Variation för lärande

Storlek: px
Starta visningen från sidan:

Download "Variation för lärande"

Transkript

1 Variation för lärande Ulla Runesson Denna artikel grundar sig på doktorsavhandlingen Variationens pedagogik. Skilda sätt att behandla ett matematiskt innehåll" som lades fram i mars Fem erfarna lärares undervisning följdes och ljudbandades under ca två veckor. Fyra av lärarna undervisade om tal i bråkform, den femte om tal i procentform. I undervisningen framställdes det matematiska innehållet på så skilda sätt att det är möjligt att tala om att ämnet gavs olika karaktär då det presenterades för eleverna. När undervisning diskuteras och speciellt då hur den skall kunna förändras är det ofta hur den är organiserad, vilka arbetsformer eller undervisningsmetoder som används som kommer i fokus. I olika sammanhang talas tex om problembaserat lärande, undersökande arbetssätt eller datorstödd undervisning. När det gäller matematikundervisning är det kanske främst ord som laborativa arbetssätt, praktisk matematik eller behovet av att tala matematik som brukar nämnas och i samband med detta framhålls ofta att lärarens uppgift består i att handleda eleven i dennes aktiva kunskapssökande process. Det finns emellertid, enligt mitt sätt att se, ett problem med sådana beskrivningar. De är nämligen inte neutrala till innehållet. En elevaktiv undervisning, ett problembaserat lärande eller läraren som handledare kan betyda olika saker beroende på vad som är undervisningsinnehåll. Sådana beskrivningar säger därför troligen mer om hur undervisningen är organiserad än om hur innehållet behandlas. Undervisning som på en nivå förefaller att vara lika, kan nämligen visa sig vara mycket olika om man studerar hur det innehåll, dvs det som eleverna skall lära sig, framställs. Ulla Runesson är filosofie doktor i pedagogik vid Göteborgs universitet. Lika men ändå olika Den här studerade undervisningen behandlade samma matematiska innehåll. Även i andra avseenden fanns likheter mellan lärarnas undervisning. Fyra av dem använde samma läromedel. Den femte använde visserligen inte ett förlagsproducerat läromedel, men de uppgifter eleverna mötte var ändå av lärobokskaraktär. Lektionerna hade liknande uppläggning. Den inleddes oftast med en gemensam aktivitet. Därefter arbetade eleverna enskilt, i par eller grupp med uppgifter. Samtliga lärare använde ofta olika slag av laborativa material. Även eleverna fick möjlighet att arbeta med laborativt material av olika slag då de arbetade med uppgifterna. Allt som sades under de ca 20 inspelade lektionerna analyserades i syfte att kartlägga de olika sätt varpå ett matematiskt innehåll kan behandlas i undervisningen. Det var alltså inte de enskilda lärarnas undervisning som var av intresse utan de skilda sätt varpå samma innehåll kan framställas. Analysen visade att i undervisningen framställdes det matematiska innehållet på så skilda sätt att det är möjligt att tala om att ämnet gavs olika karaktär då det presenteras för eleverna. Trots att samtliga elever undervisas om tal i bråk- eller procentform, är det således helt skilda typer av matematik de möter och därmed ges möjlighet att lära. 19

2 Rätt svar och rätt lösningssätt Jag har kunna identifiera tre skilda sätt att framställa matematik. Ett av sätten innebär att det rätta svaret och det rätta sättet att lösa olika typer av matematiska problem utgör fokus. Det är de olika typer av tekniker som eleverna skall behärska som är det centrala i undervisningen. Dessa tekniker presenteras i regel innan eleverna möter uppgifterna i läroboken. Eleverna förbereds således med en uppsättning tekniker så att de kan lösa uppgifterna på ett rätt sätt och komma till rätt svar. Ibland ger emellertid eleverna uttryck för att de har andra tillvägagångssätt för att lösa uppgifterna än de som läraren presenterar. De kan då visserligen få beröm för att de har funnit andra och egen alternativ, men dessa avvisas oftast av läraren med motiveringen att de bara fungerar ibland. Det är således generella tekniker och procedurer som eleverna uppmanas att använda. De alternativ som eleverna erbjuds att använda för att komma fram till rätt svar är antingen abstrakta, symboliska metoder eller laborativa modeller. De uppmanas att bara tänka eller att vika papper, använda bilder etc. Så som matematiken framställs för eleverna i dessa situationer, blir den en uppsättning färdiga tekniker som de skall tillägna sig. Lärarens uppgift är att visa lämpliga tekniker för eleverna. Matematikens struktur öppnar för en variation Ett annat sätt att framställa innehållet, som jag fann i de undersökta lärarnas undervisning, är att matematiken gestaltas som ett givet, logiskt system. Här är det inte i första hand att lösa uppgifterna rätt och komma till rätt svar som betonas. Istället är det de bakomliggande principerna för lösningsmetoderna som kommer i fokus. Läraren avkräver tex eleverna förklaringar och motiveringar till de lösningssätt som de använder. Det är inte främst vetskapen om tex att det går fyra fjärdedelar på en hel som framhålls. Istället är det en förståelse för varför detta är fallet som lyfts fram i undervisningen, dvs innebörden av bråkbegreppet är centralt. Om eleverna förstår en sådan bakomliggande logik eller struktur, tillåts de att variera lösningssätten. Ja, de uppmanas tom att behärska olika lösningssätt; Du skall kunna lösa det på olika sätt, säger läraren. Eleverna presenteras inte heller lösningssätt och strategier i förväg. Eleverna får möta vissa principer eller stukturer. Dessa kan de sedan ha som en grund för att själva hitta lösningssätt. Det är emellertid inte bara variationer i lösningssätt som eleverna får möta. Även variationer i egenskaper hos talen i bråk eller procentform behandlas. Det kan exempelvis gälla att belysa innebörden av en andels storlek. Genom att sträcka ett gummiband där olika andelar finns markerade, visas att en fjärdedel av skrivtavlans längd inte är lika stor en fjärdedel av mattebokens längd (dvs skillnaden mellan absolut och relativ storlek). Men läraren kan också fokusera variationen i bråkbegreppet genom att samtidigt lyfta fram dess operators- och divisionsaspekt. Lärarens uppgift är här att lyfta fram en logisk struktur hos matematiken som eleverna sedan kan använda på olika sätt. Elevernas förståelse öppnar för en variation Det tredje sättet att framställa innehållet som jag har kunnat identifiera, överensstämmer i huvudsak med sätt nummer två som beskrevs ovan. Det finns emellertid en som det kan tyckas subtil skillnad när det gäller den karaktär som matematiken ges. I detta fall är det nämligen inte matematikens struktur, utan elevernas förståelse av matematiken och elevernas egen logik som bildar utgångspunkten för att belysa lösningssätt och begrepp. Här är det inte läraren som presenterar en struktur som eleverna kan variera. Istället är det lärarens uppgift att lyfta fram olikheterna i elevernas förståelse av tal i bråkform oavsett om denna är korrekt eller ej. Det är alltså via elevernas förståelse som matematikens logiska mönster eller struktur framställs. Detta sker genom utnyttjande av interaktionen i mindre grupper såväl som i helklass. Lära- 20

3 re och elever eller elever sinsemellan samtalar om och jämför olika sätt att tänka om de uppgifter de arbetar med. Samtalet sker efter det att eleverna (enskilt eller i grupp) har arbetat med uppgifterna. Detta samtal innebär en reflekterande process där det är variation i sättet att förstå som kommer i blickpunkten. Genom sådana resonemang, där argument ges och tas, blir eleverna delaktiga i ett återskapande av matematiken. Därmed får denna inte karaktären av något som är färdigt och skilt från ett mänskligt och socialt sammanhang. Skilda mönster av variation De skilda sätt att behandla undervisningsinnehållet som beskrevs ovan har vissa likheter med beskrivningar som andra forskare har gjort (se tex Skemp, 1976; Ernest, 1991). I denna studie kan jag emellertid också visa att hur innehållet kommer att framställas har att göra med det sätt på vilket lärarna använder sig av variation i undervisningen. När läraren försöker att få eleven att förstå något på ett visst sätt, görs detta genom en variation av en viss aspekt medan andra aspekter inte varieras. Det betyder att något varierar medan annat är konstant. Det är denna skillnad i vad som varierar och vad som hålls konstant som jag har funnit avgör hur undervisningsinnehållet framställs i undervisningen. Variation av talen i exemplet I de fall då vikt läggs vid den rätta tekniken, är det denna som hålls konstant, medan de tal som ingår i exemplen varieras. Följande exempel illustrerar detta: Under en lektion behandlas bråkets operatorsaspekt (tex 2/3 av 12). Läraren beskriver inledningsvis hur man går till väga för att beräkna längden på 2/3 av ett 90 cm långt kolasnöre. Hon säger: så först måste vi räkna ut hur mycket en tredjedel blir då va. Därefter fortsätter hon: Då tar vi kolasnöret här då. Det här är bara 40 cm, säjer vi... jag ska ha... en femtedel av det här?... Det är 40 cm långt. Efter att en elev har svarat rätt på frågan, fortsätter läraren: Men om du nu säjer så här då, att jag ska ha tre femtedelar? Där var det många som fastnade igår. Tre femtedelar av det här snöret? Hur tänker man då? Det är viktigt nu att ni fattar... detta. Så att ni inte fastnar. Läraren påpekar åter hur proceduren skall utföras: Ja OK, vi måste alltså först tänka ut en femtedel va, och då tar man ju 40 delat med fem sa vi. Och då får man fram 8. Och så tre femtedelar, måste vara tre gånger mera. Tre såna bitar. Och då blir det 24 cm. Nu införs en annan variation. Delen är lika stor, men längden på snöret förändras: Nu låtsas vi att det här snöret är 60 cm i stället... (skriver 60 cm) och så säjer jag likadant. Det här är 60 cm... en utav er ska ha tre femtedelar utav det här snöret, och en annan ska ha två femtedelar... av, för ni har satsat lite olika pengar säjer vi... Hur mycket ska den personen ha som ska ha tre femtedelar?... Jag frågar först, ska han ha mer eller mindre än hälften?... Mer eller mindre än hälften? Om han ska ha tre femtedelar?... Mer. Det är ni överens om allihop?... Det ser ni bara?... så då bör ju svaret bli mer än 30 cm. Det kan ju va en bra tumregel. OK hur gör vi? Hela snöret är jag ska ha tre femtedelar. Då måste jag räkna ut en sak först, nämligen vad då? Exemplet visar hur tillvägagångssättet och uppgiften hålls konstant (att beräkna längden på en viss andel av snöret), medan de ingående talen i exemplet varierar på ett systematiskt sätt. Efter det första exemplet ändras längden på snöret samt andelens storlek (1/5 av ett 40 cm långt snöre). Därefter ändras antalet delar, så att längden av 3/5 av samma längd, dvs samma helhet, skall beräknas. I det sista exemplet förändras helhetens storlek, medan delarna är konstanta (3/5 av 60 cm). 21

4 Variation av lösningssätt Detta kan jämföras med en helt annan strategi; att låta uppgiften vara konstant och lyfta fram en variation av de sätt varpå denna lösas. I dessa fall är det inte rätt svar som kommer i fokus utan de skilda sätt varpå en uppgift kan lösas. Läraren uppmanar då eleverna att beskriva hur de har gått tillväga. Han frågar t ex är det någon som gjort på ett annat sätt? eller Gjorde alla så. Finns det andra sätt? Detta sätt att behandla undervisningsinnehållet innebär att det är de olika lösningssätten som lyfts fram. Dessa bildar därmed en dimension av variation i undervisningen. Variation av beteckning Men den dimension av variation som öppnas kan innefatta annat än lösningsätt. En av lärarna använder sig av variation för att lyfta fram innebörden i begreppet en fjärdedel. Eleverna har arbetat med ett rätblock bestående av ett antal olikfärgade centikuber. Avsikten är att rätblocket skall representera en helhet som delas av ett antal personer så att varje person får lika stor andel av blocket. Varje sådan andel har en egen färg. Eleverna skall först besvara frågan: Hur många är det som delar? Läraren skriver denna fråga på tavlan. Därefter fortsätter han: L: Och... hör ni ni. Vi har pratat massor om saker och ting, hur många är det som delar, man kan lika gärna säga; hur många delar (Läraren stryker är det som i frågan ovan)... och... vi har pratat om delar, delar, delar hela vägen så nu kommer vi att börja prata om dom här delarna... och nu är det ju så att om vi tittar på C-biten, om ni har den i minnet så var det fyra stycken som delar. Du fick alltså en... del av dom fyra bitarna, och det kan man skriva på ett väldigt bestämt sätt i matten, man skriver det så här: en etta ovanpå fyran och så ett streck så där (skriver 1/4). Och detta kallar man för en, ja det kanske ni kan? Eller? Vad heter detta? E: En fjärdedel. L: En fjärdedel ja. Så du fick alltså en fjärdedel. Därefter visar läraren att detta också kan beskrivas som att varje person får en av fyra delar av rätblocket. I denna situation varieras således sättet att beskriva andelen. Så beskrivs tex en fjärdedel som det är fyra som delar, det är fyra delar, en av fyra en fjärdedel samt 1/4. Kontrastering Ett annat sätt att använda variation, är att ställa något mot något annat, dvs att göra en kontrastering. Detta görs tex för att få eleverna att förstå innebörden av begreppet andel. En av lärarna visar exempelvis hur två olika grupper löst problemet att dela 10 pizzor på 6 personer. Han kontrasterar då en lösning mot en annan, en lösning där alla delar av pizzan är lika stora och en där delarna är av varierande storlek. Läraren kommenterar den senare lösningen: Så har dom delat dom då; 1,2,3,4,5,6... 1,2,3,4,5,6. Detta är väl rätt tänkt? Varje person får, om vi tittar på sexan, han får en stor pizza där, en liten pizzabit där, en liten pizzabit där, en stor och två små. De får ju allihop här. Men,... finns det nåt problem med att dela på det här viset här?... Det kan det vara ja. Vad för problem då i så fall? Det som varierar i denna situation är innebörden av begreppet delar ; delar i betydelsen andelar, dvs lika stora delar, kontra delar av varierande storlek. Läraren visar således vad något är genom att också visa på vad det inte är. 22

5 Variationen introduceras av eleverna Huruvida elevernas sätt att tänka, tolka och resonera kring matematiken tas till utgångspunkt eller ej i undervisningen, är som nämndes tidigare en viktig skiljelinje mellan olika sätt att behandla innehållet och därmed med vilken karaktär den matematiska kunskapen kan komma att framstå för eleverna. Men att låta elevernas förståelse komma fram har betydelse också på andra sätt. Genom att utnyttja elevernas förståelse, kan en variation komma att synliggöras som inte skulle komma fram annars. Ibland kan läraren genom att lyfta fram variationen i elevernas lösningssätt bidraga till att kritiska aspekter av bråkbegreppet blir belysta, vilket illustreras av följande exempel. En övning som eleverna har arbetat med består i markera 3/7 av 56 rutor. I helklass förs en diskussion kring olika sätt att lösa denna. Läraren inbjuder eleverna att berätta om hur de har gått till väga. En elev visar att detta kan göras genom att dela det hela i 7 lika stora delar och därefter markera 3 sådana delar. En annan elev har ett annat sätt vilket läraren förtydligar: L: Du, du räknade ett, två, tre, fyr, fem, sex, sju och så täcker du tre utav dom, och så en, två, tre, fyra, fem, sex, sju och så täcker du dom... med andra ord... om du räknar så här en, två, tre, fyra, fem, sex, sju... då kan du täcka dom tre sista där, va. Så. Då blir det där också... och så blir det där också. Hur gör du sen med dom här då? Fortsätter på samma sätt? E: Ja. L: En, två, tre, fyra, fem, sex, sju, så täcker du dom tre sista där... och sen en, två, tre, fyra, fem, sex, sju så täcker du dom tre sista där. Mm. Så. Jaha. Detta tillvägagångssätt innebär en annan tolkning av bråk som operator än den som den första eleven uppvisade. Istället för att dela det hela i sju delar, delas rutmönstret så att varje del utgörs av sju rutor, varav tre av dessa markeras. Genom att använda sig av variationen i elevernas tolkning av 3/7 av 56, blir en väsentlig begreppslig aspekt av bråk begreppet belyst 1. Lärares tysta kunskap Studien visar alltså att samtliga lärare i studien behandlar innehållet på ett sådant sätt att de åstadkommer någon form av variation, men också att de gör detta på olika sätt. Några öppnar för en mångfald av variation medan andra använder sig av få variationer. Att skapa variation genom att hålla något konstant och variera annat förefaller emellertid inte att var en uttalat medveten strategi hos lärarna. Då de gavs tillfälle till att berätta hur de tänkte om sin undervisning, vad de planerade att göra, vad de gjorde och om motivet för olika typer av undervisningshandlingar, beskrev de detta mer i allmänna termer tex vikten av att eleverna förstår, att man måste arbeta laborativt osv. Inte i något fall nämner lärarna användningen av variation som en strategi för att få eleverna att lära sig tal i bråk- och procentform. Förmåga att åstadkomma variation kan därför ses som uttryck för en tyst dimension av lärares kunnande, en kunskap i handling (Molander, 1993) som lärarna uppvisar då de interagerar med eleverna kring undervisningsinnehållet. Variation och lärande Vilken betydelse har då variationen, tex för elevernas lärande? Vad eleverna faktiskt lär sig har jag inte undersökt i denna studie, men andra forskare (Patrick, 1998; Rovio- Johansson, 1999) har kunnat visa att det sätt varpå läraren förstår sitt ämne och med vilken karaktär undervisningsinnehållet framställs, har betydelse för hur deras elever kommer att lösa problem som anknyter till det innehåll de har undervisats om. Det finns allstå empiriskt grundade skäl till att anta att den variation som öppnas i undervisningen kan relateras till elevernas lärande, även om sambandet förefaller att vara komplext. 1 Den variation av tolkning av bråkets operatorsaspekt som beskrivs här benämner Behr, Harel, Post & Lesh (1993) duplication/partition reducer -tolkning resp stretchershrinker -tolkning. 23

6 Ett annat skäl till att beakta betydelsen av den variation som eleverna exponeras för är inlärningsteoretiskt. Inom den fenomenografiska forskningstraditionen har en mängd studier genomförts som resulterat i beskrivningar av hur olika fenomen och företeelser kan uppfattas. (Neuman, 1987; Ekeblad, 1996; Ahlberg, 1998) En central utgångspunkt för dessa studier har varit att komma åt vad det innebär att förstå något på ett visst sätt, tex vad det innebär att förstå tal på sådant sätt att man kan lära sig de fyra räknesätten. Neuman (1987) menar att vissa sätt att förefaller att vara mer effektiva i detta avseende. Enligt Marton och Booth (Marton & Booth, 1997) är det förmågan att samtidigt kunna urskilja vissa aspekter av ett fenomen eller en företeelse som är kritiskt för hur fenomenet eller företeelsen kommer att förstås. När vi erfar något ett fysiskt objekt eller något abstrakt som tex begreppet tal riktar vi vårt medvetande mot vissa aspekter av detta. Och eftersom vårt medvetande är sådant att vi inte kan urskilja allting på samma gång och på samma sätt, kommer vissa aspekter av det erfarna träda i förgrunden och finnas i vårt fokala medvetande, medan andra aspekter inte urskiljs. Ett sätt att uppfatta begreppet tal innebär således att vissa aspekter skiljs ut och att detta görs samtidigt. Ett annat sätt att förstå kan innebära att andra aspekter urskiljs eller att de inte blir samtidigt urskilda. Vad är det då som avgör att vissa aspekter blir urskilda? För att kunna urskilja en viss aspekt måste man ha erfarit att aspekten i fråga kan variera. Eller enklare uttryckt: för att veta vad något är, måste vi veta vad något inte är. För att uttrycket vad tung den är skall ha en bestämd mening, måste man ha erfarit vad lätt innebär, dvs det förutsätter att man erfarit att ett föremåls massa kan variera. Det går inte att förstå vad röd färg är om man inte har erfarit andra färger, dvs att färg kan variera. Enligt detta sätt att se på lärande har alltså den variation som har erfarits en central betydelse. Vilken variation som exponeras för eleverna i en undervisningssituation torde därför vara betydelsefull för förmågan till urskiljning. I detta avseende har läraren således en viktigt uppgift, eftersom hon kan bidraga till att denna variation skapas i undervisningen. Att lyfta fram variationens betydelse för lärande betyder emellertid inte att jag hävdar att en större variation generellt skulle vara att föredra när det gäller elevernas möjlighet att lära. Det är mer troligt att den variation som eleverna får möta måste ses i relation till vilket innehåll som behandlas och vad man avser att eleverna skall lära sig, t ex vilka matematikkunskaper som behövs för att orientera sig i en alltmer komplex och varierad värld. Det betyder att det är typen av variation som blir intressant. Enligt den nuvarande kursplanen skall eleverna utveckla en fördjupad och vidgad taluppfattning om tal i bråk- och decimalform. Att taluppfattning har en mångfacetterad innebörd, beskrivs t ex i kommentaren till kursplanen (Skolverket, 1997). Forskare som studerat hur elever lär sig rationella tal (Engström, 1997; Post, Cramer, Behr, Lesh, & Harel, 1993) har också framhållit vikten av att rationella tal behandlas på ett sådant sätt att komplexiteten i begreppet blir belyst. Om vi antar att variation är en central aspekt av lärandet, är det rimligt att anta att den variation som eleverna erbjuds att erfara i en undervisningssituation är kritisk för deras lärande. Undervisningens vad och hur Inledningsvis argumenterade jag för att det inte är tilläckligt att enbart uppmärksamma undervisningens form, organisation eller de metoder som används, i varje fall inte om det är elevernas lärande som vi intresserar oss för. Studien visar tex att matematiska samtal eller arbete med laborativa modeller, ur en innehållslig aspekt, kan betyda olika saker och att undervisningsformen i sig inte innebär att en viss variation kommer till stånd. I tre av lärarnas undervisning uppmanas eleverna att samarbeta i grupp eller i par. Men det är endast en av lärarna som medvetet och på ett systematiskt sätt använder gruppen för att ta till vara den variation i förståelse som finns i gruppen. 24

7 Hur undervisningen organiseras och hur innehållet behandlas är sammanflätat på ett komplext sätt. Samma sätt att organisera undervisningen kan innebära olika sätt att behandla innehållet och vice versa. Sättet att organisera undervisningen bestämmer således inte att innehållet behandlas på ett visst sätt, sett i termer av variation. Å andra sidan verkar det som om vissa sådana öppningar av variation förutsätter vissa sätt att organisera undervisningen. Referenser Ahlberg, A. (1998). Children s ways of handling and experiencing numbers. Göteborg: Acta Universitatis Gothoburgensis. Ekeblad, E. (1996). Children Learning Numbers. Göteborg: Acta Universitatis Gothoburgensis. Engström, A. (1997). Reflektivt tänkande i matematik. Om elevers tankekonstruktioner. Stockholm: Almqvist & Wiksell. Ernest, P. (1991). The philosophy of mathematics education. London: The Falmer Press. Marton, F & Booth, S. (1997). Learning and Awareness. Mahwah, NJ: Erlbaum. Molander, B. (1993). Kunskap i handling. Göteborg: Daidalos. Neuman, D. (1987). The origin of arithmetic skills: a phenomenographic approach. Göteborg: Acta Universitatis Gothoburgensis. Patrick, K. (1998). Teaching and learning: the construction of an object of study. University of Melbourne. Post, T. R., Cramer, K. A., Behr, M., Lesh, R., & Harel, G. (1993). Curriculum implications of research on the learning, teaching, and assessing of rational number concept. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.) Rational numbers. An integration of research. Hillsdale, NJ: Erlbaum. Rovio-Johansson, A. (1999). Being good at teaching. Exploring different ways of handling the same subject in higher education. Göteborg: Acta Universitatis Gothoburgensis. Runesson. (1999). Variationens pedagogik. Skilda sätt att behandla ett matematiskt innehåll. Göteborg: Acta Gothoburgensis. Skemp, R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching 77, Skolverket (1997). Kommentar till grundskolans kursplan och betygskriterier i matematik. Stockholm: Skolverket. Avhandling i Mathematics Education: Mathematical Modeling by Prospective Teachers Using Technology Thomas Lingefjärd, Göteborgs universitet disputerade den 27 mars 2000 vid The University of Georgia, Athens, USA Lingefjärds avhandling bygger på tre delstudier. Dessa har genomförts i syfte att undersöka blivande lärares förståelse av matematisk modellering då de har tillgång till tekniska hjälpmedel vid sin problemlösning. Studierna har genomförts i en kvalitativ inriktning där särskild uppmärksamhet har riktats mot en mindre grupp studenter under deras arbete i och utanför datorsalen. Data har insamlats via enkäter, videobandade intevjuer, observationer under pågående arbete samt skrivna dokument som inlämnings- och examinationsuppgifter. Resultaten från dessa studier visar att de studerande i så hög grad litar på de resultat som produceras med datorstöd och grafritande räknare att de får svårt att göra en relevant värdering av den framtagna modellen. De studerande tenderar också att okritiskt gå in i ett auktoritetsskifte där den egna kunskapen värderas lägre i förhållande till vad som erbjuds via de tekniska hjälpmedel som utnyttjas i modelleringssituationen. Studierna visar även att formerna för examination i dessa sammanhang är av avgörande betydelse för att klarlägga de studerandes uppfattningar och missuppfattningar kring matematisk modellering. Lingejärds avhandling är ett viktigt bidrag till diskussionen om hur blivande matematiklärare utvecklar förståelse av matematik och matematisk modellering i en alltmer teknikintensiv miljö. Avhandlingen i sin helhet finns tillgänglig i PDF-format på Mikael Holmquist 25

Även om skolmatematiken är uppdelad under Centralt innehåll i kursplanen

Även om skolmatematiken är uppdelad under Centralt innehåll i kursplanen C. Lindegren, I. Welin & W. Sönnerhed Förståelse för tal i bråkform Två lärarstudenter på HLK i Jönköping undersökte elevers förståelse för tal i bråkform. De såg att elever många gånger har likartade

Läs mer

Episoderna i denna artikel är hämtade

Episoderna i denna artikel är hämtade JONAS EMANUELSSON Berätta vad du tänker! Två berättelser om rätt och fel svar Artikeln handlar om de frågor lärare ställer till sina elever i klassrummet och vad som händer i den efterföljande interaktionen.

Läs mer

Att sätta lärares och elevers lärande i fokus

Att sätta lärares och elevers lärande i fokus Höjman, Larsson, Persson, J-Nilsson, Cajander Att sätta lärares och elevers lärande i fokus I denna artikel beskrivs ett sätt att arbeta med learning study. En lärargrupp har arbetat med ett moment inom

Läs mer

Att synliggöra matematikens språkliga och sociala karaktär

Att synliggöra matematikens språkliga och sociala karaktär Att synliggöra matematikens språkliga och sociala karaktär Ann Ahlberg Varför ändras nybörjares nyfikenhet och lust att lära matematik till ointresse och bristande tillit till sin egen förmåga efter några

Läs mer

När en Learning study planeras väljs ett område som upplevs som problematiskt

När en Learning study planeras väljs ett område som upplevs som problematiskt K. Drageryd, M. Erdtman, U. Persson & C. Kilhamn Tallinjen en bro mellan konkreta modeller och abstrakt matematik Fem matematiklärare från Transtenskolan i Hallsberg har under handledning av Cecilia Kilhamn

Läs mer

Tal i bråkform. Kapitlet behandlar. Att förstå tal

Tal i bråkform. Kapitlet behandlar. Att förstå tal Tal i bråkform Kapitlet behandlar Test Användning av hälften och fjärdedel 2 Representation i bråkform av del av antal och av del av helhet 3, Bråkform i vardagssituationer Stambråk, bråkuttryck med 1

Läs mer

Det finns flera aspekter av subtraktion som lärare bör ha kunskap om, en

Det finns flera aspekter av subtraktion som lärare bör ha kunskap om, en Kerstin Larsson Subtraktion Vad är egentligen subtraktion? Vad behöver en lärare veta om subtraktion och subtraktionsundervisning? Om elevers förståelse av subtraktion och om elevers vanliga missuppfattningar?

Läs mer

Samhället och skolan förändras och matematikundervisningen som den

Samhället och skolan förändras och matematikundervisningen som den Saman Abdoka Elevens bakgrund en resurs De senaste tjugo åren har inneburit stora förändringar för såväl samhälle som skolmatematik. Ur en lång erfarenhet av att undervisa i mångkulturella klassrum ger

Läs mer

Upprepade mönster (fortsättning från del 1)

Upprepade mönster (fortsättning från del 1) Modul: Algebra Del 2: Resonemangsförmåga Upprepade mönster (fortsättning från del 1) Anna-Lena Ekdahl och Robert Gunnarsson, Högskolan i Jönköping Ett viktigt syfte med att arbeta med upprepade mönster

Läs mer

Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik.

Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl

Läs mer

Vad behöver eleverna kunna för a0 förstå programmeringsstruktur?

Vad behöver eleverna kunna för a0 förstå programmeringsstruktur? Vad behöver eleverna kunna för a0 förstå programmeringsstruktur? En pågående Lerning Study av Per Selin Johan Larsson Varför programmering? Är det mindre viktigt att förstå digitala byggstenar i den digitala

Läs mer

Algebra utan symboler Learning study

Algebra utan symboler Learning study Algebra utan symboler - - - - - Learning study Johan Häggström, NCM Göteborgs universitet 1 Är algebra verkligen något för grundskolans första år? Om eleverna förstår aritmetiken så bra att de kan förklara

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Jag tror att alla lärare introducerar bråk

Jag tror att alla lärare introducerar bråk RONNY AHLSTRÖM Variabler och mönster Det är viktigt att eleverna får förståelse för grundläggande matematiska begrepp. Ett sätt att närma sig variabelbegreppet är via mönster som beskrivs med formler.

Läs mer

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg. Kunskapskrav Ma 2a Namn: Gy Betyg E D Betyg C B Betyg A 1. Begrepp Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden

Läs mer

Taluppfattning och allsidiga räknefärdigheter

Taluppfattning och allsidiga räknefärdigheter Taluppfattning och allsidiga räknefärdigheter Handbok med förslag och råd till lärare för att kartlägga, analysera och åtgärda elevers svårigheter och begreppsliga missuppfattningar inom området tal och

Läs mer

Upprepade mönster kan talen bytas ut mot bokstäverna: A B C A B C eller mot formerna: Anna-Lena Ekdahl, Högskolan i Jönköping

Upprepade mönster kan talen bytas ut mot bokstäverna: A B C A B C eller mot formerna: Anna-Lena Ekdahl, Högskolan i Jönköping Algebra Del 1 Upprepade mönster Anna-Lena Ekdahl, Högskolan i Jönköping Det är välkänt att barn långt innan de börjat skolan utforskar och skapar mönster på olika sätt och med olika material. Ofta skapas

Läs mer

Learning study elevers lärande i fokus

Learning study elevers lärande i fokus Learning study elevers lärande i fokus McKinsey & Co. How the world s best-performing school systems come out on top. Högpresterande länder tar in kompetensutvecklingen till klassrummet och gör den till

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Constanta Olteanu, Linnéuniversitetet och Anna-Lena Ekdahl, Högskolan i Jönköping

Constanta Olteanu, Linnéuniversitetet och Anna-Lena Ekdahl, Högskolan i Jönköping Modul: Algebra Del 3: Bedömning för utveckling av undervisningen i algebra Intervju Constanta Olteanu, Linnéuniversitetet och Anna-Lena Ekdahl, Högskolan i Jönköping I en undervisning kan olika former

Läs mer

För elever i gymnasieskolan är det inte uppenbart hur derivata relaterar

För elever i gymnasieskolan är det inte uppenbart hur derivata relaterar Thomas Lingefjärd, Djamshid Farahani & Güner Ahmet En motorcykels färd kopplad till derivata Gymnasieelevers erfarenhet av upplevda hastighetsförändringar ligger till grund för arbete med begreppet derivata.

Läs mer

Spridningen är vanligtvis stor i en klass när det gäller vad elever tycker om,

Spridningen är vanligtvis stor i en klass när det gäller vad elever tycker om, Kerstin Johnsson & Jonas Bergman Ärlebäck Godissugen! En tankeavslöjade aktivitet för att introducera området funktioner I den här artikeln diskuteras en aktivitet som introducerar funktioner i åk 8 genom

Läs mer

Delprov A, muntligt delprov Lärarinformation

Delprov A, muntligt delprov Lärarinformation Delprov A, muntligt delprov Lärarinformation Beskrivning av det muntliga delprovet Det muntliga delprovet kan genomföras fr.o.m. vecka 10 och resten av vårterminen. Det muntliga delprovet handlar om att

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa Åsa Brorsson Algebra för lågstadiet I denna artikel beskriver en lärare hur hon arbetar med algebra redan i de tidiga skolåren. Det är ett arbete som hjälper elever att förstå likhetstecknets betydelse,

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med

Läs mer

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen:

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen: Modul: Algebra Del 8: Avslutande reflektion och utvärdering Distributiva lagen Cecilia Kilhamn, Göteborgs Universitet Distributiva lagen a (b + c) = a b + a c Den distributiva lagen kallas den räknelag

Läs mer

Den skolan som jag arbetar vid framhåller inkludering som ledord.

Den skolan som jag arbetar vid framhåller inkludering som ledord. Helena Eriksson Taluppfattning i heterogena elevgrupper I denna artikel presenteras en uppgiftsdesign som syftar till att utveckla elevers uppfattning av naturliga och rationella tal. Uppgifterna har använts

Läs mer

Bråkräkning uppfattas av många elever som svårt, särskilt vid beräkningar

Bråkräkning uppfattas av många elever som svårt, särskilt vid beräkningar Britt Holmberg & Cecilia Kilhamn Addition med bråk på tallinjen I sin tredje artikel om tallinjen beskriver författarna hur den används för att utveckla elevers förståelse för addition med oliknämniga

Läs mer

Olika sätt att lösa ekvationer

Olika sätt att lösa ekvationer Modul: Algebra Del 5: Algebra som språk Olika sätt att lösa ekvationer Cecilia Kilhamn, Göteborgs Universitet och Lucian Olteanu, Linnéuniversitetet Att lösa ekvationer är en central del av algebran, det

Läs mer

Learning study på vilket sätt bidrar det till lärares lärande? Angelika Kullberg

Learning study på vilket sätt bidrar det till lärares lärande? Angelika Kullberg Learning study på vilket sätt bidrar det till lärares lärande? Angelika Kullberg Lesson studies Kompetensutveckling för lärare Förbättra elevernas lärande Bidra till lärares professionella kunskap Pragmatisk

Läs mer

Av kursplanen och betygskriterierna,

Av kursplanen och betygskriterierna, KATARINA KJELLSTRÖM Muntlig kommunikation i ett nationellt prov PRIM-gruppen ansvarar för diagnosmaterial och de nationella proven i matematik för grundskolan. Här beskrivs de muntliga delproven i ämnesprovet

Läs mer

Vid Göteborgs universitet pågår sedan hösten 2013 ett projekt under

Vid Göteborgs universitet pågår sedan hösten 2013 ett projekt under Christina Skodras Muffles truffles Undervisning i multiplikation med systematiskt varierade exempel I Nämnaren 2015:4 beskrivs ROMB-projektet övergripande i Unga matematiker i arbete. Här redovisas och

Läs mer

Institutionen för individ och samhälle Kurskod MAG200. Mathematics, Primary Education School Years 4-6: Part I, 15 HE credits

Institutionen för individ och samhälle Kurskod MAG200. Mathematics, Primary Education School Years 4-6: Part I, 15 HE credits KURSPLAN Kursens mål Kursen syftar till att utveckla och fördjupa studentens förmåga att tillämpa didaktiska teorier och matematiska begrepp så att han/hon utifrån gällande styrdokument kan planera, genomföra

Läs mer

Det finns mycket kritik som förs fram om skolan i allmänhet samtidigt

Det finns mycket kritik som förs fram om skolan i allmänhet samtidigt Joakim Samuelsson Expert i matematikklassrummet Vad är det som kännetecknar skickliga matematiklärare? Artikelförfattaren har följt en erkänt duktig matematiklärare och sett hur han bedriver sin undervisning.

Läs mer

Reflektionsverktyg att utveckla modelleringsförmåga

Reflektionsverktyg att utveckla modelleringsförmåga Modul: Undervisa matematik utifrån förmågorna Del 4: Modelleringsförmåga Reflektionsverktyg att utveckla modelleringsförmåga Örjan Hansson, Högskolan Kristianstad Experter i matematisk modellering framhäver

Läs mer

Boken Förstå och använda tal en handbok behandlar 22 områden av elevers

Boken Förstå och använda tal en handbok behandlar 22 områden av elevers Marie Mäkiranta Att diagnostisera elevers kunskaper och missuppfattningar Författaren har i ett fördjupningsarbete under en kurs i Lärarlyftet arbetat med boken Förstå och använda tal en handbok av Alistair

Läs mer

Laborativ matematik, konkretiserande undervisning och matematikverkstäder

Laborativ matematik, konkretiserande undervisning och matematikverkstäder Laborativ matematik, konkretiserande undervisning och matematikverkstäder En utvärdering av matematiksatsningen Madeleine Löwing,, Eva Färjsjö Södertörns Högskola och Göteborgs Universitet Övergripande

Läs mer

Vilken kursplanskompetens behöver rektor?

Vilken kursplanskompetens behöver rektor? Vilken kursplanskompetens behöver rektor? Vad ville ni rektorer att vi skulle ta upp? Ur utvärderingen Fördjupning av kursplanerna i matematik - bra om vi ligger steget före Kursplanens olika delar - förståelse

Läs mer

Institutionen för individ och samhälle Kurskod MAG200. Mathematics, Primary Education School Years 4-6: Part I, 15 HE credits

Institutionen för individ och samhälle Kurskod MAG200. Mathematics, Primary Education School Years 4-6: Part I, 15 HE credits KURSPLAN Kursens mål Kursen syftar till att utveckla och fördjupa studentens förmåga att tillämpa didaktiska teorier och matematiska begrepp så att han/hon utifrån gällande styrdokument kan planera, genomföra

Läs mer

MATEMATIK 5.5 MATEMATIK

MATEMATIK 5.5 MATEMATIK 5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Learning study elevers lärande i fokus

Learning study elevers lärande i fokus Learning study elevers lärande i fokus En teoretiskt förankrad modell för systematisk utveckling av undervisning Innehåll Vad har betydelse för elevernas lärande? Vad är en Learning study? Variationsteori

Läs mer

Vad kan vi i Sverige lära av Singapores matematikundervisning?

Vad kan vi i Sverige lära av Singapores matematikundervisning? Vad kan vi i Sverige lära av Singapores matematikundervisning? Singapore tillhör sedan länge toppnationerna i internationella undersökningar som Pisa och TIMSS. Deras framgångar har gjort att många andra

Läs mer

När vi tänker på någon situation eller händelse där multiplikation

När vi tänker på någon situation eller händelse där multiplikation Maria Flodström & Lina Johnsson Framställningen av multiplikation påverkar taluppfattningen Multiplikation i läromedel för årskurs 1 3 Här ger 2011 års Göran Emanuelssonstipendiater sin analys av hur multiplikation

Läs mer

Centralt innehåll. I årskurs 1.3

Centralt innehåll. I årskurs 1.3 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen

C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen Det här materialet är riktat till lärare och lärarlag och är ett stöd för skolans nulägesbeskrivning av matematikundervisning. Målet är

Läs mer

Olika proportionella samband, däribland dubbelt och hälften.

Olika proportionella samband, däribland dubbelt och hälften. Karin Landtblom & Anette De Ron Gruppera mera! Dubbelt och hälften är vanliga inslag i den tidiga matematikundervisningen. Elever ska ringa in hälften av något eller rita så att det blir dubbelt så många.

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Utbildningsvetenskapliga fakulteten

Utbildningsvetenskapliga fakulteten Utbildningsvetenskapliga fakulteten PDG465 LÄRSTUDIER (LEARNING STUDY). ATT PLANERA, GENOMFÖRA OCH ANALYSERA LÄRANDE I KLASSRUMMET, 15 HÖGSKOLEPOÄNG Learning study. To plan, implement and analyse learning

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Second handbook of research on mathematics teaching and learning (NCTM)

Second handbook of research on mathematics teaching and learning (NCTM) Second handbook of research on mathematics teaching and learning (NCTM) The effects of classroom mathematics teaching on students learning. (Hiebert & Grouws, 2007) Inledande observationer Undervisningens

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning Vad skall en matematiklärare kunna? Andreas Ryve Stockholms universitet och Mälardalens Högskola. Översikt 1. Vad skall en elev kunna? 2. Matematik genom problemlösning ett exempel. 3. Skapa matematiska

Läs mer

Tillfällen att utveckla fördjupad förståelse en bristvara?

Tillfällen att utveckla fördjupad förståelse en bristvara? Modul: Undervisa matematik utifrån förmågorna Del 5: Resonemangsförmåga Tillfällen att utveckla fördjupad förståelse en bristvara? Örjan Hansson, Högskolan Kristianstad Matematiklärande är en komplex process

Läs mer

Matematiklyftet 2013/2014

Matematiklyftet 2013/2014 Matematiklyftet 2013/2014 Didaktiskt kontrakt Ruc 140522 AnnaLena Åberg 79 Matematiklärare 9 skolor? Elever 10 Rektorer 1 Förvaltningschef 2 Skolområdschefer 5 Matematikhandledare Hur ser ni på det didaktiska

Läs mer

Anpassning av problem

Anpassning av problem Modul: Problemlösning Del 7: Anpassning av problem Anpassning av problem Kerstin Hagland och Eva Taflin Detta är en något omarbetad text från boken: Hagland, K., Hedrén R., & Taflin, E. (2005). Rika matematiska

Läs mer

i n n e b ö r d e r av e t t l ä r a n d e o b j e k t i s l ö j d

i n n e b ö r d e r av e t t l ä r a n d e o b j e k t i s l ö j d ATT KUNNA SÅGA RAKT i n n e b ö r d e r av e t t l ä r a n d e o b j e k t i s l ö j d Jenny Frohagen, lärare i slöjd och licentiand i utbildningsvetenskap med inriktning mot praktiska kunskapstraditioner

Läs mer

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper Florenda Gallos Cronberg & Truls Cronberg Två perspektiv på att utveckla algebraiska uttryck Svenska elever påstås ha svårt med mönstertänkande. Eller är det så att de inte får lärarledd undervisning i

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

Hur kan vi göra lärande möjligt? Ulla Runesson Göteborgs universitet Högskolan i Skövde

Hur kan vi göra lärande möjligt? Ulla Runesson Göteborgs universitet Högskolan i Skövde Hur kan vi göra lärande möjligt? Ulla Runesson Göteborgs universitet Högskolan i Skövde 20090910 Fokus i diskussionen Elevernas motivation, intresse, aktivitet, ansvar Organisation Metoder Medier Studieplaner

Läs mer

Tal i bråkform. Kapitlet behandlar. Att förstå tal

Tal i bråkform. Kapitlet behandlar. Att förstå tal Att förstå tal Tal i bråkform Kapitlet behandlar Test Användning av hälften och fjärdedel 2 Representation i bråkform av del av antal och av del av helhet 3, 4 Bråkform i vardagssituationer 4 Stambråk,

Läs mer

Verksamhetsrapport. Skolinspektionen. efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid IT-gymnasiet Södertörn i Huddinge kommun

Verksamhetsrapport. Skolinspektionen. efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid IT-gymnasiet Södertörn i Huddinge kommun Bilaga 1 Verksam hetsrapport 2015-02-18 Dnr 400-2014:2725 efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid IT-gymnasiet Södertörn i Huddinge kommun 1 (8) Innehåll Inledning Bakgrundsuppgifter

Läs mer

30-40 år år år. > 60 år år år. > 15 år

30-40 år år år. > 60 år år år. > 15 år 1 av 14 2010-11-02 16:21 Namn: Skola: Epostadress: 1. Kön Kvinna Man 2. Ålder < 30 år 30-40 år 41-50 år 51-60 år > 60 år 3. Har varit verksam som lärare i: < 5 år 6-10 år 11-15 år > 15 år 4. Har du en

Läs mer

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs

Läs mer

Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1

Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:

Läs mer

Om undervisningen. Att förstå tal. Förstå och använda tal en handbok

Om undervisningen. Att förstå tal. Förstå och använda tal en handbok Om undervisningen Inledningsvis kan man nöja sig med att uttrycka bråk muntligt. Vi bör uppmuntra eleverna att använda de språkliga uttrycken halv och fjärdedel när de delar i två eller fyra lika delar.

Läs mer

Likhetstecknets innebörd

Likhetstecknets innebörd Modul: Algebra Del 5: Algebra som språk Likhetstecknets innebörd Följande av Görel Sterner (2012) översatta och bearbetade text bygger på boken: Carpenter, T. P., Franke, M. L. & Levi, L. (2003). Thinking

Läs mer

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap Hands-On Math Matematikverkstad 09.00 10.30 & 10.45 12.00 Elisabeth.Rystedt@ncm.gu.se Lena.Trygg@ncm.gu.se eller ett laborativt arbetssätt i matematik Laborativ matematikundervisning vad vet vi? Matematik

Läs mer

hämtad från ls.idpp.gu.se

hämtad från ls.idpp.gu.se Att introducera multiplikation i årskurs två Skola Parkskolan i Norrtälje Årskurs 2 Antal elever i studien 38 elever deltog i studien. Studien avslutades våren 2013. Handledare Charlotta Andersson, charlotta.andersson@norrtalje.se

Läs mer

LPP för årskurs 2, Matte V.46-51 HT12

LPP för årskurs 2, Matte V.46-51 HT12 LPP för årskurs 2, Matte V.46-51 HT12 Värdegrund och uppdrag Skolan ska vara öppen för skilda uppfattningar och uppmuntra att de förs fram. Den ska framhålla betydelsen av personliga ställningstaganden

Läs mer

Vad påverkar resultaten i svensk grundskola?

Vad påverkar resultaten i svensk grundskola? Vad påverkar resultaten i svensk grundskola? Individualisering Lärartäthet Homogena grupper Ämneskunskaper Ordning Vad påverkar resultaten i svensk grundskola? Kunskapsöversikt om betydelsen av olika faktorer

Läs mer

Vad är ett problem? Kerstin Hagland och Johan Åkerstedt

Vad är ett problem? Kerstin Hagland och Johan Åkerstedt Modul: Problemlösning Del 1: Matematiska problem Vad är ett problem? Kerstin Hagland och Johan Åkerstedt Var och en av oss har föreställningar om vad matematik är. Dessa föreställningar är ofta ganska

Läs mer

Lokal pedagogisk planering

Lokal pedagogisk planering Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet

Läs mer

UTBILDNINGSVETENSKAPLIGA FAKULTETSNÄMNDEN. Grundnivå/First Cycle

UTBILDNINGSVETENSKAPLIGA FAKULTETSNÄMNDEN. Grundnivå/First Cycle UTBILDNINGSVETENSKAPLIGA FAKULTETSNÄMNDEN PDG465, Lärstudier (Learning study). Att planera, genomföra och analysera lärande i klassrummet, 15,0 högskolepoäng Learning Study. To Plan, Implement and Analyse

Läs mer

Matematikundervisning genom problemlösning

Matematikundervisning genom problemlösning Matematikundervisning genom problemlösning En studie om lärares möjligheter att förändra sin undervisning Varför problemlösning i undervisningen? Matematikinlärning har setts traditionell som en successiv

Läs mer

Förslag den 25 september Matematik

Förslag den 25 september Matematik Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod: SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på

Läs mer

Digitala lärresurser i matematikundervisningen delrapport skola

Digitala lärresurser i matematikundervisningen delrapport skola Digitala lärresurser i matematikundervisningen delrapport skola Denna systematiska översikt sammanställer forskning om digitala lärresurser för att utveckla barns och elevers kunskaper i matematik. Forskningen

Läs mer

De senaste årens resultat från internationella kunskapsundersökningar

De senaste årens resultat från internationella kunskapsundersökningar M. Däcker, F. Hollsten, E. Kaminski & L. Rådvall Undervisningen har betydelse elevers kunskaper om algebraiska uttryck Inom ramen för Stockholmsprojektet har fyra lärare på högstadiet och gymnasiet undersökt

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Förstå tal i bråkform

Förstå tal i bråkform Förstå tal i bråkform Förstå tal i bråkform Erfarenheter i förskoleålder och sedan? Kursplan 2008 Skolan ska i sin undervisning sträva efter att eleven inser värdet av och använder matematikens uttrycksformer

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

Vardagssituationer och algebraiska formler

Vardagssituationer och algebraiska formler Modul: Algebra Del 7: Kommunikation i algebraklassrummet Vardagssituationer och algebraiska formler Cecilia Kilhamn, Göteborgs Universitet och Jörgen Fors, Linnéuniversitetet En viktig del av algebran

Läs mer

Varför undervisar ni matematiklärare på lågstadiet om klockan? Det var

Varför undervisar ni matematiklärare på lågstadiet om klockan? Det var Christel Svedin & Christina Svensson Möjligheter med analog klocka i geometriundervisning På Dammfriskolan i Malmö ledde lärares ifrågasättande av slentrianmässigt förekommande material och innehåll i

Läs mer

Pedagogisk planering i matematik X + 7 = 30 Myrstacken Äldre årskurs 5, Hällby skola

Pedagogisk planering i matematik X + 7 = 30 Myrstacken Äldre årskurs 5, Hällby skola Pedagogisk planering i matematik X + 7 = 30 Myrstacken Äldre årskurs 5, Hällby skola Gäller för första delen av VT15 Syfte Du ska genom undervisningen ges förutsättningar att utveckla din förmåga att:

Läs mer

Samband mellan räknesätt. Lena Andersson Natur, miljö och samhälle Lärarutbildningen Malmö högskola

Samband mellan räknesätt. Lena Andersson Natur, miljö och samhälle Lärarutbildningen Malmö högskola Samband mellan räknesätt Lena Andersson Natur, miljö och samhälle Lärarutbildningen Malmö högskola Matematikundervisningens uppgift, Lgr 11 För att frångå att eleven uppfattar varje matematiskt moment

Läs mer

Publiceringsår Diskussionsfrågor. Undervisningssituationen för elever som är mottagna i grundsärskolan och får sin undervisning i grundskolan

Publiceringsår Diskussionsfrågor. Undervisningssituationen för elever som är mottagna i grundsärskolan och får sin undervisning i grundskolan Publiceringsår 2016 Diskussionsfrågor Undervisningssituationen för elever som är mottagna i grundsärskolan och får sin undervisning i grundskolan 2 (5) Förslag på diskussionsfrågor Såväl lärare som rektor

Läs mer

Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg

Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:

Läs mer

Planering - Geometri i vardagen v.3-7

Planering - Geometri i vardagen v.3-7 Planering - Geometri i vardagen v.3-7 Syfte Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden.

Läs mer

Lokal pedagogisk planering i matematik för åk 8

Lokal pedagogisk planering i matematik för åk 8 Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och

Läs mer

Bedömning av muntliga prestationer

Bedömning av muntliga prestationer Modul: Bedömning för lärande och undervisning i matematik Del 6: Muntliga bedömningssituationer Bedömning av muntliga prestationer Karin Rösmer, Karin Landtblom, Gunilla Olofsson och Astrid Pettersson,

Läs mer

Vad är det som gör skillnad?

Vad är det som gör skillnad? Vad är det som gör skillnad? Pedagogisk Inspiration Maria Dellrup Elisabeth Pettersson Nafi Zanjani Team Munkhättan Lotta Appelros Morin Iwona Charukiewicz Gudrun Einarsdottir Dammfriskolan Emma Backström

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3 BEDÖMNINGSSTÖD till TUMMEN UPP! matte i årskurs 3 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper i årskurs 3. Av tradition har man i den svenska skolan

Läs mer

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath

Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath maria hilling-drath Konkretion av decimaltal En nödvändig ingrediens för förståelse Här presenteras ett sätt att förstärka begrepp kring decimaltal. Med hjälp av tiobasmaterial får eleverna bygga tal för

Läs mer