdad köpoption och högra ledet värdet av K obligationer och en utfärdad säljoption. Dominansprincipen medför att likheten även gäller före slutdagen (relationen kallas put-call parity relation på engelska). Relationen visar att den europeiska säljoptionen är lätt att värdera, så snart vi kan prissätta den europeiska köpoptionen. Vi ser också att värdet p(s(t )) vid tiden T är uppnåeligt på en kapitalmarknad som endast består av aktien, den europeiska köpoptionen och obligationen. Betrakta nu för givna positiva konstanter A; B; K och L funktionen f(s) = min(a(s K) + ; B(L s) + )

7 där K < L och där s är en positiv variabel. Denna polygonfunktions derivata har tre språngpunkter. Om vi subtraherar funktionen B(L s) + från funktionen f(s) så erhålls en polygonfunktion vars derivata har två språngpunkter. Man inser nu lätt att en lämplig kombination av säljoptioner med olika löptid har värdet f(s(t )) vid tiden T. Vi utnyttjar här handel i delar av värdepapper. Värdet f(s(t )) vid tiden T är därför uppnåeligt på en kapitalmarknad som endast består av aktien, europeiska köpoptioner och obligationen. Om f(s) betecknar en godtycklig polygonfunktion i intervallet s > så inser vi på liknande sätt att värdet f(s(t )) vid tiden T är uppnåeligt på en kapitalmarknad som endast består av aktien, europeiska köpoptioner i aktien och obligationen. Notera här att en godtycklig kontinuerlig funktion f på intervallet [; S] kan approximeras likformigt med polygonfunktioner (beviset bygger på Bolzano-Weierstrass sats som garanterar att en oändlig punktföljd i det slutna begränsade intervallet [; S] har minst en hopningspunkt). Av ovanstående drar vi slutsatsen att enkla europeiska kontrakt är ganska lätta att värdera så snart motsvarande punkt avgjorts för europeiska köpoptioner. Vi diskuterar nedan utöver vanliga köp- och säljoptioner av europeisk och amerikansk typ även mer invecklade så kallade betingade kontrakt. Bl a värderas medelvärdesoptioner och i näst sista kapitlet studeras ingående optionen att i slutet en given period få köpa en aktie till den allra lägsta aktiekurs som uppnåtts under perioden. Vi studerar också optionen att få byta en aktie mot en annan aktie t o m ett givet datum om kontraktsinnehavaren så önskar. Denna option illustrerar ett derivat som beror på era underliggande aktier. Det är idag en vanlig uppfattning att aktiepriser styrs av slump åtminstone på kort sikt. Pris uktuationerna uppvisar likheter med molekylers och aggregat av molekylers uktuationer, som först observerades av botanisten Brown år 187 och som behandlades teoretiskt av Einstein 195 [E] : Försök att förstå aktieprisers uktuationer och europeiska köpoptioner ledde år 19 fransmannen Bachelier till det anmärkningsvärda arbetet Théorie de la spéculation i Annales scienti ques de l École normale supérieure [BA] : Något överraskande behandlade Bachelier och Einstein samma matematiska grundekvationer. Den amerikanske matematikern Wiener gav år 193 en stringent matematisk behandling av Brownsk rörelse [W ]. Bachelier, som redan i början av seklet stöddes av Poincaré, hade inget stort vetenskapligt in ytande under sin livstid och ck ett tydligt erkännande för sin pionjärinsats inom matematisk nans först några år efter sin bortgång Genom Blacks och Scholes lösning av det europeiska köpoptionsproblemet 1973 [BS], som byg- 5

8 6 ger på japanen Itôs kalkyl med Brownska trajektorier, framstår Bacheliers uppsats från år 19 som en milstolpe i nansmatematikens historia. För en intressant artikel om Bacheliers insatser inom matematisk nans hänvisas till Samuelsons artikel [SAM ] : I de första sex kapitlen av denna framställning gör vi läsaren förtrogen med många fundamentala begrepp inom matematik såsom konvexitet, stokastiska processer och martingaler. I kapitel 7 härleder vi Black-Scholes berömda di erentialekvation med hjälp av den så kallade binomialmodellen som presenterades av Cox, Ross och Rubinstein [CRR] år Black- Scholes di erentialekvation ger teoretiska priser för enkla derivat av europeisk typ. De enkla amerikanska kontraktens teoretiska värden beräknas med hjälp av binomialapproximation. För att klargöra begreppet martingalmått, som spelar en nyckelroll i modern optionsteori, diskuterar vi i kapitel 1 translation av det så kallade Wienermåttet. Här spelar stokastiska integraler med deterministisk integrand en viktig roll. Detta integralbegrepp, som går tillbaka till ett arbete av Paley, Wiener och Zygmund [P W Z] från år 1933; hi kapitel 11 går vi in på Itôintegraler, som initier- IT ^O1 i h och IT ^O i från 194 respektive Det behandlas i kapitel 9. ades av Itô i arbetena visar sig att Itôintegraler är ett suveränt hjälpmedel för att värdera nansiella derivat och vi hoppas de kommer att ge läsaren stor glädje. Slutligen i det allra sista kapitlet behandlas Heaths, Jarrows och Mortons uppmärksammade modell för räntederivat i fallet av deterministisk volitilitetsstruktur [HJM] : Övningar I nedanstående övningar i detta kapitel förutsätts att marknaden erbjuder en aktie, en obligation och olika typer av aktiederivat. Vi antager dessutom att dominansprincipen gäller. Aktiens pris vid tiden t betecknas med S(t) och obligationens pris vid tiden t är lika med B(t) = B()e rt : Om t T så är = T t: 1. Visa att C(t; S(t); K) max(; S(t) K) och C(t; S(t); K) c(t; S(t); K):

9 7. Visa att c(t; S(t); K) max(; S(t) Ke r ): 3. Visa att (då aktien ej ger utdelning). 4. Visa att 5. Visa att och dra slutsatsen att C(t; S(t); K) = c(t; S(t); K) T T 1 ) c(t; S(t); K; T ) c(t; S(t); K; T 1 ): K K 1 ) c(t; S(t); K ) c(t; S(t); K 1 ) om derivatan i höger led c(t; S(t); 6. Visa att c(t; S(t); K) S(t): 7. Visa att K K 1 ) c(t; S(t); K ) c(t; S(t); K 1 ) e r (K K 1 ): Visa därefter c(t; S(t); e om derivatan i vänster led existerar. r 8. Visa att 9. Visa att 1. Visa att lim c(t; S(t); K) = : S(t)! lim c(t; S(t); K; T ) = S(t): T!1 c(t; S(t); K + K 1 ) c(t; S(t); K ) + c(t; S(t); K 1 ):

10 8 11. Visa att K P (t; S(t); K) max(; K S(t)): 1. Visa att det kan vara optimalt att inlösa en amerikansk säljoption före slutdagen 13. En aktie har priset S(t) vid tiden t: Antag t < T och betrakta ett derivat av europeisk typ med slutdagen T som utbetalar beloppet S(t ) vid tiden T: Visa med hjälp av dominansprincipen att derivatets värde vid tiden t < t är lika med S(t)e r(t t ) ; där r betecknar räntan. Vilket värde har derivatet vid tiden t [t ; T ]? 14. Låt t < T och n N + : Sätt h = 1 (T t n ) och t i = t + ih; i = 1; :::; n: Antag vidare att K > och betrakta två europeiska derivat av medelvärdestyp med utbetalningarna och X c = max(; X p = max(; K 1 n + 1 nx S(t i ) K) i= 1 n + 1 nx S(t i )) vid tidpunkten T: Antag dessa derivat har värdena v c (t) resp v p (t) vid tiden t: Visa att om t [t m 1 ; t m [ så gäller e r mx 1 S(t i ) + n + 1 i= i= 1 e r(n m+1)h 1 e rh S(t) n + 1 Ke r v p (t): Försök nna ett liknande samband för t < t : v c (t) = 15. Låt t < t < T och antag att aktien utdelar S(t ) vid tiden t där ]; 1[ : Bestäm värdet vid tiden t för ett derivat i aktien som utbetalar S(T ) vid tiden T: 16. Låt t < t < T och antag att aktien utdelar S(t ) vid tiden t där ]; 1[ : Visa att S T term(t) = (1 )e r S(t):

11 9. Konvexitet I detta kapitel uppmärksammas några grundläggande resultat inom konvexitetsteorin samtidigt som det funktionalanalytiska språket nöts in. I slutet av kapitlet används separationssatsen för slutna konvexa koner för att utreda frågan om arbitrage i samband med den så kallade binomialmodellen för en aktie och en obligation i ett tidssteg. Alla vektorrum nedan är reella vektorrum. En delmängd A av ett vektorrum E sägs vara konvex, om sträckan som förbinder två godtyckliga punkter i mängden alltid ligger i mängden dvs om x; y A ) x + (1 )y A; 1: En funktion f : A! R kallas konvex om A är konvex och x; y A ) f(x + (1 )y) f(x) + (1 )f(y); 1: En stokastisk variabel X med värden i ett vektorrum E sägs vara binomialfördelad om det existerar a; b E; a 6= b; och p ]; 1[ så att och P [X = a] = p P [X = b] = 1 p: Här de nieras väntevärdet E [X] av X genom att dvs E [X] = ap [X = a] + bp [X = b] E [X] = pa + (1 (Bokstaven E kommer här från engelskans expectation.) Alltså gäller att p)b: f(e [X]) E [f(x)] för varje konvex funktion de nierad på E. Denna olikhet kallas Jensens olikhet. En funktion f är konkav om f är konvex. En konvex funktion f : E! [; 1[ sådan att f(x) > om x 6= sägs vara en norm på E om f är jämn dvs f( x) = f(x); x E; och positivt homogen av graden ett

12 1 dvs f(x) = f(x); x E;. Om f är en norm skriver man ofta f(x) =k x k : Ett vektorrum E och en norm k : k på E bestämmer ett normerat rum som ibland skrivs (E; k : k): Om a E och r > de nieras B(a; r) = fx; x E och k x a k< rg : Mängden B(a; r) kallas för en öppen boll med centrum a och radie r: En delmängd U av det normerade rummet E är öppen om det för varje a U existerar r > så att bollen B(a; r) är en delmängd av U: En öppen boll är en öppen mängd. Unionen A [ B = fx E; x A eller x Bg av två öppna mängder A och B är öppen. Unionen av ett godtyckligt antal öppna mängder är också öppen. En delmängd F av det normerade rummet E kallas sluten om dess komplement är en öppen mängd. Snittet E n F = fx E; x = F g A \ B = fx E; x A och x Bg av två slutna mängder A och B är slutet. Detsamma gäller för snittet av ett godtyckligt antal slutna mängder. Snittet av alla slutna mängder som omfattar en given mängd A kallas för slutna höljet av A och betecknas med A. Unionen av alla öppna delmängder av en given mängd A kallas för det inre av A och betecknas med A o : En delmängd A av E sägs vara tät i E om A \ B(a; r) 6= ;; alla a E och r > : Här betecknar ; den tomma mängden. Det normerade rummet ( E ; k : k) sägs vara separabelt om det nns en sekvens (x n ) nn av element i E sådan att fx n ; n Ng är tät i E: En sekvens (x n ) nn i det normerade rummet E sägs vara konvergent om det nns ett x E så att lim k x n x k= : n!1 Det kan nnas högst en sådan vektor x och vi skriver lim x n = x: n!1

13 En delmängd K av E är kompakt om varje sekvens (x n ) nn av element i K innehåller en delföljd (x nk ) kn som konvergerar mot ett element i K. En sekvens (x n ) nn i E sägs vara en Cauchyföljd om det för varje " > existerar ett p N sådant att m; n > p )k x m x n k< " En konvergent följd är en Cauchyföljd. Det normerade rummet ( E ; k : k) är ett Banachrum om varje Cauchyföljd i E är konvergent. Rummet C([; T ]) av alla reellvärda kontinuerliga funktioner de nierade i det kompakta intervallet [; T ] med normen k x k 1 = max tt j x(t) j är ett separabelt Banachrum. Konvergens i detta rum kallas med klassisk terminologi för likformig konvergens. Om E är ett vektorrum de nieras E E = f(x; y); x; y Eg : En avbildning ' : E E! R kallas för en skalärprodukt i E om 11 (i) (ii) avbildningen x! '(x; y) är linjär för alla y E '(x; y) = '(y; x) för alla x; y E (iii) '(x; x) för alla x E med likhet om och endast om x = : Vi skriver i fortsättningen '(x; y) = (x; y) och k x k= p (x; x): Här uppfattas k x y k som avståndet mellan x och y. Med denna beteckning får vi kvadratregeln k x + y k =k x k +(x; y)+ k y k och parallellogramlagen k x + y k + k x y k = k x k + k y k :

14 1 Om x och y råkar vara ortogonala dvs om (x; y) = så ger kvadratregeln likheten k x + y k =k x k + k y k : Denna relation brukar kallas Pythagoras sats. Vi påminner också om Cauchy- Schwarz olikhet j (x; y) jk x kk y k som tillsammans med kvadratregeln ger triangelolikheten k x + y kk x k + k y k : Funktionen k : k blir således en norm på E. Ett vektorrum E och en skalärprodukt på E kallas ett Hilbertrum om motsvarande normerade rum är ett Banachrum. Rummet R n med skalärprodukten (x; y) = nx x k y k k=1 är ett Hilbertrum. Bolzano-Weierstrass sats innebär att de slutna begränsade delmängderna av detta rum är kompakta. Rummet l (N) bestående av alla sekvenser (x n ) nn i R sådana att 1X x n < 1 n= är ett Hilbertrum med skalärprodukten (x; y) = 1X x n y n : Den slutna enhetsbollen fx; k x k 1g i detta rum är inte kompakt. I resten av detta kapitel betecknar H ett Hilbertrum. n= Sats 1. (Närmaste punktegenskapen) Antag att A är en sluten, icketom och konvex delmängd av H och antag x H. Då nns en unik punkt y A sådan att inf za k x z k=k x y k :

15 13 Bevis. Antag d = inf za k x och låt (z n ) nn vara en sekvens i A sådan att Parallellogramlagen ger nu likheten z k lim k x z n k= d: n!1 (k x z m k + k x z n k ) = 4 k x och eftersom A är konvex följer att z m + z n k + k z n z m k Härav drar vi slutsatsen att z m + z n A: (k x z m k + k x z n k ) 4d + k z n z m k : Här är vänstra ledet godtyckligt nära 4d om m och n väljs tillräckligt stora varför sekvensen (z n ) nn är en Cauchyföljd. Denna är således konvergent eftersom H är ett Hilbertrum. Antag lim z n = y: n!1 Då A är sluten gäller att y A och vi får att inf k x z k=k x y k : za För att utreda entydighetsfrågan antages att vektorn y A är sådan att Relationen och parallellogramlagen ger nu inf k x z k=k x za y k : 4d = (k x y k + k x y k ) 4d = 4 k x y + y k + k y y k :

16 14 Eftersom y + y A följer att 4d 4d + k y y k dvs y = y. Detta avslutar beviset för sats 1. Vektorn y i sats 1 kallas för projektionen av x på A och betecknas med P A (x). Sats. Om A är en sluten, icke-tom och konvex delmängd av H och z A gäller att (x P A (x); z P A (x)) för alla x H. Bevis. Sätt y = P A (x). Om < < 1 gäller att k x y k k x ((1 )y + z) k dvs k x y k k (x y) (z y) k dvs (x y; z y) + k z y k : Genom att dividera denna olikhet med och sedan låta! erhålls (x y; z y): Härav följer sats omedelbart. Om B är en delmängd av H så de nieras B? = fx H; y B ) (x; y) = g : Mängden B? är ett slutet delrum av H. Notera också att B \ B? fg

17 15 eftersom Vidare gäller att (x; x) = ) x = : B (B? )? : Sats 3. (Topologiskt komplement) Antag F är ett slutet delrum av H: Varje x H har en entydig representation x = y + z där y F och z F? : Vidare gäller att y = P F (x) och z = P F?(x): Bevis. Antag x H har två framställningar x = y k + z k ; k = ; 1; där y ; y 1 F och z ; z 1 F?. Härav erhålls att y y 1 = z 1 z där vänstra ledet tillhör F och högra ledet tillhör F?. Eftersom F \F? = fg följer att y = y 1 och z = z 1 : För att utreda existensfrågan noterar vi att (x P F (x); u P F (x)) för varje u F enligt sats. Genom att ersätta u med u + P F (x) erhålls att x P F (x) F?. Alltså gäller att x = P F (x) + v där v F?. Eftersom x = v + P F (x)

18 16 och F (F? )? så följer också (genom att ersätta F med F? i ovanstående resonemang) att v = P F?(x): Detta avslutar beviset för sats 3. Följande så kallade separationssats för slutna konvexa mängder har era tillämpningar inom denna kurs. Sats 4. (Separationssatsen för slutna konvexa mängder) Antag A är en sluten, icke-tom och konvex delmängd av H och antag x = A. Då nns en vektor a H och R så att för alla x A. (a; x ) < (a; x) Bevis. Sätt x 1 = P A (x ) så att (x x 1 ; x x 1 ) ; x A: Vi de nierar nu a = x 1 x och får (a; x 1 ) (a; x); x A: Vidare gäller att (a; x ) < (a; x 1 ) eftersom a 6=. Vi kan därför de niera = (a; x 1 ) och sats 4 följer direkt. En icke-tom delmängd C av H sägs vara en konvex kon om C är konvex och x C ) x C

19 för alla. Separationssatsen för slutna konvexa koner får följande form. 17 Sats 5. (Separationssatsen för slutna konvexa koner) Antag C är en sluten konvex kon och antag x = C. Då nns a H så att (a; x ) < och för alla x C. (a; x) Bevis. Vi använder sats 4 med A = C och får a H och R så att (a; x ) < (a; x) för alla x C. Eftersom C måste vara icke-positivt. Om x C gäller att x C för alla > och vi drar slutsatsen att (a; x) = 1 (a; x) 1 där högra ledet konvergerar mot då! 1: Härav följer omedelbart sats 5. Antag a 1 ; :::; a n är en uppsättning vektorer i H. Dessa sägs vara positivt linjärt oberoende om nx k a k = ) 1 = ::: = n = k=1 för alla 1 ; ::::; n : Om vektorerna e; f H är ortogonala och nollskilda så är exempelvis uppsättningen e; f; e + f positivt linjärt oberoende. Om a 1 ; :::; a n H så betecknar C(a 1 ; :::; a n ) den minsta konvexa kon som innehåller a 1 ; :::; a n dvs ( nx ) C(a 1 ; :::; a n ) = k a k ; 1 ; ::::; n : k=1 Sats 6. Den konvexa konen C(a 1 ; :::; a n ) är sluten.

20 18 Bevis. Antag först att vektorerna a 1 ; :::; a n är positivt linjärt oberoende. Låt x tillhöra slutna höljet av C(a 1 ; :::; a n ) och antag x j C(a 1 ; :::; a n ); j N och lim j!1 x j = x: Skriv Vi påstår att x j = nx jk a k : k=1 sup jk < 1: j;k I motsatt fall nns k f1; :::; ng och en växande följd (j ) N av naturliga tal så att max k=1;:::;n j vk = jvk > och jk! 1; då! 1: Härav följer att x j jk = nx k=1 jk jk a k : Genom att utnyttja Bolzano-Weierstrass sats kan vi efter eventuell omnumrering antaga att varje sekvens jk jk ; N konvergerar mot ett visst icke-negativt tal k för k = 1; :::; n. Härav erhålls att nx k a k = : k=1 Eftersom k = 1 och vektorerna a 1 ; :::; a n är positivt linjärt oberoende har vi fått en motsägelse. Alltså gäller att sup jk < 1 j;k och genom att utnyttja Bolzano-Weierstrass sats och relationen x j = nx jk a k k=1

21 så följer att x tillhör C(a 1 ; :::; a n ): Det är nu lätt att avsluta beviset för sats 6. Antag nämligen att x C(a 1 ; :::; a n ) och låt mx x = i a ki i=1 där 1 ; :::; m > : Vi säger att denna representation är minimal om m ej kan göras mindre i denna typ av representation av vektorn x. Antag representationen är minimal. Vi påstår att vektorerna a ki ; i = 1; :::; m; är positivt linjärt oberoende. I annat fall nns icke-negativa tal i ; i = 1; :::; m; ej alla lika med noll sådana att mx i a ki = : Härav erhålls att x = i=1 mx ( i t i )a ki i=1 där t > väljes så att ( i t i ) ; i = 1; :::; m; och så att likhet inträ ar för något index i. Detta visar emellertid att vår tidigare representation av x ej är minimal och av denna motsägelse drar vi slutsatsen att vektorerna a ki ; i = 1; :::; m; är positivt linjärt oberoende. Således gäller att C(a 1 ; :::; a n ) = [ [C(a k1 ; :::; a km ); a k1 ; :::; a km positivt linjärt oberoende] : Den första delen av beviset visar nu resultatet eftersom en ändlig union av slutna mängder är sluten. 19 Om x = (x 1 ; :::; x n ) är en vektor i R n och x 1 ; :::; x n skriver vi i fortsättningen ofta x : Vektorn x uppfattas här ofta som en kolonnmatris. Transponatet av en matris A becknas med A : Den vanliga skalärprodukten av två vektorer x och y i R n kan därför skrivas x y: Sats 7. (Farkas lemma) Antag A = (a jk ) 1jm; 1kn är en matris med reella element och antag b R m. Låt vidare a k ; k=1,...,n, beteckna matrisens kolonner. Då gäller exakt ett av följande alternativ:

22 (i) ekvationen Ax = b x är lösbar (ii) det nns h R m så att h b < h a k ; k = 1; :::; n: Bevis. Alternativet (i) gäller om och endast om b C(a 1 ; :::; a n ) och beroende på separationssatsen för slutna konvexa koner så gäller alternativet (ii) om och endast om b = C(a 1 ; :::; a n ). Detta bevisar sats 7. Korollarium 1. Antag A = (a jk ) 1jm; 1kn är en matris med reella element och antag b R m. Låt vidare a k ; k=1,...,n, beteckna matrisens kolonner. Då gäller exakt ett av följande alternativ: (i) ekvationen Ax = b x 1 ; :::; x n > ; R är lösbar (ii) det nns h R m så att 8 < : h b = h a k ; k = 1; :::; n h a k > ; för något k = 1; :::; n: : Bevis. Antag först att ekvationerna i (i) och (ii) är uppfyllda. Då är (h A)x > :

23 Men så h (Ax) = h (b) = (h b) = = (h A)x = och vi har fått en motsägelse. Alltså gäller högst en av (i) och (ii). Vi antar nu att (ii) ej är gäller och skall visa att ekvationen i (i) är lösbar, vilket avslutar beviset för Korollarium 1. Om (ii) ej gäller saknar systemet 8 >< >: h b h ( b) h a k ; k f1; :::; n g n fjg h ( a j ) < lösning för j = 1; :::; n: Enligt Farkas lemma betyder detta att ekvationerna b + ( b) 1 + a 1 x 1 + ::: + a j 1 x j 1 + a j+1 x j+1 + ::: + a n x n = a j ; 1 ; x 1 ; :::; x j 1 ; x j+1 ; :::; x n är lösbara för alla j = 1; :::; n; dvs ekvationerna ( a 1 x (j) 1 + ::: + a j 1 x (j) j 1 + a jx (j) j + a j+1 x (j) j+1 + ::: + a nx () n = b (j) x (j) 1 ; :::; x (j) j 1 ; x(j) j+1 ; :::; x(j) n ; x (j) j = 1; (j) R är lösbara för alla j = 1; :::; n: Genom att addera dessa ekvationer följer att ekvationen i (i) är lösbar. : 1 Exempel 1. Betrakta en matematisk modell för en kapitalmarknad bestående av en aktie med priset S(t) vid tiden t och en obligation med priset B(t) vid tiden t. Vi antager att tidsvariabeln t endast kan anta två värden, nämligen eller 1. Låt B(1) = B()e r där r > och låt S(1) = S()e X : Vi antager här att X är en reellvärd binomialfördelad stokastisk variabel och att det går att välja u; d R, som uppfyller u > d; så att händelsen [X 6= u och X 6= d] = fx = fu; dgg

24 aldrig inträ ar (dvs är en tom mängd). Speciellt följer att P [X = u] + P [X = d] = 1 där varje term i vänster led är positiv. Denna enkla modell kallas binomialmodellen för en aktie och en obligation i ett tidssteg. Vi skall först de niera begreppet arbitrage i denna modell. Betrakta därför en portfölj bestående av h S aktier och h B obligationer. Dess värde vid tiden t ges av v(t) = h S S(t) + h B B(t): Vi säger att ett arbitrage av första slaget uppstår om portföljen kan väljas så att v() = och v(1) > : Genom att variera antalet obligationer i portföljen inses att ett arbitrage av första slaget uppstår om och endast om portföljen kan väljas så att v() < och v(1) : Utskrivet mer explicit innebär detta att h S S() + h B B() < och hs S()e u + h B B()e r h S S()e d + h B B()e r vilket med tanke på Farkas lemma innebär att modellen saknar arbitrage av första slaget om och endast om det existerar reella tal x; y sådana att S()e u x + S()e d y = S() Detta ekvationssystem har lösningen B()e r x + B()e r y = B(): x = e r e r e u y = e r e u e u e d e d e r e d och vi ser att x; y precis då d r u:

FINANSIELLA DERIVAT OCH

FINANSIELLA DERIVAT OCH FINANSIELLA DERIVAT OCH STOKASTISK ANALYS Matematikkurs vid CTH och GU Christer Borell Matematiska institutionen CTH&GU 41 96 Göteborg (Version: okt 3) Förord Syftet med detta kompendium är att vidareutveckla

Läs mer

Mer om reella tal och kontinuitet

Mer om reella tal och kontinuitet Kapitel R Mer om reella tal och kontinuitet I detta kapitel formulerar vi ett av de reella talens grundläggande axiom, axiomet om övre gräns, och studerar några konsekvenser av detta. Med dess hjälp kommer

Läs mer

LINJÄR ALGEBRA II LEKTION 6

LINJÄR ALGEBRA II LEKTION 6 LINJÄR ALGEBRA II LEKTION 6 JOHAN ASPLUND INNEHÅLL 1 Inre produktrum 1 2 Cauchy-Schwarz olikhet 3 3 Ortogonala projektioner och Gram-Schmidts process 3 4 Uppgifter 4 61:13(a) 4 61:23(a) 4 61:29 5 62:7

Läs mer

avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion.

avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion. Ordlista 1 1 Analysens grunder avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion. Bolzano-Weierstrassegenskapen En delmängd M i ett metriskt rum har Bolzano- Weierstrass-egenskapen

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3.

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 3. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. ÖVNINGAR TILL DAG 2. Luenberger: 2:1-5, 9, 11, 12. Övning 1. Du lånar 200000 kr i en bank

Läs mer

BEGREPPSMÄSSIGA PROBLEM

BEGREPPSMÄSSIGA PROBLEM BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med

Läs mer

Formelsamling för kursen Grundläggande finansmatematik

Formelsamling för kursen Grundläggande finansmatematik STOCKHOLMS UNIVERSITET 13 december 006 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Formelsamling för kursen Grundläggande finansmatematik 1 Fundamental Theorem of Asset Pricing

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

Repetitionsfrågor i Flervariabelanalys, Ht 2009

Repetitionsfrågor i Flervariabelanalys, Ht 2009 Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.

Läs mer

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns Kapitel K Mer om kontinuitet I detta kapitel bevisar vi Sats 3.1, som säger att en kontinuerlig funktion av typen R 2 R på ett kompakt område antar ett största och ett minsta värde. Vi studerar dessutom

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

Strukturakademin Strukturinvest Fondkommission FIGUR 1. Utdelning. Återinvesterade utdelningar Ej återinvesterade utdelningar

Strukturakademin Strukturinvest Fondkommission FIGUR 1. Utdelning. Återinvesterade utdelningar Ej återinvesterade utdelningar Del 3 Utdelningar Innehåll Implicita tillgångar... 3 Vad är utdelningar?... 3 Hur påverkar utdelningar optioner?... 3 Utdelningar och forwards... 3 Prognostisera utdelningar... 4 Implicita utdelningar...

Läs mer

Grafer och grannmatriser

Grafer och grannmatriser Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet är följande: SATS. (Intervallinkapslingssatsen) Låt I k = [a k, b k ], k = 1, 2,... vara en avtagande följd av slutna

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Areaberäkningar En av huvudtillämpningar av integraler är areaberäkning. Nedan följer ett

Läs mer

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR

STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 13. STYRNING AV PORTFÖLJER MED FLERA TILLGÅNGAR Hittills har vi betraktat

Läs mer

Del 3 Utdelningar. Strukturakademin

Del 3 Utdelningar. Strukturakademin Del 3 Utdelningar Strukturakademin Innehåll 1. Implicita tillgångar 2. Vad är utdelningar? 3. Hur påverkar utdelningar optioner? 4. Utdelningar och Forwards 5. Prognostisera utdelningar 6. Implicita utdelningar

Läs mer

8. Euklidiska rum 94 8 EUKLIDISKA RUM

8. Euklidiska rum 94 8 EUKLIDISKA RUM 94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.

Läs mer

Läsanvisningar till kapitel

Läsanvisningar till kapitel Läsanvisningar till kapitel 2.3 2.5 2.3 Analytiska funktioner Analytiska funktioner, eller holomorfa funktioner som vi kommer kalla dem, är de funktioner som vi komer studera så gott som resten av kursen.

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

Isometrier och ortogonala matriser

Isometrier och ortogonala matriser Isometrier och ortogonala matriser (Delvis resultat som kunde kommit tidigare i kursen) För att slippa parenteser, betecknas linära avbildningar med A och bilden av x under en lin avbildn med Ax i stället

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

Upphämtningskurs i matematik

Upphämtningskurs i matematik Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna

Läs mer

1 Grundläggande kalkyler med vektorer och matriser

1 Grundläggande kalkyler med vektorer och matriser Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

Vi ska här utgå ifrån att vi har en aktie och ska med denna som grund konstruera tre olika optionsportföljer.

Vi ska här utgå ifrån att vi har en aktie och ska med denna som grund konstruera tre olika optionsportföljer. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd för Matematisk statistik TH FINANSMATEMATIK I, HT 01 KOMPLEMENT DAG 12 Version 01 12 10 TRE OPTIONSSTRATEGIER Vi ska här utgå ifrån att vi har en aktie

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

Oberoende stokastiska variabler

Oberoende stokastiska variabler Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

Om kontinuerliga funktioner

Om kontinuerliga funktioner Analys 360 En webbaserad analyskurs Analysens Grunder Om kontinuerliga funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om kontinuerliga funktioner 1 (12) 1 Introduktion Vi ska nu diskutera

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

Linjär Algebra, Föreläsning 9

Linjär Algebra, Föreläsning 9 Linjär Algebra, Föreläsning 9 Tomas Sjödin Linköpings Universitet Euklidiska rum Vi ska nu införa en extra struktur på vektorrum, en så kallad skalärprodukt, vilken vi kan använda för att definiera längd

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 02 10 25. RÄNTA 1. FLACK RÄNTA Med flack ränta ska vi här mena att räntan är densamma oavsett bindningstid

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

Differentialekvationer av första ordningen

Differentialekvationer av första ordningen Föreläsning 1 Differentialekvationer av första ordningen 1.1 Aktuella avsnitt i läroboken 1.1) Differential Equations and Mathematical Models. Speciellt exemplen 3, 4 och 5.) 1.2) Integrals as General

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

Lennart Carleson. KTH och Uppsala universitet

Lennart Carleson. KTH och Uppsala universitet 46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna

Läs mer

Mängder och kardinalitet

Mängder och kardinalitet UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 4-5-6 DAG: Måndag 6 maj 4 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig

Läs mer

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

Geometriska vektorer

Geometriska vektorer Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive

Läs mer

Modul 1 Mål och Sammanfattning

Modul 1 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation

Läs mer

Linjära ekvationer med tillämpningar

Linjära ekvationer med tillämpningar UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)

Läs mer

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK.

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 5. HANDELSSTRATEGIER Låt S t beteckna priset på en aktie vid tiden t. Vi

Läs mer

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2 Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll

Läs mer

(4 2) vilket ger t f. dy och X = 1 =

(4 2) vilket ger t f. dy och X = 1 = Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

Poisson Drivna Processer, Hagelbrus

Poisson Drivna Processer, Hagelbrus Kapitel 6 Poisson Drivna Processer, Hagelbrus Poissonprocessen (igen) Vi har använt Poissonprocessen en hel del som exempel. I den här föreläsningen kommer vi att titta närmare på den, och även andra processer

Läs mer

Black-Scholes. En prissättningsmodell för optioner. Linnea Lindström

Black-Scholes. En prissättningsmodell för optioner. Linnea Lindström Black-Scholes En prissättningsmodell för optioner Linnea Lindström Vt 2010 Examensarbete 1, 15 hp Kandidatexamen i matematik, 180 hp Institutionen för matematik och matematisk statistik Sammanfattning

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914

Lösningar till tentamen i Grundläggande nansmatematik. 21 december 2006 kl. 914 STOCKHOLMS UNIVERSITET MS 3290 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 21 december 2006 Lösningar till tentamen i Grundläggande nansmatematik 21 december 2006 kl. 914 Uppgift 1 Priset

Läs mer

Ht Läsanvisningar till Hilbertrum och partiella differentialekvationer. Del 1. Ur Anton, Rorres; Elementary Linear Algebra

Ht Läsanvisningar till Hilbertrum och partiella differentialekvationer. Del 1. Ur Anton, Rorres; Elementary Linear Algebra Ht-2010 Umeå universitet Institutionen för matematik och matematisk statistik PAB Läsanvisningar till Hilbertrum och partiella differentialekvationer Del 1 Ur Anton, Rorres; Elementary Linear Algebra 10.1-10.

Läs mer

Linjär Algebra M/TD Läsvecka 1

Linjär Algebra M/TD Läsvecka 1 Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination

Läs mer

Den matematiska analysens grunder

Den matematiska analysens grunder KTH:s Matematiska Cirkel Den matematiska analysens grunder Katharina Heinrich Dan Petersen Institutionen för matematik, 2012 2013 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 1 Grundläggande

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg Version.8 Linjär algebra kapiltet från ett ODE-kompendium Mikael Forsberg 8 Den här boken är typsatt av författaren med hjälp av L A TEX. Alla illustrationer är utförda av Mikael Forsberg med hjälp av

Läs mer

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

Läsanvisningar till Analys B, HT 15 Del 1

Läsanvisningar till Analys B, HT 15 Del 1 Läsanvisningar till Analys B, HT 15 Del 1 Dag 1 Avsnitt 6.1 Definition av trappfunktion och integral av en trappfunktion. Räkneregler (de är mer eller mindre uppenbara). Definition av Riemannintegralen

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer

TMS136. Föreläsning 5

TMS136. Föreläsning 5 TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med

Läs mer

Övningsexempel i Finansiell Matematik

Övningsexempel i Finansiell Matematik KTH Matematik Harald Lang 27/3-04 Övningsexempel i Finansiell Matematik 1. Riskjusterade sannolikhetsmått 1. Vi betraktar en stokastisk utbetalning X(ω) som ger utdelning enligt tabellen ω 1 ω 2 ω 2 pris

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

TATA42: Föreläsning 10 Serier ( generaliserade summor )

TATA42: Föreläsning 10 Serier ( generaliserade summor ) TATA42: Föreläsning 0 Serier ( generaliserade summor ) Johan Thim 5 maj 205 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = 62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader

Läs mer

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning, Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

Konvergens och Kontinuitet

Konvergens och Kontinuitet Kapitel 7 Konvergens och Kontinuitet Gränsvärdesbegreppet är väldigt centralt inom matematik. Som du förhoppningsvis kommer ihåg från matematisk analys så definieras tex derivatan av en funktion f : R

Läs mer

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer