Statistiska metoder för säkerhetsanalys

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Statistiska metoder för säkerhetsanalys"

Transkript

1 1 / 14 Statistiska metoder för säkerhetsanalys F2: Händelseströmmar och Poissonprocesser

2 Definition Intensitet Exempel 2 / 14 Händelseström Händelsen A inträffar vid de okända tidpunkterna S 1, S 2,... Ex: A = jordbävning ; A = brand S 1 S 2 S 3 S 4 S 5 Följden S 1, S 2,... kallas stream of events för A (händelseström för A). N A (t) = antal gånger A sker i intervallet [0, t], N A (s, t) = antal gånger A sker i intervallet [s, s + t], P t (A) = P(A inträffar minst en gång i [0, t]) = P(N A (t) 1) För ett fixt t (t.ex. 1 år) är P t (A) ett mått på risken för A.

3 Definition Intensitet Exempel Intensitet Om mekanismerna bakom händelseströmmen inte ändrar sig sker händelsen A med en viss konstant intensitet λ A (per tidsenhet). Definition: Intensiteten λ A definieras som λ A = lim t 0 P t (A) t Tolkning: P t (A) = risk för A under tiden t λ A t om t är litet. Om t = 1 (i lämplig enhet) så är P t (A) λ A. Skattning: Om vi studerar händelseströmmen under intervallet [0, T] och noterar N A (T) = antal händelser under intervallet, kan vi skatta λ A med N A (T)/T. 3 / 14

4 Definition Intensitet Exempel 4 / 14 Exempel: Jordbävningar I ett område har man noterat 63 jordbävningar under 75 år. (a) Uppskatta risken för jordbävning en dag (en månad). (b) Beräkna sannolikheten (risken) för jordbävning under ett år. Vilka antaganden måste vi göra för beräkningen? (c) Beräkna sannolikheten (risken) för jordbävning under tio år. (d) Vad är förväntad tid mellan jordbävningar?

5 Definition Intensitet Exempel Ex: Jordbävning: Vi har A= jordbävning och har observerat T = 75 år = dagar där N A (T) = 63. Skattad intensitet λ A = N A(T) T = = 0.84 år 1 = = dag 1. För t = 1 dag får vi P 1 (A) = risk för jordbävning under en dag λ A = För t = 30 dagar får vi P 7 (A) = risk för jordbävning under en månad λ A 30 = För t = 3650 dagar = 10 år får vi??? ( = 8.4 > 1!) 5 / 14

6 Egenskaper Exempel 6 / 14 Poissonprocess (Poisson stream of events) Om det för händelseströmmen A gäller två eller flera händelser inträffar inte (exakt) samtidigt, det förväntade antalet händelser som sker i ett tidsintervall är ändligt, d.v.s. λ A är ändlig, antalet händelser som sker i icke överlappande intervall är oberoende. har vi en Poisson stream (Poissonprocess). Egenskaper: N A (t) = antal händelser i intervallet [0, t] är Po(λ A t), N A (s, t) = antal händelser i intervallet [s, s + t] är Po(λ A t), Förväntad tid mellan händelserna, d.v.s. återkomststiden, T A = 1/λ A, Tiden mellan två händelser är exponentialfördelad med väntevärde 1/λ A.

7 Egenskaper Exempel Poissonfördelning Om N A (t) är Po(λ A t)-fördelad så gäller att P(N A (t) = k) = e λ At (λ At) k, k = 0, 1, 2,... k! Speciellt: P t (A) = P(N A (t) 1) = 1 P(N A (t) = 0) = 1 e λ At (λ At) 0 = 1 e λ At 0! 7 / 14

8 Egenskaper Exempel 8 / 14 1 Jordbävningar under en dag 1 Jordbävningar under en månad sannolikhet sannolikhet antal antal 1 Jordbävningar under ett år 1 Jordbävningar under 10 år sannolikhet sannolikhet antal antal

9 Egenskaper Exempel Ex: Jordbävning (forts) t = 1 dag :N A (1) Po(λ A ) = Po(0.0023), P 1 (A) = 1 e = , t = 30 dagar :N A (30) Po(λ A 30) = Po(0.069), P 30 (A) = 1 e = 0.067, t = 365 dagar :N A (365) Po(λ A 365) = Po(0.84), P 365 (A) = 1 e 0.84 = 0.57, t = 3650 dagar :N A (3650) Po(λ A 3650) = Po(8.4), P 3650 (A) = 1 e 8.4 = Tiden mellan successiva jordbävningar är i medeltal: T A = 1 λ A = = dagar 9 / 14

10 Exempel Egenskaper 10 / 14 Exempel: Sjukhusbränder För sjukhus i Storbritannien anses intensiteten för brand (A) vara λ A = exp(β 0 + β 1 ln a) [år 1 ] där β 0 7.1, β och a är totala golvytan (m 2 ). För en byggnad på 5000 m 2 innebär det att λ A = (a) Verkar det rimligt att händelserna A = brand på sjukhus skulle utgöra en Poisson stream? (b) Vad är risken för brand i byggnaden under en månad? Brand i sig behöver inte innebära katastrof, men om det kombineras med t.ex. händelsen B = dörrarna kan ej öppnas blir det ett allvarligt scenario. (c) Vad är intensiteten för händelserna A B? Hur ska man beräkna risken för detta scenario (brand samtidigt som dörrarna ej kan öppnas)?

11 Exempel Egenskaper 11 / 14 Sjukhusbrand (forts) (a) Ja. (b) t = 1 månad = 1/12 år med N A (t) Po(λ A t) = Po(0.49/12) = Po(0.041), P t (A) = 1 P(N A (t) = 0) = 1 e = (c) Vi är intresserade av den sammansatta händelsen A B och P t (A B) = 1 P(N A B (t) = 0) =??? Vad kan vi säga om N A B (t) = antal bränder där dörrarna inte kan öppnas i intervallet [0, t]?

12 Exempel Egenskaper 12 / 14 Initieringshändelse och scenarier S 1 S 2 S 3 S 4 S 5 B B Vi har en följd av initieringshändelser (A) som skulle kunna leda till allvarliga scenarier. Ur den får vi en följd av scenarier (A B) i andelen P(B) av händelserna. Om händelsen B är oberoende av händelseströmmen för A så är även A B en händelseström med intensitet λ A B = λ A P(B). Om händelserna A följer en poissonprocess så gör scenarierna A B det också.

13 Exempel Egenskaper Sjukhusbrand (forts) Vi har att N A B (t) Po(λ A P(B) t) och t = 1/12 : P t (A B) = 1 e λ At P(B) = 1 e P(B). Men hur ska vi uppskatta P(B)? Det finns två alternativ, baserade på en observationsperiod: (1) Som andelen av A som även ledde till B: P(B) antal A B under observationsperioden antal A under observationsperioden Kräver ett stort antal A för att bli bra. (2) Skatta separat. Inspektera dörrarna ett (stort) antal gånger och notera om de kan öppnas eller ej: P(B) antal gånger dörrarna ej kunde öppnas antal inspektioner 13 / 14

14 14 / 14 Addition av strömmar Vi kan ha flera oberoende strömmar, t.ex. bränder ( ) och vattenläckor ( ), som löper parallellt: Om bränder inträffar med intensitet λ A1 och vattenläckor med intensitet λ A2 så inträffar problem med intensitet λ A1 + λ A2. Ex: sjukhusbränder och -vattenläckor Om bränder inträffar med intensitet 0.49 (år 1 ) och vattenläckor med intensitet 0.77 (år 1 ) och inträffar problem (=brand eller vattenläcka) med intensitet = 1.26 (år 1 ).

1 Stokastiska processer. 2 Poissonprocessen

1 Stokastiska processer. 2 Poissonprocessen 1 Stokastiska processer En stokastisk process är en stokastisk variabel X(t), som beror på en parameter t, kallad tiden. Tiden kan vara kontinuerlig, eller diskret (i vilket fall man brukar beteckna processen

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F9: Intensiteter 3 september 213 Egenskaper Återstående livslängd Storm Poissonprocess (igen) Händelsen A inträffar enligt en Poissonprocess med intensitet l. N A (t) = antal gånger A inträffar i (, t)

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna

Läs mer

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs

Läs mer

Tiden i ett tillstånd

Tiden i ett tillstånd Föreläsning 3 I denna föreläsning ska vi behandla markovska kösystem som har ett begränsat antal buffertplatser och även ett begränsat antal kunder. För att kunna göra detta behöver man några resultat

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F11: Poissonprocesser och tillförlitlighet Egenskaper Träd Test London Poissonprocesser i planet Vi har ett område B. Låt N(B) vara antalet händelser som inträffar i område B. Om det gäller att två eller

Läs mer

Stokastiska processer och simulering I 24 augusti

Stokastiska processer och simulering I 24 augusti STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd Matematisk statistik 24 augusti 2016 Lösningar Stokastiska processer och simulering I 24 augusti 2016

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

Våra vanligaste fördelningar

Våra vanligaste fördelningar Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver

Läs mer

Tentamensskrivning i stokastik MAGB64, 7.5 ECTS den 8 juni 2012 kl 14 19

Tentamensskrivning i stokastik MAGB64, 7.5 ECTS den 8 juni 2012 kl 14 19 Karlstads universitet matematik Peter Mogensen Tentamensskrivning i stokastik MAGB64, 7.5 ECTS den 8 juni 2012 kl 14 19 Hjälpmedel: Godkänd räknare och Mathematics Handbook Beta. Jourtelefon: 0733141592

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010 Avd. Matematisk statistik SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010 0 Allmänna anvisningar Arbeta med handledningen, och skriv rapport, i grupper om två eller tre personer. Närvaro vid laborationstiden

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Tentamen LMA 200 Matematisk statistik,

Tentamen LMA 200 Matematisk statistik, Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 12 oktober 2015 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametsriska metoder. (Kap. 13.10) Det grundläggande

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F7: Bayesiansk inferens Klassisk vs Bayesiansk Två problem Klassisk statistisk inferens Frekventistisk tolkning av sannolikhet Parametrar fixa (ofta okända) storheter Skattningar och konfidensintervall

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F3: Slumpvariaber och fördelningar Diskret Kontinuerlig Slumpvariabler Slumpvariabler = stokastiska variabler = random variables = s.v. Heter ofta X, Y, T. Diskreta kan anta ändligt eller uppräkneligt

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Kunna beräkna spärren i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning av en betjänare och beräkna den.

Kunna beräkna spärren i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning av en betjänare och beräkna den. Övning 4 Vad du ska kunna efter denna övning Kunna beräkna spärren i ett M/M/m*upptagetsystem. Kunna beräkna den medelantal upptagna betjänare i ett M/M/m*upptagetsystem. Känna till begreppet utnyttjning

Läs mer

F23 forts Logistisk regression + Envägs-ANOVA

F23 forts Logistisk regression + Envägs-ANOVA F23 forts Logistisk regression + Envägs-ANOVA Repetition Detta går inteattbeskriva på någotrimligtsättmed en linjär funktion PY Xx) β 0 +β x Den skattade linjen går utanför intervallet0, ): Y ärenbinärvariabel0-,dikotom)manvillmodellera,

Läs mer

Kunna beräkna spärren i ett M/M/m*upptagetsystem.

Kunna beräkna spärren i ett M/M/m*upptagetsystem. Övning 5 Vad du ska kunna efter denna övning Kunna beräkna spärren i ett M/M/m*upptagetsystem. Kunna beräkna den avverkade och erbjudna trafiken i ett M/M/m*upptagetsystem. Känna till enheten Erlang för

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005)

Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005) Repetition och förberedelse Sannolikhet och sta.s.k (1MS005) F8.1 Kvantiler (3) F8.1 Kvantiler (3) F8.2 Räkna regler för väntevärdet (3) F8.3 Olikheter (X) F8.4 Sannolikgenererande funktioner (X) F8.5

Läs mer

Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.''

Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.'' Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.'' Hjälpmedel:'Valfri'räknare,'egenhändigt'handskriven'formelsamling'(4''A4Esidor'på'2'blad)' och'till'skrivningen'medhörande'tabeller.''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

Läs mer

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2 Lösningsförslag TMSB18 Matematisk statistik IL 101015 Tid: 12.00-17.00 Telefon: 101620, Examinator: F Abrahamsson 1. Varje dag levereras en last med 100 maskindetaljer till ett företag. Man tar då ett

Läs mer

Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna medelantal upptagna betjänare.

Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna medelantal upptagna betjänare. Övning 5 Vad du ska kunna efter denna övning Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna λ eff. Kunna beräkna medelantal upptagna betjänare. Problem. Antag

Läs mer

Poisson Drivna Processer, Hagelbrus

Poisson Drivna Processer, Hagelbrus Kapitel 6 Poisson Drivna Processer, Hagelbrus Poissonprocessen (igen) Vi har använt Poissonprocessen en hel del som exempel. I den här föreläsningen kommer vi att titta närmare på den, och även andra processer

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 8 Johan Lindström 21 september 2016 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F8 1/21 för diskret data : Poisson & Binomial för

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

PROGRAMFÖRKLARING III

PROGRAMFÖRKLARING III Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING III Matematisk statistik, Lunds universitet stik för modellval och prediktion p./22 Statistik

Läs mer

Gamla tentamensuppgifter i stokastik

Gamla tentamensuppgifter i stokastik Karlstads universitet matematik Peter Mogensen Gamla tentamensuppgifter i stokastik Hjälpmedel: Godkänd räknare och utdelade formelblad OBS Motivera lösningarna i rimlig omfattning. Exakta svar skall helst

Läs mer

Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar.

Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät utan återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät utan återkopplingar.

Läs mer

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P. Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2 Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005)

Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005) Repetition och förberedelse Sannolikhet och sta.s.k (1MS005) Formellsamling och teori Nästa varje ekva.on som vi använder under kursen finns I samlingen. Tricket i examen är hica räc metod/fördelning.ll

Läs mer

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram.

Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram. Övning 3 Vad du ska kunna efter denna övning Kunna dra slutsatser om ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet när

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Datorövning 3 Bootstrap och Bayesiansk analys

Datorövning 3 Bootstrap och Bayesiansk analys Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 3 Bootstrap och Bayesiansk analys I denna datorövning ska vi fokusera på två olika

Läs mer

4.2.1 Binomialfördelning

4.2.1 Binomialfördelning Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Lösningar till uppgifter från Milton-Arnold, kap 3 4 Matematisk statistik

Lösningar till uppgifter från Milton-Arnold, kap 3 4 Matematisk statistik Sida 1 Lösningar till uppgifter från Milton-Arnold, kap 3 4 Matematisk statistik 3.7, 3.11 Ympning används för att få en planta att växa på ett rotsystem tillhörande en annan växt. Elementarsannolikheterna

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet

Läs mer

Statistik för Brandingenjörer. Laboration 3

Statistik för Brandingenjörer. Laboration 3 LUNDS UNIVERSITET 1(7) STATISTISKA INSTITUTIONEN Per-Erik Isberg/Lars Wahlgren Statistik för Brandingenjörer Laboration 3 Simulering - Brandsäkerhet VT 2012 2 Fire Safety Design Laborationens syfte är

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2

Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2 Tentamen den april 7 i Statistik och sannolikhetslära för BI Uppgift : Låt händelserna A, B, C och D vara händelser i samband med ett försök. a) Anta att P(A)., P(A B)., P(A B).6. Beräkna sannolikheten

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

1 Föreläsning V; Kontinuerlig förd.

1 Föreläsning V; Kontinuerlig förd. Föreläsning V; Kontinuerlig förd. Ufallsrummet har hittills varit dsikret, den stokastisk variabeln har endast kunnat anta ett antal värden. Ex.vis Poissonfördeln. är antal observationer inom ett tidsintervall

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.

Läs mer

Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.

Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod. Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät med återkopplingar.

Läs mer

F9 Konfidensintervall

F9 Konfidensintervall 1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att

Läs mer

Kapitel 5 Multivariata sannolikhetsfördelningar

Kapitel 5 Multivariata sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016

Läs mer

Lösningar tentamensskrivning i stokastik MAGB64 den 7 juni 2013

Lösningar tentamensskrivning i stokastik MAGB64 den 7 juni 2013 Lösningar tentamensskrivning i stokastik MAGB64 den 7 juni 2013 Då detta skrivs är tentorna inte färdigrättade, det tar väldig tid och blir nog inte klart före helgen (jag har annat också), men jag har

Läs mer

Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4.

Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4. Formelblad Detta formelblad får användas under både KST och KSD, samt ordinarie tentamen. Medelvärde x = 1 n x i with(stats): describe[mean]([3,5]); 4 Varians s = 1 (x i x) n 1 ( s = 1 x i n 1 1 n ) x

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Övningstentamen 1. c) Beräkna sannolikheten att exakt en av A eller B inträffar (6 poäng)

Övningstentamen 1. c) Beräkna sannolikheten att exakt en av A eller B inträffar (6 poäng) Övningstentamen Uppgift : Vid ett experiment kan en händelse A, en händelse B eller både A och B inträffa. I en serie om 00 försök har man sammanställt följande statistik: i 90 fall har minst en av A eller

Läs mer

Ett M/M/1 betjäningssystem har följande egenskaper: 1. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde 1 μ

Ett M/M/1 betjäningssystem har följande egenskaper: 1. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde 1 μ M/M/ ösystem M/M/ ösystem Ett M/M/ betjäningssystem har följande egensaper:. Systemet har en betjänare. Betjäningstiderna är exponentialfördelade med medelvärde x =.. Kunder anommer enligt Poissonprocess

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Laboration 4: Intervallskattning och hypotesprövning

Laboration 4: Intervallskattning och hypotesprövning Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 4 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT14 Laboration 4: Intervallskattning och hypotesprövning Syftet med den

Läs mer

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

Laboration 4: Intervallskattning och hypotesprövning

Laboration 4: Intervallskattning och hypotesprövning LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 4: Intervallskattning och hypotesprövning Syftet med den

Läs mer

Statistik för Brandingenjörer. Laboration 4

Statistik för Brandingenjörer. Laboration 4 LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg/Lars Wahlgren Statistik för Brandingenjörer Laboration 4 Simulering - Brandsäkerhet II - @Risk VT 2012 2 Fire Safety Design Laborationens

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning

Läs mer

Jordbävningar en enkel modell

Jordbävningar en enkel modell 9 september 05 FYTA Simuleringsuppgift 3 Jordbävningar en enkel modell Handledare: André Larsson Email: andre.larsson@thep.lu.se Telefon: 046-34 94 Bakgrund Jordbävningar orsakar fruktansvärda tragedier

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram.

Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram. Övning 4 Vad du ska kunna efter denna övning Kunna dra slutsatser om t ex ett systems betjäningstider och antalet köplatser genom att tolka diagram Kunna beräkna medeltid i systemet och spärrsannolikhet

Läs mer

Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011

Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011 Matematisk statistik, LMA, för DAI och EI den 5 aug Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg, minst poäng för och minst för 5. Examinator: Ulla Blomqvist Hjälpmedel:

Läs mer

Föreläsning 7 FK2002

Föreläsning 7 FK2002 Föreläsning 7 FK2002 Föreläsning 7 Binomialfördelning Poissonfördelning Att testa en hypotes Binomialfördelningen Betrakta ett experiment som består av n försök varav ν är lyckade försök. Mätningar har

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Extrauppgifter - Statistik

Extrauppgifter - Statistik Extrauppgifter - Statistik Uppgifter 1. Den stokastiska variabeln Y t 10 ). Bestäm c så att P ( c < Y < c) = 2. Vid tillverkning av en viss sorts färg tillsätts färgpigmentet med hjälp av en doseringsapparat,

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 20 FACIT: Tentamen L9MA0, LGMA0 Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 20-0-2

Läs mer

Svar till gamla tentamenstal på veckobladen

Svar till gamla tentamenstal på veckobladen Svar till gamla tentamenstal på veckobladen Data/Eletro 4 A Patienten är ett allvarligt fall B Patienten är under 4 år C Någon av patientens föräldrar har diabetes 8 + + + + + 8 + a) P(A).4 och P(C).8

Läs mer

TMS136: Dataanalys och statistik Tentamen

TMS136: Dataanalys och statistik Tentamen TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:

Läs mer

Lösningar till tentamen i Matematisk Statistik, 5p

Lösningar till tentamen i Matematisk Statistik, 5p Lösningar till tentamen i Matematisk Statistik, 5p LGR00 6 juni, 200 kl. 9.00 1.00 Kursansvarig: Eric Järpe Maxpoäng: 0 Betygsgränser: 12p: G, 21p: VG Hjälpmedel: Miniräknare samt tabell- och formelsamling

Läs mer

TAMS65 - Föreläsning 6 Hypotesprövning

TAMS65 - Föreläsning 6 Hypotesprövning TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning P-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/33

Läs mer

Problem Vågrörelselära & Kvantfysik, FK november Givet:

Problem Vågrörelselära & Kvantfysik, FK november Givet: Räkneövning 3 Vågrörelselära & Kvantfysik, FK2002 29 november 2011 Problem 16.5 Givet: En jordbävning orsakar olika typer av seismiska vågor, bland annat; P- vågor (longitudinella primär-vågor) med våghastighet

Läs mer

Dekomponering av löneskillnader

Dekomponering av löneskillnader Lönebildningsrapporten 2013 133 FÖRDJUPNING Dekomponering av löneskillnader Den här fördjupningen ger en detaljerad beskrivning av dekomponeringen av skillnader i genomsnittlig lön. Först beskrivs metoden

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Några extra övningsuppgifter i Statistisk teori

Några extra övningsuppgifter i Statistisk teori Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,

Läs mer

Extrauppgifter i matematisk statistik

Extrauppgifter i matematisk statistik Extrauppgifter i matematisk statistik BT 2014 1. Mängden A är dubbelt så sannolik som B. Hur förhåller sig P(A B) till P(B A)? 2. Två händelser A och B har sannolikheter skilda från noll. (a) A och B är

Läs mer

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006 UPPSALA UNIVERSITET Sannolikhetslära och Statistik Matematiska Institutionen F Silvelyn Zwanzig 3 mar, 006 Tillåtna hjälpmedel: Miniräknare, Formel- och Tabellsamling med egna handskrivna tillägg Skrivtid:5-0.

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

Statistisk precision vid radioaktivitetsmätning och Aktivitetsbestämning ur uppmätt räknehastighet

Statistisk precision vid radioaktivitetsmätning och Aktivitetsbestämning ur uppmätt räknehastighet Institutionen för medicin och vård Avdelningen för radiofysik Hälsouniversitetet Statistisk precision vid radioaktivitetsmätning och Aktivitetsbestämning ur uppmätt räknehastighet Gudrun Alm Carlsson och

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/200, HT-03 Laboration 5: Intervallskattning och hypotesprövning Syftet med den här

Läs mer