SKOLORNAS FYSIKTÄVLING

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "SKOLORNAS FYSIKTÄVLING"

Transkript

1 SVENSKA DAGBLADET SKOLORNAS FYSIKTÄVLING Kvalificerings- och lagtävling 1 februari 1994 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Med bildens beteckningar har vi R θ F mg Fcosθ = mg Fsinθ = mω Rsinθ Kraftjämvikt i vertikal led Horisontella komponenten av F fungerar som centripetalkraft Detta ger cosθ = g Rω När ω blir mindre än en viss kritiskt vinkelhastighet ω krit = g R så blir cosinus för vinkeln större än 1. Detta svarar fysikaliskt mot att den lilla ringen blir kvar längst ner i undre läget. För att alltså få ett vinkelutslag fordras att den stora ringen roterar med en viss minsta vinkelhastighet. Vi ser också att när vinkelhastigheten blir mycket stor så närmar sig vinkeln θ alltmer 9. En graf över utslagsvinkeln som funktion av vinkelhastigheten kan se ut så här: θ π/ ω krit ω

2

3 . Vid ett slag med släggan får pålen en viss rörelseenergi. Vid inträngandet i marken utförs ett arbete = produkten av medelkraft och väg varvid pålens rörelseenergi omvandlas till andra energiformer. En viss rörelseenergi behövs därför för att driva ner pålen. Beteckna släggans massa med m och pålens massa med M. Vi kan anta att M>>m. Anta att släggans fart innan den träffar pålen är v och att pålens och släggans gemensamma fart efter den inelastiska stöten är V. Vi använder lagen om rörelsemängdens bevarande i stöten mellan släggan och pålen: mv = ( M + m) V MV Pålens rörelseenergi efter slaget blir 1 MV = M m v M = v M m 1 1 Eftersom släggans farter är desamma ser vi att ett släggslag ger pålen en rörelseenergi som är proportionell mot släggans massa i kvadrat. Detta innebär att den tyngre släggan ger omkring fyra gånger större rörelseenergi per slag och allstå att man måste slå omkring fyra gånger så många slag med den lättare släggan. b) Släggans rörelseenergi före stöten är proportionell mot dess massa. Arbetet att ge släggan denna fart är alltså proprotionellt mot dess massa. Varje slag med den tyngre släggan kräver alltså dubbelt så stort arbete men i gengäld behöver man bara slå en fjärdedel så många slag. Man måste alltså uträtta totalt omkring dubbelt så stort arbete med den lättare släggan.

4 3. Ritas bägarens massa som funktion av tiden, med avdrag för aluminiumstyckets massa för data efter att detta lagts i, får man följande graf Massa/[g] ,5 g Tid[minuter] Ur figuren avläses att 14,5 g kväve förgasades vid kylningen av aluminiumbiten. Värdet beror något på var vi avläser den vertikala differensen mellan de räta linjerna. Vi skall nu beräkna hur mycket energi som aluminiumbiten avlämnat. Eftersom värmekapaciteten inte är konstant måste vi beräkna arean under kurvan för värmekapaciteten från 77 K till 94 K. Detta göres enklast genom att räkna rutor. Man får 38 rutor (glöm inte att räkna de rutor som inte visas i diagrammet, för c mellan och,3). Varje ruta svarar mot,5 1 J/kg dvs totalt 154 J/g. 19,4 g aluminium har då avgett,99 kj och det specifika ångbildningsvärmet för kväve blir,99kj/14,5 g =,1 MJ/kg. Mätningen av den förångade mängden kväve är den storhet som har minst noggrannhet och värdet på ångbildningsvärmet är osäkert med någon enhet i sista decimalen. 4. När blixten slår ner i marken bildas radiella strömmar ut från nedslagsplatsen. Detta ger en elektrisk potential som avtar radiellt utåt. Någotsånär stora fyrfotadjur kommer, om de står med kroppen radiellt ut från nedslagsplatsen, att utsättas för en stor potentialskillnad och därmed stora strömmar genom hela kroppen och genom vitala organ som hjärtat. En tvåfoting som en människa eller en kyckling har ett ganska litet avstånd mellan beröringsytorna på marken och ursätts därigenom för mindre strömmar som ochså går in genom ena benet och ut i det andra, sannolikt ganska obehagligt men med mindre påfrestning på hjärtat.

5 5. 4, g kalium är ganska precis,1 mol. Mängden 4 K i provet var alltså 1 5 mol. Mängden argon kan fås ur allmänna gaslagen pv = nrt Med insatta värden får man mänden argon till 1 4 mol. Vid der radioaktiva sönderfallet omvandlas en kaliumkärna till en argonkärna. Den ursprungliga mängden 4 K i provet bör därför ha varit ( ) mol. Problemtexten ger halveringstiden T 1/ = 1, 1 9 år vilket ger en sönderfallskonstant log T 1 / Vi får ( ) = ( + )e log /, 1, 1 vilket ger t = ln 9 ln r 6. Frekvensen på vågen förändras inte. Vi har därför för amplituderna A 1 och A på vattendjupen h 1 respektive h gh A 1 1 = gh A eller A A 1 h1 = h 1/ 4 Med insatta värden A A 1 = / 4 455, Detta ger en vågamplitud på omkring 9 m. En mer precis teori säger att vågens fart även beror på dess amplitud c = g( h+ A). Man får samma storleksordning på resultatet med betydligt mera komplicerade räkningar.

6 b) Vågens fart blir omkring 1 m/s på öppet hav! Ett fartyg som utsätts för denna våg kommer om vi antar att vi kan approximera vågen med en harmonisk rörelse att röra sig i höjdled enligt πc y = A t = A ft = A t = A sinω sinπ sin sin 66, 1 3 [ s 1 ] t λ Fartygets acceleration på vilken man skulle kunna märka vågen blir dy dt = Aω sinωt Maximala värdet på denna är (6,6 1 3 ) 3 ms ms - - vilket är av storleksordningen en milliondel av den normala tyngdaccelerationen och inte märkbart. 7 a) Varje droppe visar upp en absorberande area som är πr. Varje droppe har en volym som 3 är 4πr / 3. Antalet droppar n per kubikmeter luft som ges av volumen V vatten är då V n = 3 πr 4 3 Betrakta nu ett skikt luft som har arean 1 m och djupet L. Skiktet innehåller 3VL n L 1 = droppar. 4πr 3 Dessa täcker en area (vi antar att de inte skymmer varandra i nämnvärd grad) 3VL 3VL r 3 4πr π = 4r När denna area blir 1 m kan vi räkna med att allt ljus som kommer in i skiktet absorberas. Detta ger L 4r = 3V r V för siktdjupet. Siktdjupet är alltså proportionellt mot dropparnas radie och omvänt proportionellt mot vattenmängden per volym luft. En droppstorlek av,1 mm och med en vattenmängd av 1 cm 3 (1 ml) per m 3 ger ett siktdjup av storleksordningen 1 m dvs ganska tät dimma. Man kan göra en mer exakt beräkning på följande sätt. Betrakta ett luftskikt med den infinitesimala tjockleken dx och arean 1 m. Detta skikt innehåller ett antal droppar som uppvisar en absorberande area

7 n V dx 1 r = 3 π 4r dx Den relativa intensitetsändringen på ljuset ges då av (minus eftersom intensiteten I minskar) di I 3V r dx di 3V = eller = I 4 dx 4r Detta är differentialekvationen för exponentiellt avtagande med lösningen 3 I = I e xv /( 4 r), där I är den ursprungliga intensiteten på ljuset. Man kan nu definiera siktdjupet som det värde på x = L som gör exponenten till 1 varvid man får samma resultat som med det enklare resonemanget ovan. En annan möjlighet är att definiera siktdjupet som den skikttjocklek som gör att intensiteten går ned till hälften. Detta innebär endast en fator log i siktdjupet som blir av samma storleksordning som ridigare. b) När dropparna linjära utsträckning blir mindre än ljusets våglängd konner ljuset inte att ÒseÒ dropparna. Vi kan alltså förvänta att den enkla geometriska modellen ovan bryter samman då dropparnas radie blir av storleksordningen några tiondels µm.

8 8. Dela upp det jordmagnetiska fältet i dess vertikala och horisontella komposant. Den vertikala komposanten inducerar uppenbart ingen ström i ringen eftersom den inte ger något flöde genom ringen. Beteckna det jordmagnetiska fältets horisontalkomposant med B. Anta att ringen roterar med vinkelhastigheten ω. Det magnetiska flöder genom ringen blir då Φ=πrBcosωt där r är ringens radie. ωt är vinkeln mellan normalen till ringplanet och B. Den i ringen inducerade spånningen, e, blir då (vi bryr oss inte om tecknet) d e = Φ = π rb ω sin ω t dt Strömmen i ringen, i, blir e rb i = = π ω sinωt R R där R är ringens resistans. Strömmen i ringen ger upphov till ett magnetfält B 1 som i cirkelns centrum har storleken B i rb rb = µ = µ π ω sinω t = µ π ω sinωt r rr R 1 Detta magnetfält är riktat längs normalen till ringens plan och roterar med denna. Dela upp detta fält i en komposant utefter B:s riktning och en riktning vinkelrätt däremot. Parallellfältet blir µ π rb ω sinωtcosωt R Detta fält har tidsmedelvärdet noll. Det vinkelräta fältet blir µ π rb ω sinωtsinωt R med tidsmedelvärdet rb B1 = µ π ω 4R Detta fält strävar att dra magnetnålen vinkelrätt bort från den ursprungliga riktningen. Kalla vinkelavvikelsen för α. Vi har

9 B 1 µπω r µ π rf tanα = = = B 4R 4R Stoppas textens sifferuppgifter in får man R =,18 mω

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 8 januari 016 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG KVALTÄVLINGEN 016 1. a) Den stora och lilla bollen faller båda,0 m. Energiprincipen ger hastigheten då

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 22 januari 2009 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) Rörelsemotståndsarbetet på nervägen är A n = F motst s = k mg s = k (2 180 + 52 100)

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket

Läs mer

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers : FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet

Läs mer

Tentamen Modellering och simulering inom fältteori, 21 oktober, 2006

Tentamen Modellering och simulering inom fältteori, 21 oktober, 2006 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, oktober, 006 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori Varje uppgift ger 0 poäng. Delbetyget

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSKPRS FNALTÄVLNG 3 maj 2014 SVENSKA FYSKERSAMFUNDET LÖSNNGSFÖRSLAG 1. a) Fasförskjutningen ϕ fås ur P U cosϕ cosϕ 1350 1850 ϕ 43,1. Ett visardiagram kan då ritas enligt figuren nedan. U L

Läs mer

Svar och anvisningar

Svar och anvisningar 160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är

Läs mer

Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola

Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Tid: Måndagen 5/3-2012 kl: 8.15-12.15. Hjälpmedel: Räknedosa. Bifogad formelsamling. Lösningar: Lösningarna skall vara väl

Läs mer

Svar och anvisningar

Svar och anvisningar 15030 BFL10 1 Tenta 15030 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Enligt superpositionsprincipen ska vi addera elongationerna: y/cm 1 1 x/cm b) Reflektionslagen säger att reflektionsvinkeln är

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för

Läs mer

undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd.

undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd. FYSIKTÄVLINGEN Finalen - teori 1 maj 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1 Vi beräknar först lyftkraften för en ballong Antag att ballongen är sfärisk med diametern 4πr 4π 0,15 0 cm Den har då

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi

Läs mer

FYSIKTÄVLINGEN. KVALIFICERINGS- OCH LAGTÄVLING 5 februari 2004 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET

FYSIKTÄVLINGEN. KVALIFICERINGS- OCH LAGTÄVLING 5 februari 2004 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING februari 004 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET. Skillnaen i avläsningen av vågen mellan bil och bestäms av vattnets lyftkraft på metallstaven som enligt

Läs mer

Prov Fysik B Lösningsförslag

Prov Fysik B Lösningsförslag Prov Fysik B Lösningsförslag DEL I 1. Högerhandsregeln ger ett cirkulärt magnetfält med riktning medurs. Kompass D är därför korrekt. 2. Orsaken till den i spolen inducerade strömmen kan ses som stavmagnetens

Läs mer

Svar och anvisningar

Svar och anvisningar 170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse

Läs mer

TFEI02: Vågfysik. Tentamen : Lösningsförslag

TFEI02: Vågfysik. Tentamen : Lösningsförslag 160530: TFEI0 1 Uppgift 1 TFEI0: Vågfysik Tentamen 016-05-30: Lösningsförslag a) Ljudintensiteten, I, är ett mått på hur stor effekt, P eff, som transporteras per area. Om vi vet amplituden på vågen kan

Läs mer

SKOLORNAS FYSIKTÄVLING

SKOLORNAS FYSIKTÄVLING SVENSKA DAGBLADET SKOLORNAS FYSKTÄVLNG FNALTÄVLNG 7 maj 1994 SVENSKA FYSKERSAMFUNDET Lösningsförslag 1. Huden håller sig lämpligt sval i bastun genom att man svettas. Från huden har man en avdunstning

Läs mer

Tentamen i Mekanik - Partikeldynamik TMME08

Tentamen i Mekanik - Partikeldynamik TMME08 Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 23 januari 2014 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) När bilens fart är 50 km/h är rörelseenergin W k ( ) 2 1,5 10 3 50 3,6 2 J 145 10 3 J. Om verkningsgraden

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (EITF85)

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (EITF85) Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETF85) Tid och plats: 25 oktober, 2017, kl. 14.00 19.00, lokal: Gasquesalen. Kursansvarig lärare: Anders Karlsson, tel. 222 40 89

Läs mer

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar

93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar 17317 93FY51 1 93FY51/ TN1 Elektromagnetism Tenta 17317: svar och anvisningar Uppgift 1 a) Av symmetrin följer att: och därmed: Q = D d D(r) = D(r)ˆr E(r) = E(r)ˆr Vi väljer ytan till en sfär med radie

Läs mer

Tillämpad biomekanik, 5 poäng Övningsuppgifter

Tillämpad biomekanik, 5 poäng Övningsuppgifter , plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av

Läs mer

Svar till övningar. Nanovetenskapliga tankeverktyg.

Svar till övningar. Nanovetenskapliga tankeverktyg. Svar till övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Fourierkomponenterna ges av dvs vi har fourierserien f(t) = π 2 + 1 π n 0 { π n = 0 c n = 2 ( 1) n

Läs mer

Strålningsfält och fotoner. Våren 2016

Strålningsfält och fotoner. Våren 2016 Strålningsfält och fotoner Våren 2016 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s 140528: TFEI02 1 TFEI02: Vågfysik Tentamen 140528: Svar och anvisningar Uppgift 1 a) En fortskridande våg kan skrivas på formen: t s(x,t) =s 0 sin 2π T x λ Vi ser att periodtiden är T =1/3 s, vilket ger

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 7 januari 0 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG. (a) Falltiden fås ur (positiv riktning nedåt) s v 0 t + at t s 0 a s,43 s. 9,8 (b) Välj origo

Läs mer

a) En pipa som är öppen i båda ändarna har svängningsbukar i ändarna och en nod i

a) En pipa som är öppen i båda ändarna har svängningsbukar i ändarna och en nod i Lösningar NP Fy B 005 Uppgift nr 1 (79) SVAR: Den gravitationskraft som jorden påverkar satelliten med utgör centripetalkraft i satellitens bana. Denna kraft på satelliten är riktad in mot jordens medelpunkt.

Läs mer

Strålningsfält och fotoner. Våren 2013

Strålningsfält och fotoner. Våren 2013 Strålningsfält och fotoner Våren 2013 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

Lösningar till BI

Lösningar till BI Lösningar till BI 160513 3 3 V 5010 m 1a. Förådstuben: n ( p1 p21) 7 MPa 144 mol. RT (8,31 J/mol K) 293 K 1b. Experimenttuben : pv n n1 n n 3,28 n 147 mol RT nrt 147 8,31293 Ny volym blir då: V 44,8. 6

Läs mer

Kaströrelse. 3,3 m. 1,1 m

Kaströrelse. 3,3 m. 1,1 m Kaströrelse 1. En liten kula, som vi kallar kula 1, släpps ifrån en höjd över marken. Exakt samtidigt skjuts kula 2 parallellt med marken ifrån samma höjd som kula 1. Luftmotståndet som verkar på kulorna

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 6 januari 017 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG KVALTÄVLINGEN 017 1. Enligt diagrammet är accelerationen 9,8 m/s när hissen står still eller rör sig med

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

Tentamen i fysik B2 för tekniskt basår/termin VT 2014

Tentamen i fysik B2 för tekniskt basår/termin VT 2014 Tentamen i fysik B för tekniskt basår/termin VT 04 04-0-4 En sinusformad växelspänning u har amplituden,5 V. Det tar 50 μs från det att u har värdet 0,0 V till dess att u har antagit värdet,5 V. Vilken

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

Final i Wallenbergs Fysikpris

Final i Wallenbergs Fysikpris Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov Lösningsförslag 1. a) Vattens värmekapacitivitet: Isens värmekapacitivitet: Smältvärmet: Kylmaskinen drivs med spänningen och strömmen. Kylmaskinens

Läs mer

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T.

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T. 1. En elektron rör sig med v = 100 000 m/s i ett magnetfält. Den påverkas av en kraft F = 5 10 15 N vinkelrätt mot rörelseriktningen. Rita figur och beräkna den magnetiska flödestätheten. Förslag: En laddad

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RM] Elektrodynamik, vt 013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RMC] Elektrodynamik, ht 005, Krister Henriksson 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

Bra tabell i ert formelblad

Bra tabell i ert formelblad Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare

Läs mer

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2 Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3]

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3] TFEI0: Vågfysik Tentamen 14100: Svar och anvisningar Uppgift 1 a) Vågen kan skrivas på formen: vilket i vårt fall blir: s(x,t) =s 0 sin t π T x + α λ s(x,t) = cos [π (0,4x/π t/π)+π/3] Vi ser att periodtiden

Läs mer

Oscillerande dipol i ett inhomogent magnetfält

Oscillerande dipol i ett inhomogent magnetfält Ú Institutionen för fysik 2014 08 11 Kjell Rönnmark Oscillerande dipol i ett inhomogent magnetfält Syfte Magnetisk dipol och harmonisk oscillator är två mycket viktiga modeller inom fysiken. Laborationens

Läs mer

4 rörelsemängd. en modell för gaser. Innehåll

4 rörelsemängd. en modell för gaser. Innehåll 4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2006

ETE115 Ellära och elektronik, tentamen oktober 2006 (2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är

Läs mer

.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse

.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse .4-6, 8, 12.5-6, 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse Exempel på roterande koordinatsystem planpolära eller cylindriska koordinater Storhet Beteckning Enhet Fysikalisk

Läs mer

Upp gifter I=2,3 A. B=37 mt. I=1,9 A B=37 mt. B=14 mt I=4,7 A

Upp gifter I=2,3 A. B=37 mt. I=1,9 A B=37 mt. B=14 mt I=4,7 A Upp gifter 1. Beskriv den magnetiska kraften som verkar på ledaren, både till storlek och till riktning. Den del av ledaren som är inne i magnetfältet kan antas vara 45 cm i samtliga fall. a. b. I=1,9

Läs mer

Tentamen IX1304 Matematik, Analys , lösningsidéer

Tentamen IX1304 Matematik, Analys , lösningsidéer Tentamen IX0 Matematik, Analys 0-05-0, lösningsidéer. Gör en linjär approximation till kurvan y x, kring den punkt på kurvan där lutningen är. Bestäm sedan för vilka x som det relativa felet för approximationen

Läs mer

Tentamen i Fysik för M, TFYA72

Tentamen i Fysik för M, TFYA72 Tentamen i Fysik för M, TFYA72 Onsdag 2015-06-10 kl. 8:00-12:00 Tillåtna hjälpmedel: Bifogat formelblad Avprogrammerad räknedosa enlig IFM:s regler. Christopher Tholander kommer att besöka tentamenslokalen

Läs mer

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära, Tentamen i El- och vågrörelselära, 05-0-05. Beräknastorlekochriktningpådetelektriskafältetipunkten(x,y) = (4,4)cm som orsakas av laddningarna q = Q i origo, q = Q i punkten (x,y) = (0,4) cm och q = Q i

Läs mer

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. Prov c a b 8+ d / 8 + / + 7 6 + + + + 5 d / 5 5 ( 5 5 8 8 + 5 5 5 6 6 5 9 8 5 5 5 5 7 7 5 5 d π sin d π sin d u( s s' π / cos U( s π cos

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 10/1 017, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Ge dina olika steg i räkningen, och förklara tydligt ditt resonemang! Ge rätt enhet när det behövs. Tillåtna

Läs mer

Provmoment: Ladokkod: Tentamen ges för: KBAST16h KBASX16h. TentamensKod: Tentamensdatum: Tid: 09:00 13:00

Provmoment: Ladokkod: Tentamen ges för: KBAST16h KBASX16h. TentamensKod: Tentamensdatum: Tid: 09:00 13:00 Fysik Bas 2 Provmoment: Ladokkod: Tentamen ges för: KBAST16h KBASX16h 9 högskolepoäng TentamensKod: Tentamensdatum: 2017-05-29 Tid: 09:00 13:00 Hjälpmedel: Grafritande miniräknare, linjal, gradskiva, gymnasieformelsamling,

Läs mer

Möjliga lösningar till tentamen , TFYY97

Möjliga lösningar till tentamen , TFYY97 Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 2006-09-11 2 Andra veckan Trigonometri Veckans begrepp enhetscirkeln, trigonometriska ettan trigonometrisk funktion, sinuskurva period, fasförskjutning, vinkelhastighet

Läs mer

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A

Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Onsdagen 30/3 06, kl 08:00-:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin

BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag till Repetitionsuppgifter BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

Lösningsförslag Inlämningsuppgift 3 Kapacitans, ström, resistans

Lösningsförslag Inlämningsuppgift 3 Kapacitans, ström, resistans Inst. för fysik och astronomi 2017-11-26 1 Lösningsförslag Inlämningsuppgift 3 Kapacitans, ström, resistans Elektromagnetism I, 5 hp, för ES och W (1FA514) höstterminen 2017 (3.1) En plattkondensator har

Läs mer

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade.

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade. 2.7 Virvelströmmar L8 Induktionsfenomenet uppträder för alla metaller. Ett föränderligt magnetfält inducerar en spänning, som i sin tur åstadkommer en ström. Detta kan leda till problem,men det kan också

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 12 januari 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 12 januari 2005 KTH Matematik B Matematik modeller Lösningsförslag till tentamen den januari. a) I en triangel är två av sidlängderna 7 respektive 8 längdeneter vinkeln mellan dessa sidor är. Bestäm den tredje sidans

Läs mer

Om α är vinkeln från dörröppningens mitt till första minimipunkten gäller. m x = 3,34 m

Om α är vinkeln från dörröppningens mitt till första minimipunkten gäller. m x = 3,34 m LÖSNINGSFÖRSLAG 007 KVALIFICERINGS- OCH LAGTÄVLINGEN 1 februari 007 SVENSKA FYSIKERSAMFUNDET UPPGIFT 1. Enelspaltsproblem. Med sedvanliga betecningar erhålles: λ v / f 340/ 680 m 0,50 m Om α är vineln

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

4. Elektromagnetisk svängningskrets

4. Elektromagnetisk svängningskrets 4. Elektromagnetisk svängningskrets L 15 4.1 Resonans, resonansfrekvens En RLC krets kan betraktas som en harmonisk oscillator; den har en egenfrekvens. Då energi tillförs kretsen med denna egenfrekvens

Läs mer

Laborationsrapport. Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A. 22 april Ballistisk pendel

Laborationsrapport. Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A. 22 april Ballistisk pendel Laborationsrapport Ballistisk pendel Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A 22 april 2017 1 1 Introduktion Den här laborationen genomförs för att undersöka en pils hastighet innan den

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Fredagen 1/1 018, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Elektromagnetisk induktion och induktans. Emma Björk

Elektromagnetisk induktion och induktans. Emma Björk Elektromagnetisk induktion och induktans Emma Björk Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna

Läs mer

Lösning till kontrollskrivning 1A

Lösning till kontrollskrivning 1A KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys 1 / 28 SF1626 Flervariabelanalys Föreläsning 2 Hans Thunberg Institutionen för matematik, KTH VT 2018, Period 4 2 / 28 SF1626 Flervariabelanalys Dagens lektion: avsnitt 11.1 11.3 Funktioner från R till

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 213, Kai Nordlund 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen 1/8 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Vågfysik. Superpositionsprincipen

Vågfysik. Superpositionsprincipen Vågfysik Superposition Knight, Kap 21 Superpositionsprincipen Superposition = kombination av två eller fler vågor. Vågor partiklar Elongation = D 1 +D 2 D net = Σ D i Superpositionsprincipen 1 2 vågor

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen /8 016, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget

Läs mer

mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ

mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 019-01-19 Examinator: Magnus Gustafsson 1. Friläggning av balken och staget: Staget är en tvåkraftsdel

Läs mer

Föreläsning 8. Ohms lag (Kap. 7.1) 7.1 i Griffiths

Föreläsning 8. Ohms lag (Kap. 7.1) 7.1 i Griffiths 1 Föreläsning 8 7.1 i Griffiths Ohms lag (Kap. 7.1) i är bekanta med Ohms lag i kretsteori som = RI. En mer generell framställning är vårt mål här. Sambandet mellan strömtätheten J och den elektriska fältstyrkan

Läs mer

Lösningar/svar till tentamen i F0031T Hydromekanik Datum:

Lösningar/svar till tentamen i F0031T Hydromekanik Datum: Lösningar/svar till tentamen i F003T Hydromekanik Datum: 00-06-04 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas

Läs mer

Kapitel 35, interferens

Kapitel 35, interferens Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson

Läs mer

Mekanik FK2002m. Repetition

Mekanik FK2002m. Repetition Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-6-4 DEL A 1. Funktionen f är definierad på området som ges av olikheterna x > 1/ och y > genom f(x, y) ln(x 1) + ln(y) xy x. (a) Förklara vad det

Läs mer