Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Formelsamlingen.se Matteboken.se Pluggakuten.se

Storlek: px
Starta visningen från sidan:

Download "Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Formelsamlingen.se Matteboken.se Pluggakuten.se"

Transkript

1 Mtte KONVENT Plugg tillsmmns inför de ntionell proven i mtemtik M te m tik Länktips: Mttecentrum.se Formelsmlingen.se Mtteoken.se Pluggkuten.se 4 Innehåll: Pluggtips Formelsmling Ntionell prov från tidigre år I smrete med retsgivrorgnistionen

2 Så lcks du med det ntionell provet För tt få ut så mcket som möjligt v kvällens mttekonvent vill vi uppmuntr dig tt ställ mång frågor till volontärern. De finns på plts idg för din skull och de vill hjälp till! Självklrt kn du ställ vilk mttefrågor du vill; de ehöver inte hndl om en specifik uppgift på övningsprovet. Här följer någr pluggtips från oss på Mttecentrum: Rit upp prolemet: Inget förklrr ett prolem så r som en figur och det mest går tt rit. Sk du räkn ut måtten på en hge? Rit hgen! Sk du lös en trigonometrisk ekvtion? Rit enhetscirkeln! T prolemet steg för steg: De flest v oss kn inte håll mssor v steg i huvudet smtidigt så h för vn tt lltid skriv ner ll delr i din uträkning så lir det färre slrvfel och åde du, lärren och volontärern kn lättre följ med i hur du hr tänkt. Jo med grundteknikern: Inom mtemtiken gger de mer vncerde metodern oft på grundtekniker som mn hr lärt sig i tidigre mttekurser eller kpitel så se till tt öv lite etr på eempelvis prioriteringsreglern, ekvtionslösning och ndr grundtekniker om de mer vncerde metodern känns knepig. Prt mtte: Hjälp dig själv och ndr genom tt diskuter prolemen tillsmmns. Genom tt prt mtte övr du på llt möjligt: din egen förståelse, hur prolem kn ttckers på fler olik sätt, ditt mtemtisk språk och ditt mttesjälvförtroende. Kn du förklr en metod för en kompis så vet du tt du själv ehärskr den. Prtr du mtte övr och förereder du dig även inför det muntlig ntionell provet! Kvlitet istället för kvntitet: Tänk kvlitet istället för kvntitet. Ägn hellre en hel lektion åt tt verkligen försök förstå Ptghors sts än tt räkn ut hpotenusn i 0 olik tringlr utn tt förstå vd du fktiskt gör.

3 Tips för tt lös en specifik uppgift Läs uppgiften noggrnt! Förstår du uppgiften? Vd frågs det efter egentligen? Det kn vr något som sk räkns ut eller något som sk ställs upp för tt sedn räkns ut. Om inte, vd är det du inte förstår? Är det viss ord i uppgiften eller är det ett räknesätt som uppgiften er dig tt nvänd? Koll upp de delr som du inte förstår genom tt slå upp orden, äddr kåt i oken för tt fräsch upp minnet eller fråg en volontär! Innn du örjr lös uppgiften, ställ dig frågn: Förstår jg vilken metod som sk nvänds för tt lös uppgiften? Om inte, koll upp liknnde uppgifter och titt på hur lösningsmetodern är där. När du vet vilken metod som sk nvänds till den uppgift du sitter med kn du ställ dig själv följnde frågor: Förstår jg metoden som nvänds? Förstår jg vrför just denn metod nvänds till denn tp v prolem? Om inte, gå tillk till vsnittet med den metoden i oken och fräch upp minnet eller fråg en volontär. Räknt klrt och svret är glet? Då sk du felsök svret! Gå noggrnt igenom uträkningrn för tt se om du gjorde någr räknefel och ställ dig än en gång frågorn i de först två punktern för tt försäkr dig om tt du verkligen hr förstått frågn och nvänt rätt räkneopertioner. Känns uträkningen och metoden fortfrnde rätt, räkn om uppgiften på en helt n sid utn tt tjuvkik på den gml uträkningen! Fortfrnde fel svr och svret är detsmm som du fick först gången du räknde? Då hr du troligtvis inte gjort ett slrvfel, utn nvänder fel metod. Gå tillk och koll hur liknnde uppgifter hr lösts. Känner du tt du ändå inte kommer vidre på egen hnd, fråg en volontär! Läs mer ingående tips på mtteoken.se!

4 (8) Skolverket Formler till ntionellt prov i mtemtik, kurs 4 Alger Regler ) ( ) ( ) )( ( ) ( ) ( ) )( ( ) )( ( Andrgrdsekvtioner 0 q p q p p 0 c c 4 Aritmetik Prefi T G M k h d c m n p ter gig meg kilo hekto deci centi milli mikro nno piko Potenser ) ( ) ( n n 0 Geometrisk summ där ) (... k k k k k k n n Logritmer 0 lg e ln lg lg lg lg lg lg p p lg lg Asolutelopp 0 om 0 om

5 (8) Funktioner Rät linjen Andrgrdsfunktioner k m k c 0 c 0, där inte åde och är noll Potensfunktioner Eponentilfunktioner C C 0 och Sttistik och snnolikhet Stndrdvvikelse för ett stickprov s ( ) (... ( n ) n ) Lådgrm Normlfördelning Täthetsfunktion för normlfördelning f () e Skolverket

6 (8) Differentil- och integrlklkl Derivtns definition f ( ) lim h0 f ( h) h f ( ) lim f ( ) f ( ) Derivtor Funktion Derivt n där n är ett reellt tl n n ( > 0) ln ln ( 0 ) e k e e k k e sin cos cos sin tn tn cos k f () k f () f ( ) g( ) f ( ) g( ) f ( ) g( ) f ( ) g( ) f ( ) g( ) f ( ) g( ) ( ( ) 0) f ( ) g( ) f ( ) g( ) g ( g( )) Kedjeregeln Om f ( z) och z g( ) är två deriverr funktioner så gäller för f ( g( )) tt d d dz f ( g( )) g( ) eller d dz d Skolverket

7 4(8) Primitiv funktioner Funktion k n ( n ) Primitiv funktioner k C n C n ln C ( 0) e e C k e e C k ( 0, ) k C ln sin cos C cos sin C Komple tl Representtion iv z i re r(cosv isin v) där i Argument rg z v tn v Asolutelopp z r Konjugt Om z i så z i Räknelgr zz r r (cos( v v) isin( v v)) z z r (cos( v v) isin( v )) v r de Moivres formel n n n z ( r(cosv isin v)) r (cosnv isin nv) Skolverket

8 5(8) Geometri Tringel h A Prllellogrm A h Prllelltrpets h( ) A Cirkel A πr O d π 4 πr πd Cirkelsektor v 60 πr A v 60 r r π Prism V Bh Clinder V πr h Mntelre A πrh Prmid V Bh Kon πr h V Mntelre A πrs Klot 4πr V A 4 πr Likformighet Tringlrn ABC och DEF är likformig. d e c f Skl Areskln = (Längdskln) Volmskln = (Längdskln) Skolverket

9 6(8) Topptringel- och trnsverslstsen Om DE är prllell med AB gäller Bisektrisstsen AD BD AC BC DE AB CD AC CD CE AD BE CE och BC Vinklr u v 80 Sidovinklr w v Vertiklvinklr L skär två prllell linjer L och L v w Likelägn vinklr u w Alterntvinklr Kordstsen cd Rndvinkelstsen u v Pthgors sts c Avståndsformeln d ( ) ( ) Mittpunktsformeln m och h m Skolverket

10 7(8) Trigonometri Definitioner sin v c cos v c tn v Enhetscirkeln sin v cos v tn v Sinusstsen Cosinusstsen Arestsen Trigonometrisk formler sin A sin B sin C c T c sin C sin v cos ccos A v sin( v u) sin vcosu cosvsinu sin( v u) sin vcosu cosvsinu cos( v u) cosvcosu sin vsinu cos( v u) cosvcosu sin vsinu sin v sin v cosv cos v sin cosv cos v sin v v () () () sin cosc c sin( ( v) där c och tn v Cirkelns ekvtion ( ) ( ) r Skolverket

11 8(8) Ekt värden Vinkel v (grder) (rdiner) 0 π π π π π π 5π π sin v 0 0 cos v 0 tn v 0 Ej def Skolverket

12 NpM4 vt 0 Del B: Digitl verktg är inte tillåtn. Endst svr krävs. Skriv din svr direkt i provhäftet.. Deriver ) f ( ) = sin (/0/0) ) 5 g ( ) = ( 4 + ) (/0/0). Figuren visr ett komplet tlpln där tlen z och z är mrkerde. ) Bestäm z (/0/0) ) Bestäm z + z (/0/0)

13 NpM4 vt 0. Ange den lodrät smptoten till f ( ) = (/0/0) + 4. Figuren visr grfen till funktionen f. För vilket värde på i intervllet 0 0 ntr 0 f ( ) d sitt störst värde? (0//0) 5. För vilk vinklr i intervllet 0 < v < 90 gäller tt v? sin < (0//) 6. Ange en kontinuerlig funktion f som är definierd för ll och hr värdemängden f ( ) 7 (0/0/)

14 NpM4 vt 0 Del C: Digitl verktg är inte tillåtn. Skriv din lösningr på seprt ppper. e 7. Någr elever hr fått i uppgift tt eräkn Agnes får svret e Ingel får svret 0 Kerstin får svret d Hr någon v dem räknt rätt? Motiver ditt svr. (/0/0) 8. För två komple tl z och z gäller tt: z z = 7 + i z = i Bestäm z på formen + i (/0/0) sin 9. ) Vis tt cos + = för ll där uttrcken är definierde. (/0/0) cos π ) Vis tt cos( + ) = cos sin (0//0) 4 0. Lös ekvtionen cos = (//0) 4

15 NpM4 vt 0. För funktionen f gäller tt + f ( ) = ) Ange smptotern till funktionen f Endst svr krävs (//0) ) Skiss grfen till funktionen f och dess smptoter. (0//0) c) Lös olikheten f ( ) > där + f ( ) = (0/0/) p. Ekvtionen z = i sk undersöks för olik värden på heltlet p. För viss värden på heltlet p är z = cos9 + i sin 9 en lösning till ekvtionen p z = i ) Vis tt dett gäller för p = 50, det vill säg vis tt z är en lösning till z 50 = i (0//0) ) Bestäm ll heltlsvärden på p för vilk z är en lösning p till ekvtionen z = i (0/0/). För polnomet p gäller tt p ( z ) = z + 4 z z 8 5 ) Vis tt ( z + 4 ) är en fktor i polnomet p. (0//0) 5 ) Lös ekvtionen z + 4 z z 8 = 0 (0//) π / 6 4. Beräkn ( sin + 5 ) cos d (0/0/) 0 5

16 NpM4 vt 0 5. Lsse och Nikls sk lös följnde uppgift: Undersök om funktionen f ( ) = ntr något störst värde då 0 5 Lsse löser uppgiften så här: Nikls säger tt Lsses svr är fel eftersom funktionen kn nt större värden än. Till eempel ntr funktionen värdet då = 5 Utred vilket fel Lsse gör i sin lösning och lös den givn uppgiften. (0/0/) 6

17 NpM4 vt 0 Del D: Digitl verktg är tillåtn. Skriv din lösningr på seprt ppper. 6. Skriv det komple tlet z = + i på polär form. (/0/0) 7. En etesmrk för kor vgränss v skog och en ringlnde äck enligt figuren nedn. Enligt en förenkld modell kn äckens läge eskrivs med funktionen f ( ) = 0, 5 + sin + Beräkn etesmrkens re. (/0/0) 8. Ekvtionen + cos = hr fler lösningr. 5 Smtlig lösningr ligger i intervllet 0 0 ) Bestäm den minst lösningen till ekvtionen. Svr med minst tre värdesiffror. (/0/0) ) Bestäm ntlet lösningr till ekvtionen. (/0/0)

18 NpM4 vt 0 9. I figuren nedn viss det område som egränss v kurvn koordintlrn. = 4 e och När området roters runt -eln ilds en rottionskropp. Teckn ett uttrck för rottionskroppens volm och estäm dess värde med minst tre värdesiffror. (0//0) 0. En fågelunge fller från en 8,0 m hög klipp. För tt förenklt eskriv fllrörelsen kn följnde differentilekvtion ställs upp: dv + 5v = 0 där v är fllhstigheten i m/s efter tiden t sekunder. dt ) Vis tt 5t v ( t ) = e är en lösning till differentilekvtionen. (/0/0) ) Bestäm tiden det tr för fågelungen tt fll 8,0 m. (0//0). Ett företg hr undersökt hur länge kunder som ringer till ders kundservice ehöver vänt innn de får svr. De hr funnit tt väntetiden t minuter hr en t / 6 fördelning som kn eskrivs med täthetsfunktionen f ( t ) = e, t 0 6 ) Bestäm snnolikheten tt en kund som ringer till företget ehöver vänt högst 0 minuter på svr. (0//0) ) Företget vill informer om resulttet v undersökningen genom följnde formulering: Vår kundundersökning visr tt 50 % v vår kunder ehöver vänt högst minuter. Bestäm värdet på. (0//0) 4

19 NpM4 vt 0. Figurern visr kurvorn = p ( ) och = q ( ) smt tngentern till dess för = Låt r ( ) = p ( ) q ( ) och estäm r ( ). (0/0/). I Liss mtemtikok finns följnde uppgift: Figuren visr kurvn = A sin + B Bestäm konstntern A och B. Lis löser uppgiften så här: Liss lösning är inte korrekt. Hjälp Lis tt lös uppgiften korrekt. (0/0/) 5

20 NpM4 vt 0 Bedömningsnvisningr Eempel på ett godtgrt svr nges inom prentes. Till en del uppgifter är edömd elevlösningr ifogde för tt nge nivån på edömningen. Om edömd elevlösningr finns i mterilet mrkers dett med en smol. Del B. M /0/0 ) Korrekt svr ( f ( ) = cos ) + E P 4 ) Korrekt svr ( g ( ) = 0(4 + ) ) + E P. M /0/0 ) Korrekt svr ( i ) + E B ) Korrekt svr ( + 5 i ) + E P. M /0/0 Korrekt svr ( = ) + E B 4. M 0//0 Korrekt svr ( = 9 ) + C B 5. M 0// Anger minst ett v de korrekt intervllen, t e 0 < v < 0 + C B med korrekt svr ( 0 < v < 0 och 50 < v < 90 ) + A B Kommentr: Även svren v < 0 och v > 50 nses godtgr då intervllet 0 < v < 90 är givet. 6. M 0/0/ Korrekt svr (t e f ( ) = + 4 sin ) + A B 8

21 NpM4 vt 0 Del C 7. M /0/0 Godtgr nsts, t e eräknr integrlen till lne ln + E P med i övrigt godtgrt resonemng (t e J, svret lir. Kerstin hr rätt. ) + E R 8. M /0/0 (7 + i)(+ i) Godtgr nsts, t e nger tt z = + E PL ( i)( + i) med i övrigt godtgr lösning med korrekt svr ( z = i ) + E PL + 9. M //0 ) Godtgr nsts, t e förenklr VL till sin + cos + E R med i övrigt godtgrt slutfört evis + E R Se vsnittet Bedömd elevlösningr. ) Godtgr nsts, nvänder dditionsstsen korrekt + C R med i övrigt godtgrt slutfört evis + C R Se vsnittet Bedömd elevlösningr. 0. M //0 Godtgr nsts, estämmer minst en lösning till ekvtionen + E P med i övrigt godtgr lösning med korrekt svr ( = 5 + n 80 ) + C P 9

22 NpM4 vt 0. M // ) Anger den vågrät eller lodrät smptoten + E B med korrekt svr ( = och = ) + C B ) Godtgr skissning v grfen där åd smptotern ingår + C P med korrekt inritde smptoter och en grf som tdligt närmr sig smptotern Kommentr: Med godtgr skissning v grfen mens tt grfen, med sitt krkteristisk utseende, ligger på rätt sid om smptotern men ehöver inte vr korrekt inritd punkt för punkt. + C K Se vsnittet Bedömd elevlösningr. c) Godtgr nsts, estämmer det en delintervllet, t e < < 5 + A PL med i övrigt godtgr lösning med korrekt svr ( < < eller < < 5 ) + A B Kommentr: En lösning med svret < < 5 ges nstspoängen för prolemlösning på A-nivå. Se vsnittet Bedömd elevlösningr.. M 0// ) Godtgr nsts, nvänder de Moivres formel korrekt + C P med i övrigt godtgr lösning ) Godtgr nsts, estämmer tterligre minst ett värde på p med den givn egenskpen + C P + A PL med i övrigt godtgr lösning med korrekt svr ( p = 0 + n 40 ) + A PL Se vsnittet Bedömd elevlösningr. 0

23 NpM4 vt 0. M 0// ) Godtgr nsts, t e påörjr en korrekt uppställd polnomdivision + C R med i övrigt godtgrt slutfört evis + C R ) Godtgr nsts, estämmer minst tre rötter + C P = med i övrigt godtgr lösning med korrekt svr ( z = i, z = i, z, 4 5 z = (cos0 + isin0 ) och z = (cos 40 + isin 40 ) ) + A PL Lösningen (deluppgift och ) kommunicers på A-nivå, se de llmänn krven på sidn 4. För denn uppgift kn mtemtisk smoler och representtioner (se punkt sidn 4) vr likhetstecken, minustecken, rottecken, inde, prenteser, termer såsom polär form, koefficient smt hänvisning till de Moivres formel etc. + A K Se vsnittet Bedömd elevlösningr. 4. M 0/0/ Godtgr nsts, estämmer en korrekt primitiv funktion + A PL med i övrigt godtgr lösning med korrekt svr ( ) + APL 4 Se vsnittet Bedömd elevlösningr. 5. M 0/0/ Godtgr nsts, t e nger tt felet eror på tt Lsse inte tr hänsn till tt det finns ett -värde där funktionen inte är definierd + A R med i övrigt godtgrt slutfört resonemng med godtgr slutsts (t e Nej, den hr inget störst värde. ) + A R Lösningen kommunicers på A-nivå, se de llmänn krven på sidn 4. För denn uppgift kn mtemtisk smoler och representtioner (se punkt sidn 4) vr likhetstecken, f ( ), f ( ), prenteser, lim, tdlig skiss, termer såsom nollställe, derivt, störst värde, definierd, grf, smptot, -el etc. + A K Se vsnittet Bedömd elevlösningr.

24 NpM4 vt 0 Del D 6. M /0/0 Godtgr nsts, t e estämmer rg(z ) + E B med i övrigt godtgr lösning med godtgrt svr (,8(cos 45 + isin 45 ) ) + E B 7. M /0/0 9 Godtgr nsts, korrekt tecknd integrl, ( 0, 5 + sin + ) d + E M med i övrigt godtgr lösning med godtgrt svr (47 km ) Kommentr: Om grder nvänts i stället för rdiner fås det ej godtgr svret 49 km. 0 + E M 8. M /0/0 ) Godtgr lösning med godtgrt svr ( 5, 97 ) + E P ) Godtgr lösning med korrekt svr (7) + E P 9. M 0//0 Godtgr nsts, estämmer övre integrtionsgränsen eller tecknr integrlen π ( 4 e ) d + C P 0,86 med godtgr fortsättning, tecknr ett uttrck för volmen, π ( 4 e med i övrigt godtgr lösning med godtgrt svr (7,8) 0 ) d + C P + C P

25 NpM4 vt 0 0. M //0 ) Godtgr lösning + E P ) Godtgr nsts, t e tecknr en korrekt ekvtion för estämning v tiden, t e ( e ) d t = 8 + C M 0 5t med i övrigt godtgr lösning med godtgrt svr (4, s) Lösningen (deluppgift och ) kommunicers på C-nivå, se de llmänn krven på sidn 4. För denn uppgift kn mtemtisk smoler och representtioner (se punkt sidn 4) vr likhetstecken, VL, HL, v ( t ), v ( t ), integrltecken, prenteser, termer såsom differentilekvtion, integrl, integrtionsgräns, primitiv funktion etc. + C M + C K Se vsnittet Bedömd elevlösningr.. M 0/4/0 ) Godtgr nsts, t e ställer upp en integrl för estämning v snnolikheten tt väntetiden är högst 0 minuter med i övrigt godtgr lösning med godtgrt svr (0,8) + C M + C M ) Godtgr nsts, t e ställer upp en korrekt ekvtion för estämning v + C PL med i övrigt godtgr lösning med godtgrt svr ( 4, ) + C PL Se vsnittet Bedömd elevlösningr.. M 0/0/ Godtgr nsts, t e nger tt r ( ) = p ( ) q ( ) + p ( ) q ( ) + A B med i övrigt godtgr lösning med godtgrt svr ( r ( ) = ) + A PL. M 0/0/ Godtgr nsts, estämmer en v konstntern med godtgr motivering + A PL med i övrigt godtgr lösning med korrekt svr ( A =, B = ) + A PL Se vsnittet Bedömd elevlösningr.

Plugga inför nationella provet med Mattecentrum. Pluggtips Formelsamlingen.se

Plugga inför nationella provet med Mattecentrum. Pluggtips Formelsamlingen.se +RELEASE THE MATH IN YOU+ Mttekonvent Plugg inför ntionell provet med Mttecentrum M te m Länktips: tikcinnehåll: Mttecentrum.se Pluggtips Formelsmlingen.se Formelsmling Mtteoken.se Ntionell prov från tidigre

Läs mer

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov Mtte KONVENT Plgg tillsmmns inför de ntionell proen i mtemtik M te m tik Länktips: Mttecentrm.se Mtteoken.se Formelsmlingen.se Plggkten.se 5 Innehåll: Plggtips Formelsmling Krspro I smrete med retsgirorgnistionen

Läs mer

3BInnehåll: Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se. Pluggtips Formelsamlingen.se. Formelsamling Nationella prov från tidigare år

3BInnehåll: Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se. Pluggtips Formelsamlingen.se. Formelsamling Nationella prov från tidigare år Mtte KONVENT Plugg tillsmmns inför de ntionell proven i mtemtik M te m tik Länktips: BInnehåll: Mttecentrum.se Pluggtips Formelsmlingen.se Formelsmling Ntionell prov från tidigre år Mtteoken.se Pluggkuten.se

Läs mer

KONVENT. Plugga tillsammans inför de nationella proven i matematik. Pluggtips Formelsamlingen.se

KONVENT. Plugga tillsammans inför de nationella proven i matematik. Pluggtips Formelsamlingen.se Mtte KONVENT Plugg tillsmmns inför de ntionell proven i mtemtik M te m Länktips: tikcinnehåll: Mttecentrum.se Pluggtips Formelsmlingen.se Formelsmling Mtteboken.se Ntionell prov från tidigre år Pluggkuten.se

Läs mer

KONVENT. Plugga tillsammans inför de nationella proven i matematik. Pluggtips Formelsamlingen.se

KONVENT. Plugga tillsammans inför de nationella proven i matematik. Pluggtips Formelsamlingen.se Mtte KONVENT Plugg tillsmmns inför de ntionell proven i mtemtik M te m Länktips: tikainnehåll: Mttecentrum.se Pluggtips Formelsmlingen.se Formelsmling Mtteboken.se Ntionell prov från tidigre år Pluggkuten.se

Läs mer

KONVENT. Plugga tillsammans inför de nationella proven i matematik. Pluggtips Formelsamlingen.se

KONVENT. Plugga tillsammans inför de nationella proven i matematik. Pluggtips Formelsamlingen.se Mtte KONVENT Plugg tillsmmns inför de ntionell proven i mtemtik M te m Länktips: tikbinnehåll: Mttecentrum.se Pluggtips Formelsmlingen.se Formelsmling Mtteboken.se Ntionell prov från tidigre år Pluggkuten.se

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

MA002X Bastermin - matematik VT16

MA002X Bastermin - matematik VT16 MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:

Läs mer

Mattekonvent. Matematik. Keep calm and do math. Innehåll: Pluggtips Formelsamling Nationella prov. Plugga inför nationella provet med Mattecentrum!

Mattekonvent. Matematik. Keep calm and do math. Innehåll: Pluggtips Formelsamling Nationella prov. Plugga inför nationella provet med Mattecentrum! Keep clm d do mth Mttekoet Plgg iför tioell proet med Mttecetrm Mtemtik Iehåll: Plggtips Formelsmlig Ntioell pro 5 mtteoke.se plggkte.se formelsmlige.se Så lcks d med det tioell proet För tt få t så mcket

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8 Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet

Läs mer

Uppgift 1-6. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.

Uppgift 1-6. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN MaB VT 2002 LÖSNINGAR 3

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN MaB VT 2002 LÖSNINGAR 3 freeleks NpMB vt00 1() Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 3 MB VT 00 LÖSNINGAR 3 Del I, Digitl verktyg är INTE tillåtn 3 Del I # 1 (/0) Linje med riktningskoefficienten 3............

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

Studieplanering till Kurs 3b Grön lärobok

Studieplanering till Kurs 3b Grön lärobok Studieplnering till Kurs 3b Grön lärobok Den här studieplneringen hjälper dig tt häng med i kursen. Plneringen följer lärobokens uppdelning i kpitel och vsnitt. Iblnd får du tips på en inspeld genomgång

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

a sin 150 sin 15 BC = BC AB 1.93 D C 39º 9.0

a sin 150 sin 15 BC = BC AB 1.93 D C 39º 9.0 18 Trigonometri Övning 18.1 I tringeln är sidorn och lik lång. Tringelns störst vinkel är 10. eräkn förhållndet melln sidorn och. Svr med tre gällnde siffror. Mätning i figur godts ej. Tringeln är likbent.

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3.

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3. Inlednde kurs i mtemtik, vsnitt P6 P6 eräkn sin P61 eräkn os 4 Vi ritr upp enhetsirkeln oh vinkeln Vi sk nvänd enhetsirkeln oh symmetrier i denn för tt estämm os 4 Den punkt på enhetsirkeln med vinkeln

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*) Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN NpMaB HT 2006 LÖSNINGAR 3

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN NpMaB HT 2006 LÖSNINGAR 3 freeleks NpMB ht006 1(31) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 006 3 NpMB HT 006 LÖSNINGAR 3 Del I: Digitl verktg är INTE tillåtn 3 Del 1 # 1 (/0) Lös ekvtionen....................

Läs mer

Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.

Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger ) Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är Armin Hlilovi: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En irkel är mängden v de punkter i plnet vrs vstånd till en given punkt

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 905 BESKRIVNING AV GODA SVAR De beskrivningr v svrens innehåll och poängsättningr som ges här är inte bindnde för studentexmensnämndens bedömning Censorern beslutr om de kriterier

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

Komplexa tal. j 2 = 1

Komplexa tal. j 2 = 1 Komplex tl De komplex tlen nvänds när mn behndlr växelström inom elektroniken. Imginär enheten beteckns i elektroniken med j (i, som nvänds i mtemtiken, är ju upptget v strömmen). Den definiers v j = 1

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng

TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng TENTMEN Kursnummer: Moment: Progrm: Rättnde lärre: Emintor: Dtum: Tid: Hjälpmedel: Omfttning oc etgsgränser: H Mtemtik för sår I TEN Tekniskt sår Nicls Hjelm Nicls Hjelm -8- :-7: ormelsmling: ISBN 78--7-77-8

Läs mer

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

Area([a; b] [c; d])) = (b a)(d c)

Area([a; b] [c; d])) = (b a)(d c) Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner

Läs mer

1 Föreläsning IX, tillämpning av integral

1 Föreläsning IX, tillämpning av integral Föreläsning IX, tillämpning v integrl. Volym v någr kroppr.. Skiv- oc sklmetodern, m.m. Vi kn tänk oss en limp (röd) som längsledes är genomorrd v eln,. Limpn skivs i n lik tjock skivor, lltså med tjocklek

Läs mer

10. Tillämpningar av integraler

10. Tillämpningar av integraler 90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re

Läs mer

TATA42: Föreläsning 11 Kurvlängd, area och volym

TATA42: Föreläsning 11 Kurvlängd, area och volym TATA4: Föreläsning Kurvlängd, re och volm John Thim 4 mrs 8 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Diskreta stokastiska variabler

Diskreta stokastiska variabler Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt

Läs mer

Teorifrå gor kåp. 5.2 9.3

Teorifrå gor kåp. 5.2 9.3 Teorifrå gor kåp. 5. 9.3 Repetition ) Härled formeln för prtiell integrtion ur nednstående smbnd: d F(x)g(x) = f(x)g(x) F(x)g (x) dx ) Vilken typ v elementär funktion brukr mn oftst välj tt deriver lltså

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

freeleaks Funktioner, inverser och logaritmer 1(17)

freeleaks Funktioner, inverser och logaritmer 1(17) freeleks Funktioner, inverser och logritmer (7) Innehåll Förord Funktioner och inverser Multipliktion och division........................ Kvdrer och kvdrtrot......................... Eponentilfunktion

Läs mer

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren?

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren? Kn du dett? Uppgiftern här är tänkt tt nvänds för utvärdering v hur elevern tillägnt sig kpitlets mtemtisk innehåll. Låt elevern, prvis eller i mindre grupper, lös uppgiftern tillsmmns och förklr för vrndr

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

Bokstavsräkning. Regler och knep vid bokstavsräkning

Bokstavsräkning. Regler och knep vid bokstavsräkning Mtemtik Bokstvsräkning Du står nu inför en ny kurs i mtemtik, där meningen är tt du sk tillgodogör dig ny teorier, som smtlig leder frm till övningr och uppgifter. Även om du förstått vd teorin sk nvänds

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

HF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER

HF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER Den trigonometrisk enhetscirkeln är en cirkel med rdie = och mittpunkt i origo B(0,) C(,0) O D(0,) I en rätvinklig tringel definierr vi

Läs mer

Lösningar och kommentarer till uppgifter i 1.2

Lösningar och kommentarer till uppgifter i 1.2 Lösningr och kommentrer till uppgifter i.2 202 d) t t 2 25 t (t 5)(t + 5) Med hjälp v konjugtregeln kn vi fktoriser nämnren. Eftersom nämnren inte får bli noll är ej t 5 eller t 5 tillåtn. 206 Först presenterr

Läs mer

Rationella uttryck. Förlängning och förkortning

Rationella uttryck. Förlängning och förkortning Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

Nautisk matematik, LNC022, Lösningar

Nautisk matematik, LNC022, Lösningar Nutisk mtemtik, LN022, 2012-05-21 Lösningr 1. () För vilken eller vilk vinklr v melln 0 oh 180 är sin v = 0, 25? Räknren ger oss v 14, 5, då finns okså lösningen 180 14, 5 = 165, 5 i det givn intervllet.

Läs mer

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969 Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

Tentamen i ETE115 Ellära och elektronik, 25/8 2015

Tentamen i ETE115 Ellära och elektronik, 25/8 2015 Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten

Läs mer

Tillämpad Matematik I Övning 4

Tillämpad Matematik I Övning 4 HH/ITE/BN Tillämpd Mtemtik I, Övning 8 6 Tillämpd Mtemtik I Övning 6 8 Allmänt Övningsuppgiftern, speciellt Tpuppgifter i först hnd, är eempel på uppgifter du kommer tt möt på tentmen. På denn är du ensm,

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

TATA42: Föreläsning 12 Rotationsarea, tyngdpunkter och Pappos-Guldins formler

TATA42: Föreläsning 12 Rotationsarea, tyngdpunkter och Pappos-Guldins formler TATA4: Föreläsning 1 Rottionsre, tngdpunkter och Pppos-Guldins formler John Thim 15 november 18 1 Rottionsre När vi sk beräkn rottionsre kommer vi tt utför liknnde mnövrr som vi gjorde för rottionsvolmer,

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

Matematiska uppgifter

Matematiska uppgifter Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v

Läs mer

14. MINSTAKVADRATMETODEN

14. MINSTAKVADRATMETODEN 4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv

Läs mer

Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1

Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1 Tentmensskrivning i Mtemtik IV, 5B2 Fredgen den 2 ugusti 24, kl 4-9 Hjälmedel: BETA, Mthemtics Hndook Redovis lösningrn å ett sådnt sätt tt eräkningr och resonemng är lätt tt följ Svren skll ges å reell

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015. FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

Sommarmatte. Matematiska Vetenskaper. 8 april 2009

Sommarmatte. Matematiska Vetenskaper. 8 april 2009 Innehåll Sommrmtte del Mtemtisk Vetenskper 8 pril 009 5 Ekvtioner och olikheter 5. Komple tl............ 5.. Algebrisk definition, imginär rötter....... 5.. Geometrisk representtion, polär koordinter...

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba. Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp,

MA2003 Tillämpad Matematik I, 7.5hp, MA Tillämpd Mtemtik I,.hp, 8-- Hjälpmedel: Penn, rdergummi och rk linjl. Vrken räknedos eller formelsmling är tillåtet! Tentmen består v frågor! Endst vrsblnketten sk lämns in! Inget tentmensomslg! vrslterntiv

Läs mer