Laboration 2. Artificiell Intelligens, Ht Lärare: Christina Olsén Handledare: Therese Edvall Daniel Ölvebrink

Storlek: px
Starta visningen från sidan:

Download "Laboration 2. Artificiell Intelligens, Ht 2004 2004-10-19 Lärare: Christina Olsén Handledare: Therese Edvall Daniel Ölvebrink"

Transkript

1 Artificiell Intelligens, Ht Lärare: Christina Olsén Handledare: Therese Edvall Daniel Ölvebrink Laboration 2 Laboranter: Johan Bystedt (dit02lbt) Alexander Pettersson (dit02apn) Stefan Zingmark (dit02szk)

2 Sammanfattning Rapporten ska belysa begreppet utility funktioner, vad dessa är samt när de används. Utility funktioner handlar om att tilldela ett numeriskt värde till varje valbar situation. Utifrån dessa värden navigerar agenten i sin miljö.

3 Making simple decisions Making simple decisions handlar om hur en agent bör agera för att få det som den vill ha, åtminståne i det långa loppet. Decision-theoretic agenter kombinerar sannolikhetslära med utility funktioner för att ta rationella beslut baserat på vad den tror och vad den vill. Till skillnad från en goalbased agent som bara skiljer på bra och dåliga tillstånd så använder sig en decisiontheoretic agenten av kontinuerliga mätningar för att kunna avgöra sitt tillstånd. Utility functions Utility är en funktion som beskriver ett tillstånd med hjälp av siffror. Samtidigt kan en agent ha vilka preferenser som helst som den kan interagera med. Målet med att installera utility funktioner i en artificell agent är det att få den att utföra det handlingar vi sagt åt den att göra. Utility funktionerna har sina rötter inom ekonomin.om vi begränsar oss till att titta på handlingar som påverkar hur stort belopp en agent har så föredrar den oftast ett större belopp mot ett mindre, då säger man att agenten har en monotonic preferens för ändliga belopp.

4 Exempel Tänk dig att du just har vunnit 1 miljon dollar och erbjuds direkt att spela om den miljonen genom att flippa ett mynt. Om du vinner så får du 3 miljoner dollar, men förlorar du så förlorar du allt. De flesta av oss skulle inte gå med på vadet utan skulle nöja sig med miljonen man just vunnit. Men agear vi rationellt? Om vi tror på att myntet är rättvist så är det expected momentary value : ½($0) + ½($ ) = $ och expected momentary value för att ta orginalpriset är $ , vilket är mindre. Men det betyder däremot inte att gå med på erbjudandet är bättre. För att besluta vad vi ska göra så måste vi tilldela utility funktioner till de ovan. Utility funktionen är inte proportionellt till de monetary value. Detta pga av den positiva utgången vid vinsten av den första miljonen, därför är utility :n för ytterligare 3 miljoner mycket mindre. Om man däremot hade varit en mulitmiljonär vid vinsten av den första miljonen så hade man säkert accepterat erbjudandet om att kassta myntet en till gång för att ha möjligheten att vinna tre miljoner. Studier på utility funktioner av pengar gjorda av Grayson (1960) visar på att dessa är exakt logaritmiskt proportionella av beloppet. Vi ska inte anta att det är den defenitiva utility funktionen för momentary value, men det är nog mest troligt att det flesta människor har en utility funktion som är konkav för positiva värden. U $ En sk s-shaped kurva Agenter som föredrar ett värde som är mindre än det expected momentary value säger man är risk-averse. Risk-seeking är man däremot om man befinner sig på den negativa sidan. En agent som har en linjär funktion säger man är risk-neutral.

5 Utility functions, forts. Ett utility är ett numeriskt betygssystem som tilldelas varje möjlig utkomma en person kan ställas inför. Den som har högst utility kommer alltid att bli vald. För att vara kvalicerad som en sann utility -skala så måste värdet av en osäkehet vara lika med värdet av det matematiska väntevärdet. En lott med ett värde på 75% betyder att sannolikheten att vinna jackpotten är 0,75, och detta kommer att få utility -värdet 0,75. Allt som estimeras att vara lika värdefullt som just en sådan lott kommer också att få samma värde, varken mer eller mindre. Ovan är utility -värdet mellan 0 och 1 men det finns inga sådana restriktioner. Utan utility -värdet kan anta vilket värde som helst. Ett exempel: Du kanske skulle kunna vara villig att betala $1 för att med en sannolikhet på 1/ kunna vinna $ , men väldigt få, om några alls, skulle betala $ för att kunna vinna $ med en chans på 50%. Någon skulle dock kunna ta det senare erbjudandet om denne befann sig i en väldigt speciell situation där en omedelbar vinst på $ skulle kunna göra så att dennes livsdrömmar genast blev sanna. Medan en förlust på $ inte skulle vara så farlig i det långa loppet. Den rationella grunden för detta val är baserat på de utilities som är involverade. Om ditt nuvarande tillstånd är W, vad skulle vara det exakta utility -värdet för dig om det totala tillståndet är lika med W, W-1,W- $ eller W+$ ? Hur motsvaras detta av en förlust av en kroppsdel? Social status? Allmänt åtlöje? Skulle du kunna gå ut naken för $10 eller $10.000, eller kanske graits? Allt som har en vikt i dina val måste tilldelas ett utility -värde på din personliga skala. I till exempel ett lotteri så finns det en viss lekfullhet, vilket ökar vår lust att köpa lotten. De som designar lotterier och andra spel har så klart detta i åtanke när de designar en ny lott eller lotteri. Det så kallade St. Petersburg Spelet spelas med ett rättvist mynt som kastas tills dess att sidan med klave kommer upp. Om spelet varar i n+1 kast så vinner spelaren 2 n dollar. Alltså $1 om klaven kommer upp första gången, $2 för andra kastet och sedan, 4, 8, 16, 32, 64, 128 etc. Vad är ett rättvist pris att betala för att få spela detta spel? Detta kallas för St. Petersburg Paradox. Den matematiska förväntningen för detta spel är oändligt, eftersom det kommer att vara summan av den divergenta serien: (1/2)(1)+(1/4)(2)+(1/8)(4)+(1/16)(8)+... = 1/2 + 1/2 + 1/2 + 1/ Hur som helst så är det ganska klart att ingen skulle betala mer än ett par dollar för att spela detta spel... varför? När frågan lades fram tidigt på 1900-talet, trodde man fortfarande att värdet av att spela skulle enbart vara baserat på dess rättvisa pris, som är ett annat namn för dess matematiska förväntning. Eftersom att detta inte kunde användas i det ovanstående spelet ledde detta till introduktionen av det moderna konceptet av the utility of a prospect.

6 I ett brev från Nicolas Bernoulli, en swiss matematiker, till Pierre Rémond de Montmort nämner Bernoulli att man ska använda en tärning istället för ett mynt. Men den lägre sannolikheten, 1/6, att avgöra spelets utgång vid varje kast gör att vänteserien divergerar ännu snabbare. Några år senare skickade matematikern Gabriel Cramer ett brev till Bernoulli där han återupptog spelet i sin moderna form, för enkelhets skull, med ett mynt istället för en tärning. Han sa att "mathematicians estimate money in proportion to its quantity, and men of good sense in proportion to the usage that they may make of it". Cramer kvantifierade då uttrycket i termer av vad vi nu skulle kalla en utility function. Cramers första exempel av en utility function var helt enkelt propotionell mot pengamängden upp till en specifik punkt (han använde 2 24 mynt, för enkelhets skull) och konstant efter det. Hans andra exempel var en utility function av pengar propotionellt mot kvadratroten av mängden pengar. Båda dessa utility functions leder till en slutlig utility till orginalet av St. Petersburg spelet, men det andra exemplet skulle misslyckas att lösa uppgiften om utdelningssekvensen ökade snabbare (t ex, om spelaren tjänade 4 n dollar för att göra n+1 kast). Detta betyder att alla utility functions måste ha en övre gräns, annars får man en oändlig sekvens av förväntningar, den n:te som har en utility som är minst lika med 2 n. Den n:te sådan förväntning som utdelning för att framgångsrikt ha kastat n stycken kast i ett St. Petersburg spel skulle ge oändlig utility, vilket inte är acceptabelt. Kontentan av utility konceptet ger ett slutgiltigt värde till en enskild förväntning, vilket är vad hela St. Petersburg spelet handlar om. Nicolas Bernoulli var dock en motståndare till Cramers idéer. Detta återupplivade ämnet som startades av Nicolas, som i sin tur frågade sin kusin Daniel Bernoulli. Daniel var också han en matematisk professor vid St. Petersburg. Han publicerar också sitt arbete, och det är genom detta som paradoxet fått sitt moderna namn återupptäckte Daniel Bernoulli den moderna idén om utilities (oberoende av Cramer), som Nicolas fortsatte att motstå. Daniel hittade ett fel i Cramers idé, nämligen att det är allmänt kritiskt att bara se till hela spelarens rikedomar och tilldela endast en utility till hela saken. Utility :n förändras väldigt mycket om ett ytterligare mynt skulle påverka spelarens fortsatta framgång. Diskussion Laborationen som sådan har varit väldigt svår och tråkig. Svårt att både hitta någon vettig information, samt svårt att förstå informationen. Det man har hittat i kursboken har varit alltför inriktat på formler, det kan leda till att redovisningarna blir alltför tekniska och svåra att förstå för den som inte har satt sig in i kapitlet tillräckligt.

7 Referenser Artificial Intelligence: A Modern Approach, second edition, Stuart Russell, Peter Norvig ( )

Tema Förväntat värde. Teori Förväntat värde

Tema Förväntat värde. Teori Förväntat värde Tema Förväntat värde Teori Förväntat värde Begreppet förväntat värde används flitigt i diskussioner om olika pokerstrategier. För att kunna räkna ut det förväntade värdet så tar du alla möjliga resultat,

Läs mer

Three Monkeys Trading. Tärningar och risk-reward

Three Monkeys Trading. Tärningar och risk-reward Three Monkeys Trading Tärningar och risk-reward I en bok vid namn A random walk down Wall Street tar Burton Malkiel upp det omtalade exemplet på hur en apa som kastar pil på en tavla genererar lika bra

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

Lösningar och lösningsskisser

Lösningar och lösningsskisser Lösningar och lösningsskisser Diskret matematik för gymnasiet, :a upplagan, Liber AB Kapitel, Sannolikhetslära och Kombinatorik 0. a) ( ) ( ) h!! ( )!!! 9!! 9!!! h! ( h)!! h! ( h)!! h! ( h)! Likheten är

Läs mer

Cake-cutting. att fördela resurser på ett rättvist sätt. Ebba Lindström

Cake-cutting. att fördela resurser på ett rättvist sätt. Ebba Lindström Cake-cutting att fördela resurser på ett rättvist sätt Ebba Lindström Innehållsförteckning Inledning 3 Utility Theory 3 Orderability 4 Transitivity 4 Continuity 4 Monotonicity 5 Decomposability 5 Cake-cutting

Läs mer

Föreläsning 4: Beslut och nytta, paradoxer

Föreläsning 4: Beslut och nytta, paradoxer Föreläsning 4: Beslut och nytta, paradoxer Litteratur: Hansson, Introduction to Decision Theory, kap 5-7 och 11 Resnik, Choices, kap 4 1# S:t Petersburg-paradoxen (Daniel Bernoulli, 1713; Nicolas Bernoulli,

Läs mer

7-2 Sammansatta händelser.

7-2 Sammansatta händelser. Namn: 7-2 Sammansatta händelser. Inledning Du vet nu vad som menas med sannolikhet. Det lärde du dig i kapitlet om just sannolikhet. Nu skall du tränga lite djupare i sannolikhetens underbara värld och

Läs mer

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel

Läs mer

Lotto, ett skicklighetsspel!

Lotto, ett skicklighetsspel! 79 Lotto, ett skicklighetsspel! Jan Grandell KTH 1. Inledning. Du håller nog med om att om man köper en lott så är det bara en fråga om tur om man vinner och hur mycket man vinner. På samma sätt håller

Läs mer

7-1 Sannolikhet. Namn:.

7-1 Sannolikhet. Namn:. 7-1 Sannolikhet. Namn:. Inledning Du har säkert hört ordet sannolikhet förut. Hur sannolikt är det att få 13 rätt på tipset eller 7 rätt på lotto? I detta kapitel skall du lära dig vad sannolikhet är för

Läs mer

UTFALL = (KLAVE, 2 KR; KRONA-KLAVE, 4 KR; KRONA-KRONA-KLAVE, 8 KR; OSV) = (1/2, 2 KR; 1/4, 4 KR; 1/8 8 KR; OSV)

UTFALL = (KLAVE, 2 KR; KRONA-KLAVE, 4 KR; KRONA-KRONA-KLAVE, 8 KR; OSV) = (1/2, 2 KR; 1/4, 4 KR; 1/8 8 KR; OSV) Beslutsfattandets psykologi ht 2010: Beslutsfattande under risk och osäkerhet I Prospektteorins värdefunktion Risksökande/riskaversion Framing (inramning) Referenspunkt Sjunkkostnadseffekten Förlustaversion/förlustkänslighet

Läs mer

Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler

Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F4 Diskreta variabler Slumpvariabler, stokastiska variabler Stokastiska variabler diskreta variabler kontinuerliga

Läs mer

Hare Del II (Metod) kunskap om hur det skulle vara för mig att befinna mig i deras. "reflektionsprincipen" (dock ej av H). Den säger följande: för att

Hare Del II (Metod) kunskap om hur det skulle vara för mig att befinna mig i deras. reflektionsprincipen (dock ej av H). Den säger följande: för att Syftet med denna del är att utveckla och försvara en form av preferensutilitarism, vilken kan identifieras med kritiskt tänkande. Den huvudsakliga framställningen är i kap. 5-6. En senare kort sammanfattning

Läs mer

getsmart Grå Regler för:

getsmart Grå Regler för: (x²) 1 2 Regler för: getsmart Grå Algebra 8 _ (x²) 1 2 Algebra 4 (2 2³) 1 4 _ xy (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy 4 Algebra Algebra _ 8 Det rekommenderas att man börjar

Läs mer

Sannolikheten att vinna ett spel med upprepade myntkast

Sannolikheten att vinna ett spel med upprepade myntkast Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 7: Matematiska undersökningar med kalkylprogram Sannolikheten att vinna ett spel med upprepade myntkast Håkan Sollervall, Malmö

Läs mer

SVANTE JANSON OCH SVANTE LINUSSON

SVANTE JANSON OCH SVANTE LINUSSON EXEMPEL PÅ BERÄKNINGAR AV SANNOLIKHETER FÖR ATT FELAKTIGT HANTERADE RÖSTER PÅVERKAR VALUTGÅNGEN SVANTE JANSON OCH SVANTE LINUSSON 1. Inledning Vi skall här ge exempel på och försöka förklara matematiken

Läs mer

Laboration 2 -litteraturstudie i Mechanism design

Laboration 2 -litteraturstudie i Mechanism design Laboration 2 -litteraturstudie i Mechanism design Kurs: Kursansvarig: Handledare: Artificiell Intelligens med inriktning mot kognition och design B, 5p ht 2004 Christina Olsén Therese Edvall Daniel Ölvebrink

Läs mer

Mörkpoker Strategi. 2003 Christian Eriksson och Mikael Knutsson Uppdaterad 2004-01-26

Mörkpoker Strategi. 2003 Christian Eriksson och Mikael Knutsson Uppdaterad 2004-01-26 Mörkpoker Strategi 2003 Christian Eriksson och Mikael Knutsson Uppdaterad 2004-01-26 Innehåll 1 GRUNDLÄGGANDE VISDOM...2 1.1 SATSNINGSRUNDOR...3 1.2 TÄNK IGENOM SITUATIONEN!...4 1.3 DISCIPLIN...5 1.4 BLUFFANDE/VARIERAT

Läs mer

4. Stokastiska variabler

4. Stokastiska variabler 4. Stokastiska variabler En stokastisk variabel (s.v.) är en funktion som definieras i utfallsrummet. Varje stokastisk variabel har en viss sannolikhetsstruktur. Ex: Man kastar två tärningar. Låt X = summan

Läs mer

5Chans och risk. Mål. Grunddel K 5. Ingressen

5Chans och risk. Mål. Grunddel K 5. Ingressen Chans och risk ål När eleverna har studerat det här kapitlet ska de kunna: förklara vad som menas med begreppet sannolikhet räkna ut sannolikheten för att en händelse ska inträffa känna till hur sannolikhet

Läs mer

Aktiviteten, (Vad är mina chanser?), parvis, alla har allt material,

Aktiviteten, (Vad är mina chanser?), parvis, alla har allt material, Aktiviteten, (Vad är mina chanser?), parvis, alla har allt material, Hur stor är chansen? NAMN Ni kommer att utvärdera olika spel för att hjälpa er förstå sannolikheten. För varje spel, förutsäga vad som

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid

Läs mer

Smart insatsplan. Bifogat den här artikeln finns en enkel A4 där du kan bokföra insatsplanens spel. Använd den!

Smart insatsplan. Bifogat den här artikeln finns en enkel A4 där du kan bokföra insatsplanens spel. Använd den! Smart insatsplan Artikel är skriven av Johan som äger www.storavinster.se. Vi ger professionella råd om hur du ska spela för att vinna i längden. Du hittar fler artiklar om spel om du besöker hemsidan.

Läs mer

Slumpförsök för åk 1-3

Slumpförsök för åk 1-3 Modul: Sannolikhet och statistik Del 3: Att utmana elevers resonemang om slump Slumpförsök för åk 1-3 Cecilia Kilhamn, Göteborgs Universitet Andreas Eckert, Linnéuniversitetet I följande text beskrivs

Läs mer

Kimmo Eriksson Professor i tillämpad matematik

Kimmo Eriksson Professor i tillämpad matematik Kimmo Eriksson Professor i tillämpad matematik Lönar det sig att vara självisk? Kimmo Eriksson Professor i tillämpad matematik Boktips Full av underbara enkla tankeexperiment för att demonstrera skillnaden

Läs mer

Stora talens lag eller det jämnar ut sig

Stora talens lag eller det jämnar ut sig Stora talens lag eller det jämnar ut sig kvensen för krona förändras när vi kastar allt fler gånger. Valda inställningar på räknaren Genom att trycka på så kan man göra ett antal inställningar på sin räknare.

Läs mer

UPPGIFT 1 EURO. Utdata: Två rader, som för indata ovan, ser ut som följer: Före resan: bank 1 Efter resan: bank 3

UPPGIFT 1 EURO. Utdata: Två rader, som för indata ovan, ser ut som följer: Före resan: bank 1 Efter resan: bank 3 UPPGIFT 1 EURO Harry ska åka till Portugal och behöver växla till sig 500 Euro från svenska kronor. När han kommer tillbaka från Portugal kommer han att ha 200 Euro över som han vill växla tillbaka till

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått

Läs mer

Artificial Intelligence

Artificial Intelligence Omtentamen Artificial Intelligence Datum: 2013-01-08 Tid: 09.00 13.00 Ansvarig: Resultat: Hjälpmedel: Gränser: Cecilia Sönströd Redovisas inom tre veckor Inga G 10p, VG 16p, Max 20p Notera: Skriv läsbart!

Läs mer

Föreläsning 3: Osäkerhet och sannolikhet

Föreläsning 3: Osäkerhet och sannolikhet Föreläsning 3: Osäkerhet och sannolikhet Litteratur: Hansson, Introduction to Decision Theory, kap 8 (Även kap 6 är relevant) Resnik, Choices, kap 3 *Galavotti, Philosophical Introduction to Probability,

Läs mer

Något om sannolikheter, slumpvariabler och slumpmässiga urval

Något om sannolikheter, slumpvariabler och slumpmässiga urval LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik Stig Danielsson 004-0-3 Något om sannolikheter, slumpvariabler och slumpmässiga urval 1. Inledning Observerade data innehåller ofta någon form

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

Satsen om total sannolikhet och Bayes sats

Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet Ibland är det svårt att direkt räkna ut en sannolikhet pga att händelsen är komplicerad/komplex. Då kan man ofta använda satsen om

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström STOCKHOLMS UNIVERSITET 2001-10-22 MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström GRUNDLÄGGANDE MATLAB-TRÄNING för den som aldrig har arbetat med Matlab förut A. Matlabs allmänna

Läs mer

Statistikens grunder HT, dagtid Statistiska institutionen

Statistikens grunder HT, dagtid Statistiska institutionen Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet

Läs mer

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4 VSNITT ÄNDLIGT OCH OÄNDLIGT Är det möjligt att jämföra storleken av olika talmängder? Har det någon mening om man säger att det finns fler irrationella tal än rationella? Är det överhuvudtaget möjligt

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

SANNOLIKHET OCH SPEL

SANNOLIKHET OCH SPEL SANNOLIKHET OCH SPEL I ÖVNINGEN INGÅR ATT: Formulera, analysera och lösa matematiska problem samt värdera valda strategier, metoder och resultat (MA) Tolka en realistisk situation och utforma en matematisk

Läs mer

Spelregler. 2-6 deltagare från 10 år. En svensk spelklassiker

Spelregler. 2-6 deltagare från 10 år. En svensk spelklassiker En svensk spelklassiker Spelregler 2-6 deltagare från 10 år Innehåll: 1 spelplan, korthållare, 2 tärningar, 6 spelpjäser, 21 aktier, 20 lagfartsbevis, 12 obligationer, 21 finanstidningar, 40 börstips,

Läs mer

Fuzzy Logic. När oskarpa definitioner blir kristallklara. Åsa Svensson. Linköpings Universitet. Linköping

Fuzzy Logic. När oskarpa definitioner blir kristallklara. Åsa Svensson. Linköpings Universitet. Linköping Fuzzy Logic När oskarpa definitioner blir kristallklara Linköpings Universitet Linköping Sammanfattning I denna fördjupningsuppgift har jag fokuserat på Fuzzy Logic och försökt att beskriva det på ett

Läs mer

getsmart Lila Regler för:

getsmart Lila Regler för: 3 2 Regler för: getsmart Lila 9 Graf y 4 7 3 2 2 3 Funksjon 1-4 4-3 -2-1 -1 1 2 3-2 x f(x)= f(x)= 3 2 2 3 3 2 2 3-3 -4 Graf 9 3 2 2 3 Funksjon 7 Det rekommenderas att man börjar med att se på powerpoint-reglerna

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 5 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Hur kan du som lärare dra nytta av konjunkturspelet i din undervisning? Här följer några enkla anvisningar och kommentarer.

Hur kan du som lärare dra nytta av konjunkturspelet i din undervisning? Här följer några enkla anvisningar och kommentarer. Konjunkturspelet Ekonomi är svårt, tycker många elever. På webbplatsen, i kapitel F2, finns ett konjunkturspel som inte bara är kul att spela utan också kan göra en del saker lite lättare att förstå. Hur

Läs mer

En av matematikhistoriens mest berömda trianglar är Pascals triangel,

En av matematikhistoriens mest berömda trianglar är Pascals triangel, Michael Naylor Okända skrymslen i Pascals triangel Pascals triangel, som har varit känd av indiska, persiska, arabiska och kinesiska matematiker i mer än tusen år, fick sitt nuvarande namn i mitten av

Läs mer

Kapitel 2. Grundläggande sannolikhetslära

Kapitel 2. Grundläggande sannolikhetslära Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Att beräkna en sannolikhet I många slumpförsök gäller att alla utfall i S är lika sannolika. Exempel: Tärningskast, slantsingling.

Läs mer

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om

Läs mer

Din RelationsBlueprint - Källan till smärta eller framgång i din intima relation

Din RelationsBlueprint - Källan till smärta eller framgång i din intima relation Din RelationsBlueprint - Källan till smärta eller framgång i din intima relation Lyssna, jag känner mig enormt glad och hedrad att jag får spendera den här tiden med dig just nu och att du tar dig tid

Läs mer

Svar till gamla tentamenstal på veckobladen

Svar till gamla tentamenstal på veckobladen Svar till gamla tentamenstal på veckobladen Veckoblad : Data/Eletro 54 A = Patienten är ett allvarligt fall B = Patienten är under 4 år C= Någon av patientens föräldrar har diabetes 8 + + + 5 + 5 + 8 +

Läs mer

TAMS79: Föreläsning 1 Grundläggande begrepp

TAMS79: Föreläsning 1 Grundläggande begrepp TMS79: Föreläsning 1 Grundläggande begrepp Johan Thim 31 oktober 2018 1.1 Begrepp Ett slumpförsök är ett försök där resultatet ej kan förutsägas deterministiskt. Slumpförsöket har olika möjliga utfall.

Läs mer

INDUKTION OCH DEDUKTION

INDUKTION OCH DEDUKTION Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk

Läs mer

Utdrag från Verklighetens Kvadratrötter: Sida 1 en bok om matematikens användningsområden skriven av Marcus Näslund. Mer info: www.kvadratrot.se.

Utdrag från Verklighetens Kvadratrötter: Sida 1 en bok om matematikens användningsområden skriven av Marcus Näslund. Mer info: www.kvadratrot.se. Utdrag från Verklighetens Kvadratrötter: Sida 1 SPORT OCH SPEL Matematik för såväl mentala som fysiska ansträngningar Ekvationslösning, matematiska resonemang, sannolikhetsteori Räkna med slumpen Det var

Läs mer

Handbok Kiriki. Albert Astals Cid Eugene Trounev Översättare: Stefan Asserhäll

Handbok Kiriki. Albert Astals Cid Eugene Trounev Översättare: Stefan Asserhäll Albert Astals Cid Eugene Trounev Översättare: Stefan Asserhäll 2 Innehåll 1 Inledning 5 2 Hur man spelar 6 3 Spelets regler, strategi och tips 8 3.1 Spelregler..........................................

Läs mer

Arbetsblad 5:1. Tolka diagram. 1 a) Vilket var kilopriset år 2003? 2 a) Vad kallas den här typen av

Arbetsblad 5:1. Tolka diagram. 1 a) Vilket var kilopriset år 2003? 2 a) Vad kallas den här typen av Arbetsblad 5:1 Tolka diagram Besvara frågorna med hjälp av diagrammen 1 a) Vilket var kilopriset år 2003? b) Hur mycket ökade priset mellan 1991 och 2001? c) Mellan vilka år var ökningen st? Pris (kr/kg)

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5

1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5 1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt 2.1-2.2, 2.5 Introduktion till kursen. Grundläggande sannolikhetslära. Mängdlära, händelser, sannolikhetsmått Händelse följer samma räkneregler

Läs mer

MATEMATIKDIDAKTIK. Peter Frejd Department of Mathematics, Linköping University, Sweden Seminarium

MATEMATIKDIDAKTIK. Peter Frejd Department of Mathematics, Linköping University, Sweden Seminarium MATEMATIKDIDAKTIK Peter Frejd Department of Mathematics, Linköping University, Sweden Seminarium 2011-03-22 1 SEMINARIUM 7 Vad är en funktion? Hur bildas begrepp? Exempel på funktioner 2 2 FUNKTIONER HISTORIK

Läs mer

Lär datorn att spela luffarschack

Lär datorn att spela luffarschack Lär datorn att spela luffarschack Laboration utvecklad av: Sofia Max och Mårten Björk, 2002 Reviderad Fredrik Linusson 2006 Datorlaborationen tar ca 60 minuter. Ägna 10 minuter till den första delen och

Läs mer

Kapitel 5. Scanlon bemöter delvis invändningen genom att hävda att kontraktualistiskt resonerande är holistiskt.

Kapitel 5. Scanlon bemöter delvis invändningen genom att hävda att kontraktualistiskt resonerande är holistiskt. Men stämmer det att man har skäl att förkasta en princip endast om det vore dåligt för en om den blev allmänt accepterad? En intressant tillämpning i sammanhanget är det som Scanlon kallar fairness. Han

Läs mer

VARFÖR ÄR DU SOM DU ÄR?

VARFÖR ÄR DU SOM DU ÄR? Karl-Magnus Spiik Ky Självtroendet / sidan 1 VARFÖR ÄR DU SOM DU ÄR? Självförtroendet är människans inre bild av sig själv. Man är sådan som man tror sig vara. Självförtroendet är alltså ingen fysisk storhet

Läs mer

Beräkning med ord. -hur en dator hanterar perception. Linköpings universitet Artificiell intelligens 2 2010-10-03 Erik Claesson 880816-1692

Beräkning med ord. -hur en dator hanterar perception. Linköpings universitet Artificiell intelligens 2 2010-10-03 Erik Claesson 880816-1692 Beräkning med ord -hur en dator hanterar perception 2010-10-03 Erik Claesson 880816-1692 Innehåll Inledning... 3 Syfte... 3 Kan datorer hantera perception?... 4 Naturligt språk... 4 Fuzzy Granulation...

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

Aktiviteter med kalkylprogram

Aktiviteter med kalkylprogram Matematik Grundskola årskurs 7-9 Modul: Matematikundervisning med digitala verktyg Del 7: Matematiska undersökningar med kalkylprogram Aktiviteter med kalkylprogram Håkan Sollervall, Malmö högskola Exempel

Läs mer

Ishavsspelet är ett kort- och tärningsspel för 2-4 spelare som bygger på tur och lite strategi

Ishavsspelet är ett kort- och tärningsspel för 2-4 spelare som bygger på tur och lite strategi Ishavsspelet är ett kort- och tärningsspel för 2-4 spelare som bygger på tur och lite strategi Spelet hör ihop med Sveriges Radios julkalender Siri och ishavspiraterna och du kan ladda hem och skriva ut

Läs mer

Pottstorleksfilosofin ett exempel

Pottstorleksfilosofin ett exempel Kapitel fem Pottstorleksfilosofin ett exempel Säg att du spelar ett no limit-spel med mörkar på $2-$5 och $500 stora stackar. Du sitter i stora mörken med Någon inleder satsandet ur mittenposition med

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Diskreta fördelningar Uwe Menzel, 2018 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta

Läs mer

8-1 Formler och uttryck. Namn:.

8-1 Formler och uttryck. Namn:. 8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?

Läs mer

Programmering av NXT Lego- robot Labbrapport för programmering av en Lego- robot

Programmering av NXT Lego- robot Labbrapport för programmering av en Lego- robot KUNGLIGA TEKNISKA HÖGSKOLAN Programmering av NXT Lego- robot Labbrapport för programmering av en Lego- robot Josef Karlsson Malik 2015-09- 02 jkmalik@kth.se Introduktionskurs i datateknik (II0310) Sammanfattning

Läs mer

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2 Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Föreläsning 6: Spelteori II

Föreläsning 6: Spelteori II Föreläsning 6: Spelteori II Litteratur: Resnik, Choices, kap. 5 1# Viktiga begrepp Först lite allmänt om spelteori: Spelteorin har främst utvecklats inom matematiken och nationalekonomin, och är fortfarande

Läs mer

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,

Läs mer

Öka effekten av DR med QR! Sju inspirerande exempel på hur du kan använda QR-koder i dina DR-kampanjer

Öka effekten av DR med QR! Sju inspirerande exempel på hur du kan använda QR-koder i dina DR-kampanjer Öka effekten av DR med QR! Sju inspirerande exempel på hur du kan använda QR-koder i dina DR-kampanjer Innehållsförteckning 1. Introduktion 2. Actionkoder 3. Kanalerna 4. Statistik 5. 7 tips 6. Sammanfattning

Läs mer

Kort om mätosäkerhet

Kort om mätosäkerhet Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

MATEMATIKSPELET TAR DU RISKEN

MATEMATIKSPELET TAR DU RISKEN MATEMATIKSPELET TAR DU RISKEN 1. Kasta en tärning 20 gånger. Målet är att minst 10 gånger få ögontalet 4, 5 eller 6. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 2. Kasta

Läs mer

Matematik. Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015

Matematik. Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015 Matematik Arbetslag: Gamma Klass: 8 S Veckor: 34-39 HT 2015 Tal Vad kan subtraktionen 4 7 innebära? Kan något vara mindre än noll? De här frågorna sysselsatte matematiker i många århundranden. Så länge

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

Matematisk statistik - Slumpens matematik

Matematisk statistik - Slumpens matematik Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5 freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre

Läs mer

Implicita odds och omvända implicita odds

Implicita odds och omvända implicita odds Kapitel sju Implicita odds och omvända implicita odds Under de tidiga satsningsrundorna och satsningsrundorna i mitten sänks vanligtvis pottoddset avsevärt om du behöver syna framtida satsningar, och du

Läs mer

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8)

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8) De naturliga talen. Vi skall till att börja med stanna kvar i världen av naturliga tal, N 3. Vi har redan använt (i beviset av Euklides primtalssats) att de naturliga talen är uppbyggda (genom multiplikation)

Läs mer

F2 SANNOLIKHETSLÄRA (NCT )

F2 SANNOLIKHETSLÄRA (NCT ) Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT 4.1-4.2) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive

Läs mer

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten

Läs mer

Shakey s värld med HTNplanering

Shakey s värld med HTNplanering Shakey s värld med HTNplanering 2010-10-03 Artificiell Intelligens 2, 729G11 Maria Lindqvist Fördjupningsarbete, HT 2010 880913-0506 Linköpings Universitet marli314 2 Innehållsförteckning Inledning...

Läs mer

LINKÖPINGS TEKNISKA HÖGSKOLA Institutionen för Ekonomisk och Industriell Utveckling Ou Tang

LINKÖPINGS TEKNISKA HÖGSKOLA Institutionen för Ekonomisk och Industriell Utveckling Ou Tang LINKÖPINGS TEKNISKA HÖGSKOLA Institutionen för Ekonomisk och Industriell Utveckling Ou Tang TENTAMEN I EKONOMISK ANALYS: Besluts- och finansiell metodik TISDAG DEN 19 AUGUSTI 2014, KL 14.00-19.00 Sal:

Läs mer

Sannolikhetsbegreppet

Sannolikhetsbegreppet Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34

Läs mer

Källkritisk metod stora lathunden

Källkritisk metod stora lathunden Källkritisk metod stora lathunden Tryckt material, t ex böcker och tidningar, granskas noga innan det publiceras. På internet kan däremot alla enkelt publicera vad de önskar. Därför är det extra viktigt

Läs mer

Låt eleverna lösa uppgifterna med huvudräkning och sedan jämföra med resultatet av ett program, t.ex. print(6 + 4 * 3)

Låt eleverna lösa uppgifterna med huvudräkning och sedan jämföra med resultatet av ett program, t.ex. print(6 + 4 * 3) 1 Print 1 Tal, Prioriteringsregler 3 Procent, Procentuella förändringar 2 Variabler Teckna och tolka uttryck Ekvationslösningens grunder 1236 Beräkna utan räknare. a) 6 + 4 3 b) 9 4 12 3 c) 7 (3 + 12)

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 18 Institutionen för matematik KTH 12 december 2017 Idag Talföljder Serier Jämförelse med integraler (Cauchy s integralkriterium) Andra konvergenskriterier (jämförelsekriterier) Mer i morgon

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

Matematisk statistik 9hp Föreläsning 7: Normalfördelning Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning

Läs mer

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P. Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Friktionskraft är en förutsättning för att våra liv ska fungera på ett mindre omständigt sätt. Om friktionskraften

Läs mer

Matematikuppgifter del II, FYTA11

Matematikuppgifter del II, FYTA11 Matematikuppgifter del II, FYTA11 51. Lös uppgift 10.1 i boken. 52. Lös uppgift 10.2 i boken. 53. Lös uppgift 10.3 i boken. 54. Lös uppgift 10.4 i boken. 55. Låt en kurva i rummet vara given i parametrisk

Läs mer

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29 Numeriska serier Andreas Rejbrand, april 2014 1/29 1 Inledning Författarens erfarenhet säger att momentet med numeriska serier är ganska svårt för många studenter i inledande matematikkurser på högskolenivå.

Läs mer

DET ÄR INGEN KONST ATT MÄTA SPÄNNING OCH STRÖM

DET ÄR INGEN KONST ATT MÄTA SPÄNNING OCH STRÖM DE ÄR INGEN KONS A MÄA SPÄNNING OCH SRÖM OM MAN VE HR DE FNGERAR! lite grundläggande el-mätteknik 010 INNEHÅLL Inledning 3 Grunder 3 Växelspänning 4 Effektivvärde 5 Likriktat medelvärde 6 Överlagrad spänning

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer