Allmant behover vi tre parametrar u 1 u 2 u 3 for att beskriva engodtycklig punkt i rummet. Vi kan

Storlek: px
Starta visningen från sidan:

Download "Allmant behover vi tre parametrar u 1 u 2 u 3 for att beskriva engodtycklig punkt i rummet. Vi kan"

Transkript

1 Forelasning 3/9 Kroklinjiga koordinater rakning med vektoroperatorer Kroklinjiga koordinater Allmant behover vi tre parametrar u u 2 u 3 for att beskriva engodtycklig punkt i rummet. Vi kan da skriva ortsvektorn som r(u u 2 u 3 ). Om vi da haller en av parametrarna, sag u,xlater u 2 u 3 variera, sa far vi en tva-dimensionell yta, vilken vi kallar u -ytan. Pa samma satt kan vi da deniera ytor for de andra koordinaterna. Tva koordinatytor, till exempel de for koordinaterna u 2 u 3,skar varandra langs en en-dimensionell kurva. Langs denna kurva kommer da bara koordinaten u att variera, sa denna kurva ar en koordinatkurva for u. Exempel: I de cylindriskakoordinaterna z kan vi skriva ortsvektorn som r =(cos sin z). Koordinatytorna for z ar da en cylinder med z-axeln som symmetriaxel med radien, ett plan som utgar fran z-axeln bildar en vinkel med x-axeln, samt ett plan parallellt med xy-planet med z-koordinaten z. Koordinatlinjerna for z blir da enstrale som utgar fran z-axeln bildar vinkeln med x-axeln, en cirkel med radien en linje parallell med z-axeln. Om vi nu studerar en liten forskjutning av ortsvektorn, dr, sa kan vi i med att ortsvektorn ar en funktion av u u 2 u 3 skriva denna som dr = r u du + r u 2 du 2 + r u 3 du 3 : () Tank nu pa att den partiella derivatan r=u ar denierad som derivatan da vihaller u 2 u 3 xa. Darfor maste r=u vara en tangentvektor till koordinatkurvan for u.vikan da deniera en enhetsvektor for u som e = r (2) h u dar h = r u (3) kallas for skalfaktorn. Pa sammasatt kan vi bestamma skalfaktorer enhetsvektorer till u 2 u 3.Forskjutningsvektorn dr kan vi nu skriva som dr = h e du + h 2 e 2 du 2 + h 3 e 3 du 3 : (4) Exempel: I cylindriska koordinater ar r =( cos sin z). Vi kan da berakna r =(cos sin 0) (5) Skalfaktorerna blir da r =(; sin cos 0) (6) r =(0 0 ) : (7) z h ; ; = cos 2 + sin 2 =2 = (8) h = 2 cos sin 2 =2 = (9) h z =: (0)

2 Enhetsvektorerna blir ^ =(cos sin 0) () ^ =(; sin cos 0) (2) ^z =(0 0 ) : (3) Forskjutningsvektorn kan da skrivas som dr = ^d + ^d + ^zdz: (4) I fortsattningen skall vi begransa oss till koordinatsystem med ortogonala enhetsvektorer, dvs e i e j = om i = j 0 annars (5) Vi skall ocksa anta att enhetsvektorerna bildar ett hogersystem e e 2 = e 3 (6) Visa att enhetsvektorerna i de cylindriska koordinaterna uppfyller dessa villkor. Vi kan nu harleda nagra anvandbara samband som baglangden langs en kurva ds 2 = dr dr = h 2 du2 + h2 2 du2 2 + h2 3 du2 3 : (7) Ett ytelement ds pa koordinatytan u ar en rektangel som genereras av du 2 du 3. Rektangelns sidor har da langderna h 2 du 2 h 3 du 3. Rektangelns area ar darfor ds = h 2 h 3 du 2 du 3 (8) pa samma satt kan vi berakna ytelementen pa koordinatytorna for u 2 u 3. Analogt kan vi berakna volymelementet som genereras av du,du 2 du 3, vilket blir Exempel: Bagelementet i cylindriska koordinater blir dv = h h 2 h 3 du du 2 du 3 : (9) ds 2 =d d 2 +dz 2 : (20) Ett ytelement pa -ytan skrives pa -ytan pa z-ytan Volymselementet kan vi skriva som ds = ddz (2) ds =dz (22) ds = dd: (23) dv = dddz: (24) 2 Vektoroperatorer i kroklinjiga koordinater 2. Gradient Betrakta ett skalart falt f. Omviforyttar oss en stracka dr sa forandras f df = rf dr: (25) 2

3 Foryttningen kan vi i de nya koordinaterna skriva som Om vi skriver f som en funktion av u u 2 u 3 far vi dr = h e du + h 2 e 2 du 2 + h 3 e 3 du 3 : (26) df = f du + f du 2 + f du 3 = f h du + f u u 2 u 3 h u h 2 h 2 du 2 + f h 3 du 3 u 2 h 3 u 3 e 3 dr (27) u 3 = h f u e + h 2 f u 2 e 2 + h 3 f Da kan vi identiera uttrycket inom parentesen som gradienten i de nya koordinaterna u u 2 u 3 rf = h f u e + h 2 f u 2 e 2 + h 3 f Exempel: I cylindriska koordinater blir gradienten u 3 e 3 : (28) rf = f ^ + f ^ + f ^z: (29) z 2.2 Divergens Vi har denierat divergensen som divv = lim V!0 V I S v ds: (30) Vi kan nu berakna divergensen over en lada med sidlangderna h du, h 2 du 2 h 3 du 3 ivara kroklinjiga koordinater. Ladan har da tva ytor pa u -ytorna u +du =2 u ; du =2. Dessa ytor har sidlangderna h 2 du 2 h 3 du 3. Ytornas areor ar da h 2 h 3 du 2 du 3 dar skalfaktorerna maste beraknas vid korrekt u -koordinat. Vi far da pa ytan vid u +du =2dar normalvektorn ar n = e att v nds = v h 2 h 3 du 2 du 3 (3) pa ytan vid u ; du =2 med normalvektorn n = ;e att v nds = ;v h 2 h 3 du 2 du 3 : (32) Testvolymen V = h h 2 h 3 du du 2 du 3.Omvinu summerar ihop bidragen fran de tva sidorna dividerar med volymen h h 2 h 3 du du 2 du 3 [(v h 2 h 3 )(u +du =2) du 2 du 3 ; (v h 2 h 3 )(u ; du =2) du 2 du 3 ]= (v h 2 h 3 )(u +du =2) du 2 du 3 ; (v h 2 h 3 )(u ; du =2) du 2 du 3 h h 2 h 3 du = (v h 2 h 3 ) : (33) u h h 2 h 3 Pa samma satt kan vi behandla de ovriga sidorna divergensen blir till slut rv = h h 2 h 3 u (v h 2 h 3 )+ u 2 (u 2 h 3 h )+ u 3 (u 3 h h 2 ) Genom att ersatta v med rf kan vi ocksa harleda Laplace-operatorn i de kroklinjiga koordinaterna r 2 f = h h 2 h 3 u h2 h 3 h f + h3 h u u 2 h 2 f + h h 2 u 2 u 3 h 3 (34) f : (35) u 3 3

4 Exempel: Divergensen blir i cylindriska koordinater rv = (v )+ (v )+ z (v z) Laplace-operatorn blir i cylindriska koordinater r 2 f = f + f + f z z 2.3 Rotation Vi har denierat rotationen genom nrotv = lim S!0 S I C = (v )+ v + v z z : (36) = f f f z 2 : (37) v dr: (38) For att nna e 3 komponenten till rv integrerar vi langs en liten rektangel i u 3 -ytan med sidlangder h du h 2 du 2. Linjeintegralen langs den hogra sidan ar v 2 h 2 du 2 (u +du =2 u 2 u 3 ), dar argumentet galler for bade v 2 h 2. Pa samma satt blir integralen langs den vanstra sidan ;v 2 h 2 du 2 (u ; du =2 u 2 u 3 ). Om vi summerar dessa tva bidrag dividerar med rektangelns area h h 2 du du 2 far vi h h 2 du du 2 [(v 2 h 2 )(u +du =2 u 2 u 3 )du 2 ; (v 2 h 2 )(u ; du =2 u 2 u 3 )du 2 ]= (v 2 h 2 )(u +du =2 u 2 u 3 ) ; (v 2 h 2 )(u ; du =2 u 2 u 3 ) h h 2 du = h h 2 Om vi summerar rektangelns ovre undre sida pa samma satt sa far vi e 3 -komponenten av rotationen blir da ; h h 2 e 3 rv = h h 2 u (v 2 h 2 ) : (39) u 2 (v h ) : (40) u (v 2 h 2 ) ; u 2 (v h ) : (4) De andra komponenterna kan beraknas genom att permutera indexen. Pa determinantform blir rotationen rv = h h 2 h 3 he h2e 2 h3e 3 u u2 u3 h v h 2 v 2 h 3 v 3 : (42) Exempel: Rotationen i cylindriska koordinater blir = v z ; z (v ) = v z ; v z ^ + vr ^ + v r z z ; v z r ; v z r rv = ^ + ^ + ^ ^ ^z z v v v z (v ) ; v v (v ) ; ^z ^z: (43) 4

5 3 Sfariska koordinater Med sfariska koordinater skriver vi ortsvektorn som r =(r sin cos r sin sin r cos ). Da far vi de tre tangentvektorerna Detta ger oss skalfaktorerna r = (sin cos sin sin cos ) (44) r r =(rcos cos r cos sin ;r sin ) (45) r =(;r sin sin r sin cos 0) : (46) h r = ; sin 2 cos 2 + sin 2 sin 2 +cos 2 =2 = (47) h = ; r 2 cos 2 cos 2 + r 2 cos 2 sin 2 + r 2 sin 2 =2 = r (48) h = ; r 2 sin 2 sin 2 + r 2 sin 2 cos 2 =2 = r sin : (49) Vi kan nu skriva vara dierentialoperatorer som rv = r sin rv = r 2 r r 2 f = r 2 f r 2 r r (sin v ) ; v rf = f ^r + f ^ + f ^: (50) r r r sin ;r 2 v r + + r sin (sin v )+ v r sin (5) sin r 2 f 2 f + sin r 2 sin 2 2 (52) ^r + v r r sin ; r (rv ) ^ + r r (rv ) ; v r ^: (53) 4 Rakneregler for dierentialoperatorer Precis som vi har rakneregler for derivatorer, sa kan vi harleda rakneregler for vara dierentialoperatorer. Det ar da viktigt att komma ihag att falten pa de bada sidorna av likhetstecknet skall vara av samma typ, det vill saga om vi har ett skalart falt till vanster om likhetstecknet skall vi ha ett skalart falt till hoger om likhetstecknet, om vi har ett vektorfalt till vanster om likhetstecknet skall ocksa faltet till hoger vara ett vektorfalt. Pa sa satt kan man resonera sig fram till nagra av raknereglerna. 4. Gradient, divergens rotation av en produkt av falt For vanliga funktioner f g galler att d dx df (fg)= dx g + f dg dx : (54) Om vi istallet betraktar r(fg), dar f g ar skalara falt, ser vi att det resulterande faltet skall vara ett vektorfalt, att vi maste derivera ett av falten at gangen. Om vi tar gradienten 5

6 av ett skalart falt, sa far vi ett vektorfalt om vi sedan multiplicerar med ytterligare ett skalart falt, sa har vi fortfarande ett vektorfalt, alltsa bor raknereglen galla. Pa liknande satt kan vi resonera oss fram till r (fg)=frg + grf (55) r(fu) =rf u + fr u (56) r(fu) =rf u + fr u: (57) De mer komplexa sambanden nedan ar dock svarare att harleda. I princip kan man visa dem genom att skriva ut ekvationerna komponentvis, men en eektivare metod ar att anvanda den indexnotation som beskrivs i Matthews. Indexnotationen ar ett eektivt verktyg i stora delar av den teoretiska fysiken. r(a B) =B (ra) ; A (rb) (58) r(a B) =(B r) A ; (ra) B ; (A r) B +(rb) A (59) r (A B) =(A r) B +(B r) A + A (r B)+B (r A) : (60) Har skall vi tolka A rsom A r= A + x x A y + y A z z (6) 4.2 Kombinationer med tva vektoroperatorer Man kan ocksa kombinera tva vektoroperatorer med ett falt. Ett enkelt vanligt exempel pa detta ar att vi vill berakna rotationen ett ett vektorfalt av formen r. Detta ger oss i kartesiska koordinater rr = r 2 = x x y y z = 2 z x y z 2 : (62) Operatorn r 2 kallas for Laplace-operatorn. Analogt kan man deniera Laplace-operatorn for ett vektorfalt r 2 u = ; r 2 u x r 2 u y r 2 u z (63) men denna kan ocksa beraknas ur ekvationen r 2 A = r (ra) ;r(ra) : (64) Lagg har marke till att det nns enkla uttryck for Laplace-operatorn for ett skalart falt i kroklinjiga koordinater (se ovan), men inget sadant uttryck existerar for Laplace-operatorn for ett vektorfalt, utan om vi vill applicera Laplace-operatorn pa ett vektorfalt, sa maste vi ga tillbaka till ekv. (64). Tva viktiga samband, vilka dessutom ar enkla att harleda, ar rrf =0 (65) r(rf) =0: (66) 6

Kroklinjiga koordinater och räkning med vektoroperatorer. Henrik Johanneson/(Mats Persson)

Kroklinjiga koordinater och räkning med vektoroperatorer. Henrik Johanneson/(Mats Persson) Föreläsning 7/9 Kroklinjiga koordinater räkning med vektoroperatorer Kroklinjiga koordinater Henrik Johanneson/Mats Persson) Allmänt behöver vi tre parametrar u, u 2, u 3 för att beskriva en godtycklig

Läs mer

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill Forelasning 6/9 ntegraler av vektorfalt Linjeintegraler Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). i vill da berakna arbetet som kraften utovar pa partikeln. Mellan

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 17, 2018 2. Kroklinjiga koordinater Allmänt behöver vi tre parametrar

Läs mer

Integraler av vektorfält Mats Persson

Integraler av vektorfält Mats Persson Föreläsning 1/8 Integraler av vektorfält Mats Persson 1 Linjeintegraler Exempel: En partikel rör sig längs en kurva r(τ) under inverkan av en kraft F(r). i vill då beräkna arbetet som kraften utövar på

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar hristian Forssén, Institutionen för fysik, halmers, Göteborg, verige ep 6, 217 3. Integraler Det mesta av detta material förutsätts vara

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 14, 2018 5. Indexnotation Precis som vi har räkneregler för

Läs mer

Appendix A: Differentialoperatorer i olika koordinatsystem

Appendix A: Differentialoperatorer i olika koordinatsystem Appendix A: Differentialoperatorer i olika koordinatsystem [Arfken,BETA,Lahtinen] A. 1. Kurvilineära koordinatsystem Antag att i ett Cartesiskt (x, y, z) koordinatsystem med basvektorerna bx, by, bz existerar

Läs mer

Elektromagnetiska falt och Maxwells ekavtioner

Elektromagnetiska falt och Maxwells ekavtioner Forelasning /1 Elektromagnetiska falt och Maxwells ekavtioner 1 Maxwells ekvationer Maxwell satte 1864 upp fyra stycken ekvationer som gav en fullstandig beskrivning av ett elektromagnetiskt falt. Dock,

Läs mer

Vektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik

Vektoranalys I. Anders Karlsson. Institutionen för elektro- och informationsteknik Vektoranalys I Anders Karlsson Institutionen för elektro- och informationsteknik 2 september 2015 Översikt över de tre föreläsningarna 1. Grundläggande begrepp inom vektoranalysen, nablaoperatorn samt

Läs mer

* Läsvecka 1 * Läsvecka 2 * Läsvecka 3 * Läsvecka 4 * Läsvecka 5 * Läsvecka 6 * Läsvecka 7 * Tentamenssvecka. Läsvecka 1

* Läsvecka 1 * Läsvecka 2 * Läsvecka 3 * Läsvecka 4 * Läsvecka 5 * Läsvecka 6 * Läsvecka 7 * Tentamenssvecka. Läsvecka 1 Detta är en preliminär planering över undervisningen i kursen och är tänkt att hjälpa dig att få ut så mycket som möjligt av föreläsningarna. Till varje föreläsningsdag finns förberedelser, innehåll och

Läs mer

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1) ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

VEKTORANALYS Kursprogram VT 2018

VEKTORANALYS Kursprogram VT 2018 VEKTORANALYS Kursprogram VT 2018 Allmänt om kursen Målsättningen med kursen är att lära ut ett antal grundläggande matematiska metoder, som under de fortsatta studierna kommer att tillämpas i flera olika

Läs mer

Föreläsning 16, SF1626 Flervariabelanalys

Föreläsning 16, SF1626 Flervariabelanalys Föreläsning 16, SF1626 Flervariabelanalys Haakan Hedenmalm (KTH, Stockholm) 5 december 2017 KTH Rekommenderade uppgifter: 16.1: 3, 7, 11. 16.2: 9, 15, 17. Gradient, divergens, och rotation Gradienten Om

Läs mer

AB2.5: Ytor och ytintegraler. Gauss divergenssats

AB2.5: Ytor och ytintegraler. Gauss divergenssats AB2.5: Ytor och ytintegraler. Gauss divergenssats Ytor på parameterform Låt xyz vara ett cartesiskt koordinatsystem i rummet. En yta på parameterform ges av tre ekvationer x = x(u, v), y = y(u, v), z =

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

1.1 Gradienten i kroklinjiga koordinatsystem

1.1 Gradienten i kroklinjiga koordinatsystem 1 Föreläsning 4 1.1 Gradienten i kroklinjiga koordinatsystem Sats 1 i sfäriska koordinater; i cylindriska koordinater. Bevis. I kartesiska koordinater har vi att Φ = r ˆr + 1 r θ ˆθ + 1 ˆϕ (1 r sin θ ϕ

Läs mer

1 Några elementära operationer.

1 Några elementära operationer. Föreläsning Några elementära operationer. Ett skalärfält är en reellvärd eller komplexvärd funktion Φ(x, y, z). Ett vektorfält är en vektorvärd funktion A(x, y, z). I ett kartesiskt koordinatsystem kan

Läs mer

Vektoranalys II. Anders Karlsson. Institutionen för elektro- och informationsteknik

Vektoranalys II. Anders Karlsson. Institutionen för elektro- och informationsteknik Vektoranalys II Anders Karlsson Institutionen för elektro- och informationsteknik 9 september 215 Översikt 1 Kurvor och ytor, linje- och yt-mått 2 Integraler, Kap. 1.3 Linjeintegraler Ytintegraler Volymsintegraler

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013 SF626 Flervariabelanalys Tentamen Måndagen den 27 maj, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. De tre

Läs mer

AB2.4: Kurvintegraler. Greens formel i planet

AB2.4: Kurvintegraler. Greens formel i planet AB2.4: Kurvintegraler. Greens formel i planet Kurvintegralener Kurvor på parameterform Låt xyz vara ett cartesiskt koordinatsystem i rummet. En rymdkurva på parameterform ges av tre ekvationer x = x(t),

Läs mer

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds,

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds, Institutionen för matematik, KTH Serguei Shimorin SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december 211. Lösningsförslag 1. Räkna ut flödesintegral F n ds, där F = (x e y,

Läs mer

1 Vektorer och tensorer

1 Vektorer och tensorer Föreläsning 1. 1 Vektorer och tensorer Vi kommer att använda två olika beteckningar för vektorer. Enligt det första systemet använder vi fet stil för en vektor i typsatt text och ett vektorstreck då vi

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 4, 2018 1. Fält och derivator Ett fält är en fysikalisk storhet

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

Vektoranalys III. Anders Karlsson. Institutionen för elektro- och informationsteknik

Vektoranalys III. Anders Karlsson. Institutionen för elektro- och informationsteknik Vektoranalys III Anders Karlsson Institutionen för elektro- och informationsteknik 16 september 215 Översikt 1 Gauss sats divergenssatsen Exempel på användning av Gauss sats 2 tokes sats Exempel på användning

Läs mer

Övningstenta: Lösningsförslag

Övningstenta: Lösningsförslag Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4

Läs mer

Föreläsning 13, SF1626 Flervariabelanalys

Föreläsning 13, SF1626 Flervariabelanalys Föreläsning 13, SF1626 Flervariabelanalys Haakan Hedenmalm (KTH, Stockholm) 28 november 2017 KTH Rekommenderade uppgifter: 15.1: 3, 5, 17. 15.2: 3, 5, 7, 21. Vektorfält DEFINITION Ett skalärfält Φ på ett

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232) Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM23 och FFM232) Tid och plats: Måndagen den 29 oktober 208 klockan 00-800, Maskinsalar Lösningsskiss: Christian Forssén Detta är enbart en skiss

Läs mer

6. Räkna ut integralen. z dx dy dz,

6. Räkna ut integralen. z dx dy dz, Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga

Läs mer

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna ATM-Matematik Mikael Forsberg 734-41 3 31 För studenter i Flervariabelanalys Flervariabelanalys mk1b 13 8 Skrivtid: 9:-14:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

23 Konservativa fält i R 3 och rotation

23 Konservativa fält i R 3 och rotation Nr 23, 7 maj -5, Amelia 2 23 Konservativa fält i R 3 och rotation 23. Potential 23.. Två dimensioner (2D) I två dimensioner definierade vi ett vektorfält som konservativt om kurvintegralen av fältet endast

Läs mer

VIKTIGA TILLÄMPNINGAR AV GRUNDLÄGGANDE BEGREPP

VIKTIGA TILLÄMPNINGAR AV GRUNDLÄGGANDE BEGREPP Appendix VIKTIGA TIÄMPNINGA AV GUNDÄGGANDE BEGEPP I detta appendix diskuteras viktiga tillämpningar av grundläggande begrepp inom vektoranalysen. Exemplen är främst hämtade från den elektromagnetiska teorin.

Läs mer

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av ATM-Matematik Mikael Forsberg 74-41 1 För ingenjörs- och distansstudenter Flervariabelanalys ma1b 15 1 14 Skrivtid: 9:-14:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja

Läs mer

TATA44 Lösningar 24/8/ ) Låt S vara den del av x 2 + y 2 + z 2 = 2 innanför cylindern x 2 + y 2 = 1. Inför cylinderkoordinater.

TATA44 Lösningar 24/8/ ) Låt S vara den del av x 2 + y 2 + z 2 = 2 innanför cylindern x 2 + y 2 = 1. Inför cylinderkoordinater. TATA Lösningar /8/.. Låt vara den del av x + y + z innanför cylindern x + y. Inför cylinderkoordinater. Parametrisera med ortsvektorn r(ρ, φ (ρ cos φ, ρ sin φ, ρ som man kan skriva som r(ρ, φ ρ ˆρ + ρ

Läs mer

Föreläsning 2 1. Till varje punkt i rummet tilldelas en vektor. ( ) = T ( x, y, z,t) ( ) = v x

Föreläsning 2 1. Till varje punkt i rummet tilldelas en vektor. ( ) = T ( x, y, z,t) ( ) = v x Föreläsning 2 1 Matematiska grundbegrepp Fält kalärfält: Vektorfält: Till varje punkt i rummet tilldelas en skalär Exempel: Temperaturen i olika punkter i rummet, T r,t ( ) = T ( x, y, z,t) Till varje

Läs mer

0. Introduktion, matematisk bakgrund

0. Introduktion, matematisk bakgrund 0. Introduktion, matematisk bakgrund Kai Nordlund vt. 2013. Dessa anteckningar baserar sig i mycket stor utsträckning på anteckningarna förberedda av FD Krister Henriksson till kursen ht. 2005. Vissa delar,

Läs mer

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära

Läs mer

TNA004 Analys II Tentamen Lösningsskisser

TNA004 Analys II Tentamen Lösningsskisser TNA004 Analys II Tentamen 20-06-0 Lösningsskisser. a) De båda kurvorna skär varandra i x 0 och x. På intervallet 0 x är x x. Området D är då det skuggade i figuren nedan, där även en tunn rektangel är

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM34, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct, 08 Repetition: Singulära fält Punktkälla i origo. Fältet i punkten

Läs mer

Lektion 3. Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln

Lektion 3. Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln Lektion 3 Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln Innehål 1. Partiella derivator (12.3) 2. Differentierbarhet och tangentplan till

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys 1 / 28 SF1626 Flervariabelanalys Föreläsning 2 Hans Thunberg Institutionen för matematik, KTH VT 2018, Period 4 2 / 28 SF1626 Flervariabelanalys Dagens lektion: avsnitt 11.1 11.3 Funktioner från R till

Läs mer

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation ANDREA REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se oulombs lag och Maxwells första ekvation oulombs lag och Maxwells första ekvation Inledning Två punktladdningar q 1 samt q 2 i rymden

Läs mer

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f.

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f. Kap..5,.8.9. Lutning, tangent, normal, derivata, höger och vänsterderivata, differential, allmänna deriveringsregler, kedjeregel, derivator av högre ordning, implicit derivering. Gränsvärden. 0. (A) Beräkna

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 11, 2017 12. Tensorer Introduktion till tensorbegreppet Fysikaliska

Läs mer

TENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18

TENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18 TENTAMEN I EKTORANALY I46 och I40 Del, T8 Torsdagen 3 maj 4:00-9:00 Anteckna på varje blad: Namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: Formelblad som delas ut. Räknedosa ej

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)

Läs mer

TATA44 Lösningar 26/10/2012.

TATA44 Lösningar 26/10/2012. TATA44 Lösningar 6/1/1. 1. Lösning 1: Konen z x + y skär sfären x + y + (z 5 5 då 4z + (z 5 5 och enkla räkningar ger nu z z some ger z(z och vi ser att z eller z. Observera att punkter på sfären med z

Läs mer

October 9, Innehållsregister

October 9, Innehållsregister October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................

Läs mer

Övning 6, FMM-Vektoranalys, SI1140

Övning 6, FMM-Vektoranalys, SI1140 Övning 6, FMM-ektoranalys, I114 ˆ 6. Beräkna integralen där A dr A x 2 ay + z) ) e x + y 2 az ) e y + z 2 ax + y) ) e z och är den kurva som utgör skärningslinjen mellan cylindern { x a) 2 + y 2 a 2 och

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Löningförlag Fredag 8 juni 8 8:-3: SF74 Flervariabelanaly Inga hjälpmedel är tillåtna Ma: 4 poäng (4 poäng Rita följande mängder i R : (a A {(, y R ma(, y } (b B {(, y R + y 4 4 4y y } (c C {(,

Läs mer

OMTENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18

OMTENTAMEN I VEKTORANALYS SI1146 och SI1140 Del 1, VT18 OMTENTAMEN I VEKTORANALY I46 och I40 Del, VT8 Onsdagen augusti 08:00-:00 Anteckna på varje blad: Namn, utbildningslinje, årskurs och problemnummer. Tillåtna hjälpmedel: Formelblad som delas ut. Räknedosa

Läs mer

1.1 Stokes sats. Bevis. Ramgard, s.70

1.1 Stokes sats. Bevis. Ramgard, s.70 1 Föreläsning 7 1.1 tokes sats ats 1 åt vara en yta i R med randen. Vi antar att orienteringen på och är vald på ett sådant sätt att om man går längs i den valda riktningen då ligger till vänster (på vänstersidan).

Läs mer

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t).

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). Repetition, analys.. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). 2. Beräkna längden av kurvan r(t) =

Läs mer

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF66 Flervariabelanalys Tentamen Onsdagen den 5 mars 7 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

2. Avgör om x och z är implicit definierade som funktion av y via följande ekvationssystem. x 3 + xy + y 2 + z 2 = 0 x + x 3 y + xy 3 + xz 3 = 0

2. Avgör om x och z är implicit definierade som funktion av y via följande ekvationssystem. x 3 + xy + y 2 + z 2 = 0 x + x 3 y + xy 3 + xz 3 = 0 ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 1 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanals Lösningsförslag till tentamen 24-5-26 DEL A. Skissera definitionsmängden till funktionen f (,) 2 ln(2 ). Är definitionsmängden kompakt? (4 p) Lösning. Termen 2 är definierad när

Läs mer

1 Vektorer i koordinatsystem

1 Vektorer i koordinatsystem 1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en

Läs mer

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken Föreläsning 4 1 Potential Den andra av Maxwells ekvationer i elektrostatiken!" C E!dl = 0 eller # E = 0 innebär att E-fältet är konservativt. Det finns inga fältlinjer som bildar loopar. Alla fältlinjer

Läs mer

4 Integrering av vektorfält

4 Integrering av vektorfält 4 Integrering av vektorfält 4.1 Integrering av vektorvärda funktioner Vi börjar vår undersökning av hur vektorfält integreras med att studera en styckvis kontinuerlig funktion A av flera oberoende variabler

Läs mer

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen Institutionen för matematik, KTH Mattias Dahl 5B, Dierential- och integralkalkyl I, del, för TIMEH2 Tentamen, tisdag 29 mars 25 kl.9.. Svara med motivering och mellanräkningar. Tillåtet hjälpmedel är formelsamlingen

Läs mer

Matematikuppgifter del II, FYTA11

Matematikuppgifter del II, FYTA11 Matematikuppgifter del II, FYTA11 51. Lös uppgift 10.1 i boken. 52. Lös uppgift 10.2 i boken. 53. Lös uppgift 10.3 i boken. 54. Lös uppgift 10.4 i boken. 55. Låt en kurva i rummet vara given i parametrisk

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

AB2.1: Grundläggande begrepp av vektoranalys

AB2.1: Grundläggande begrepp av vektoranalys AB2.1: Grundläggande begrepp av vektoranalys En vektor är en storhet som dels har icke-negativ storlek dels har riktning i rummet. Två vektorer a och b är lika, a = b, om de har samma storlek och samma

Läs mer

4. Beräkna volymen av den tetraeder som stängs inne mellan koordinatplanen x = 0, y = 0 och z = 0 och planet. x F (x, y) = ( x 2 + y 2, y

4. Beräkna volymen av den tetraeder som stängs inne mellan koordinatplanen x = 0, y = 0 och z = 0 och planet. x F (x, y) = ( x 2 + y 2, y ATM-Matematik Mikael Forsberg 7- För studenter i Flervariabelanals Flervariabelanals mkb 6 krivtid: 9:-:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams alculus, dessa formler bifogas tentan.

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tentamen i Flervariabelanalys F/TM, MVE5 kl.. 8.. jälmedel: Inga, ej räknedosa. Telefon: Lennart Falk, 77 56 För godkänt krävs minst oäng. Betyg : -5 oäng, betyg : 6-7 oäng, betyg 5: 8 oäng eller mera.

Läs mer

En första kurs i matematisk fysik

En första kurs i matematisk fysik En första kurs i matematisk fysik Martin Cederwall 1 Christian Forssén 1 1 Institutionen for fysik, Chalmers, Göteborg, Sverige Aug 31, 2017 Förord. Detta kompendium är tänkt att användas i kursen Vektorfält

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

Campus och distans Flervariabelanalys mag ATM-Matematik Mikael Forsberg och Yury Shestopalov (Mikael Forsberg)

Campus och distans Flervariabelanalys mag ATM-Matematik Mikael Forsberg och Yury Shestopalov (Mikael Forsberg) ATM-Matematik Mikael Forsberg och Yury Shestopalov 734-4 3 3 (Mikael Forsberg) Campus och distans Flervariabelanalys mag3 7 6 5 Skrivtid: 9:-4:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna

Läs mer

y= x dx = x = r cosv $ y = r sin v ,dxdy = rdrdv ' 2* så får vi att

y= x dx = x = r cosv $ y = r sin v ,dxdy = rdrdv ' 2* så får vi att TH-Matematik Lösningsförslag till Tentamenskrivning 5-6-, kl. 8.-3. 5B7, matematik III för E och ME 6p) Del A, 3-poängsuppgifter x. xy y )dy dx x y y3 3 ) * x 3 x3 3, x3 -. dx 5 5 x4 6 4 y x y 5 4 dx.

Läs mer

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt.

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt. Viktiga tillämpningar av integraler b) Vi använder clindriska skal och snittar därför upp området i horisontella snitt. 7.. Finn volmen av kroppen S som genereras av rotation kring -aeln av området Ω som

Läs mer

ALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och " kan beskriva rörelsen i ett xyplan,

ALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och  kan beskriva rörelsen i ett xyplan, KOMIHÅG 8: --------------------------------- Rörelsemängd: p = mv, Kinematiska storheter: r ( t), v ( t), a ( t) Kinematiska samband med begynnelsevillkor 1 Föreläsning 9: ALTERNATIVA KOORDINATSYSTEM -Cylindriska

Läs mer

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx TM-Matematik Mikael Forsberg XXX-XXX DistansAnalys Envariabelanalys Distans ma034a ot-nummer 3 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2 TM-Matematik Mikael Forsberg Matematik med datalogi, mfl. Flervariabelanalys mk12b Övningstenta vt213 nr1 Skrivtid: 5 timmar. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer

Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed.

Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed. Läsanvisningar till: R.A. Adams, Calculus, a Complete Course, 4th ed. Del 2 (funktioner av flera variabler). Omfattning: Kapitel 8.2, 8.3 t.o.m. s 497, 8.4, endast båglängd, 8.5 tom s. 506, 10.1, 10.5,

Läs mer

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller

Tentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig

Läs mer

Föreläsning 3, Linjär algebra IT VT Skalärprodukt

Föreläsning 3, Linjär algebra IT VT Skalärprodukt Föreläsning 3, Linjär algebra IT VT2008 1 Skalärprodukt Denition 1 Låt u oh v vara två vektorer oh låt α vara minsta vinkeln mellan dem Då denierar vi skalärprodukten u v genom u v = u v os α Exempel 1

Läs mer

Figur 1: Postföretagets rektangulära låda, definitioner.

Figur 1: Postföretagets rektangulära låda, definitioner. ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 8 13 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga

Läs mer

Lektion 1. Kurvor i planet och i rummet

Lektion 1. Kurvor i planet och i rummet Lektion 1 Kurvor i planet och i rummet Innehål Plankurvor Rymdkurvor Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation

Läs mer

Tentamen Modellering och simulering inom fältteori, 21 oktober, 2006

Tentamen Modellering och simulering inom fältteori, 21 oktober, 2006 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, oktober, 006 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori Varje uppgift ger 0 poäng. Delbetyget

Läs mer

Mer om generaliserad integral

Mer om generaliserad integral Föreläsning XI Mer om generaliserad integral Ex 64: Givet h(x) = ( x 2 5x + 2 ) e x/2. (a) Bestäm en p.f. till h(x). (b) Beräkna h(x)dx. (a) Vi har här en integrand som är en produkt av ett polynom av

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014

SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014 SF1626 Flervariabelanals Tentamen Måndagen den 26 maj, 214 Skrivtid: 14:-19: Tillåtna hjälpmedel: inga Eaminator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maimalt fra poäng. Del A

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2 Lösningsförslag till tentamen TMA43 Flervariabelanalys E 4-8-3 kl. 8.3.3 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Åse Fahlander, telefon: 73 88 34 Hjälpmedel: bifogat formelblad,

Läs mer

Poissons ekvation och potentialteori Mats Persson

Poissons ekvation och potentialteori Mats Persson 1 ärmeledning Föreläsning 21/9 Poissons ekvation och potentialteori Mats Persson i vet att värme strömmar från varmare till kallare. Det innebär att vi har ett flöde av värmeenergi i en riktning som är

Läs mer

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.) Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna

Läs mer

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas

Läs mer