Mesopotamisk matematik - del 2

Storlek: px
Starta visningen från sidan:

Download "Mesopotamisk matematik - del 2"

Transkript

1 Mesopotamisk matematik - del 2 Jöran Friberg Den babyloniska matematiken 1500 år före Euklides var mera omfattande, djup och systematisk än man tidigare trott. Den byggde i sin tur på tankegångar som redan vid den tiden var uppemot 1500 år gamla. Just dessa nyare resultat togs upp i förra numret av Nämnaren och i en fortsättning med ytterligare exempel och en sammanfattning i detta nummer. Artiklarna är dokumentation av en uppmärksammad föreläsning vid Matematikbiennalen i Göteborg En gammal-sumerisk tabell över kvadratytor Här visas gammal-sumeriska tabeller över sidor och ytor på stora kvadrater, med en tillämpningsövning (att räkna ut ytan av en kvadrat med sidan 10 x 60 dubbelrör 3600 m) Uträkning: (60 stavar) = (6 rep) = (1 längd) = 2 d (bur) Alltså, t ex: (10 x 60 stavar) = 10 x (60 stavar) = 1.40 (100) x 2 bur = 3.20 (200) bur En gammal-sumerisk aritmetisk-geometrisk uppgift Jöran Friberg är professor i matematik vid Chalmers tekniska högskola och Göteborgs Universitet. Han är en internationellt känd forskare i matematikhistoria med särskild inriktning mot mesopotamisk matematik och inflytandet från babylonisk matematik på utvecklingen av bl a den grekiska matematiken. Beräkna ytan av en kvadrat med sidan 5 x 60 stavar. Uträkning (rättad): (5 x 60 stavar) = 25 x (60 stavar) = 2 1/2 x 10 x (60 stavar) 12

2 = 2 1/2 x 10 x 3 20! bur = 2 1/2 x (2000) bur = (5000) bur. I texten räknas felaktigt med 3 10 bur i stället för 3 20 bur. Svaret i texten är därför också felaktigt, nämligen bur istället för bur. Observera att tecknet för (3600) bur är en gaffel plus tecknet för 1.00 (60) bur. Gaffeltecknet är egentligen tecknet för gal = stor på sumeriska men betyder här multiplikation med 60! En gammal-sumerisk geometrisk uppgift Uppgiften behandlar fyra cirklar inskrivna i en kvadrat, kanske en tidig föregångare till en intressant typ av babyloniska geometriska problem. Ingen förklarande text är bevarad, men likheten med en viss gammal-babylonisk text antyder att det handlar om följande Antag att den yttre kvadraten har sidan 1. Bestäm ytan av den inre konkava kvadraten (på sumeriska kallad harp-öra efter formen av ljudhålen på en sumerisk harpa). Lösning (enligt gammal-babylonisk metod): Ytan av den centrala parallella kvadraten: 1/4 Ytan av den centrala cirkeln: 3/4 x 1/4 (om π = 3) Ytan av den centrala sneda kvadraten: 1/2 x 1/4 Ytan av harpörat: (3/4 1/2) x 1/4= 1/4 x 1/4 Ytan av en båt : 1/4 x (3/4 1/4) x 1/4 = 1/8 x 1/4 Förhållandet mellan ytorna är därför båt : harpöra : sned kvadrat : cirkel : kvadrat = 1/2 : 1 : 2 : 3 : 4 (om π = 3) Ett gammal-akkadiskt divisionsproblem (2300 f Kr) Detta är ett exempel på gammal-akkadiska kilskriftstexter (2300 f Kr) med en geometrisk uppgift som leder till division med ett reguljärt sexagesimalt tal (4 x60+ 3 = 3 5 ). Långsidan av en rektangel är 4 03 (243) stavar. Vad är kortsidan om ytan är 1 iku = (10 stavar)? Detta är ett reguljärt divisionsproblem, eftersom 4 03 = 3 x 1 21 (81) = 3 x 9 x 9 = 3 x 3 x 3 x 3 x 3 4(60) 3 us u sag sag 1(iku) asa a a sag - bi bi pa pa - de d] dam- 13

3 Uträkning: 100 stavar / 243 = 200 säd-alnar / 81 (1 stav = 6 säd-alnar) = 2 säd-alnar + 76 händer / 27 (1 säd-aln = 6 händer) = 2 säd-alnar + 2 händer fingrar / 27 (1 hand = 10 fingrar) o s v Ett gammal-akkadiskt trapetsdelningsproblem Här visas en geometrisk teckning, förmodligen en illustration till en matematisk uppgift som är en tidig föregångare till ett mycket viktigt och intressant babyloniskt geometriskt-algebraiskt-talteoretiskt problem (trapetsdelningsproblemet). Detta är den matematik-historiskt mest intressanta texten från tredje årtusendet. Texten är gammal-akkadisk (2300 f Kr). Problemtypen var populär i den gammal-babyloniska perioden 500 år senare. (a+d ) / 2 = 30 / 3 = 10 (d+b ) / 2 = 30 / 2 = 15 (a+b ) / 2 = 60 / 5 = 12 Lösning: a+d+b = = 37 a = 37 (d+b) = = 7 d = 37 (a+b) = = 13 b = 37 (a+d) = = b B d A a 17 alnar q 7 alnar p 2 rör [(a + d)/2] x q = A, osv b 30 d 30 a 3 2 Bestäm delningslinjen i parallelltrapetsen i bilden så att den delar ytan av trapetsen i två lika delar. Svar (ej i texten): Delningslinjen har en längd av13 alnar. Den delar långsidorna i förhållandet 2 : 3. Ytan av hela trapetsen är 4 kvadratrör = 1 kvadratstav = 1 gård (den minsta enheten för ytmått). Förklaring till trapetsdelningsproblemet: Antag t ex att man vill dela en trapets med ytan 60 i två lika delar genom en delningslinje som delar långsidan i delar med längderna 2 och 3 (bilden till vänster). Den falska ytformeln (som faktiskt inte är generellt additiv!) ger då upphov till det linjära ekvationssystemet under figuren, (se även Nämnaren, nr 4/92 s 13) : Övning: Visa att kravet att den falska ytformeln är additiv (så att summan av delytorna A och B är lika med ytan av hela trapetsen) är ekvivalent med likformighets-villkoret att sidan av trapetsen delas i förhållandet p : q = (b d) / (d a). Övning: Visa att likadelningsvillkoret, d v s villkoret att A = B, är ekvivalent med villkoret att d a = b d, d v s att a+ b = 2 d.

4 Exempel: Om a = 7, b = 17, så är d = ( 7+ 17) / 2 = (49+289) / 2 = 169 = 13. Trapetsdelningsproblemet leder tydligen automatiskt till heltalslösningar till ekvationen a+ b = 2 d, som är en obestämd andragradsekvation av exakt samma slag som Pythagoras ekvation. Många gammal-babyloniska matematiska kilskriftstexter handlar för övrigt just om Pythagoras ekvation eller trapetsdelningsproblemet. En sen-sumerisk faktoriseringsuppgift (2000 f Kr) Här presenteras finurligt formulerade divisionsproblem (2000 f Kr) som bygger på den överraskande iakttagelsen att de lustiga sexagesimaltalen = och = innehåller små icke-reguljära faktorer (13 och 7). a) getter vallas av herdar. Hur många getter i varje hjord? b) får vallas av 13 herdar. Hur många får i varje hjord? c) får vallas av 7 herdar. Hur många får i varje hjord? Lustigt nog gäller samma sak för decimaltal, vilket kan visas genom följande enkla uträkning: 1 = x = x = x = x = x 13 = 77 x 13 = 7 x 11 x 13. Alltså är 1 111,111 = 111 x 1001 = 7 x 11 x 13 x 111! Övning: Undersök om decimaltalet innehåller liknande faktorer. Ett sen-sumeriskt tillväxtsproblem (2000 f Kr) Detta är en teoretisk-ekonomisk text som ger lösningen till ett tämligen komplicerat tillväxtproblem med tidsfördröjning (tillväxten under en tioårsperiod av en hjord nötkreatur som vid periodens början omfattar fyra dräktiga kor). Beräkna tillväxten av en hjord nötkreatur under tio år under följande tillväxtsvillkor: a) vid början av år 1 omfattar hjorden 4 kor b) varje helt par av kor får varje år en kalv, omväxlande av ena eller andra könet c) efter 3 år är en kviga könsmogen; efter ytterligare 1 år blir den en ko och kan få sin första kalv Detta är ett rekursionsproblem som enklast löses genom framräkning av raderna i en tabell. 1 Kanske bygger titeln på den gamla orientaliska samlingen av berättelser Tusen och en natt på en ännu äldre orientalisk matematisk tradition? Det är för övrigt intressant att notera att faktoriseringen av talet 1001 har följande tillämpning: Eftersom 7 x11 x13 = 1001 x 1000, så är 1/7 11 x13/1000 = 0,143, 1/11 7 x13/1000 = 0,091, och 1 / 13 7 x11/1000 = 0,

5 Liknande, men avsevärt mycket enklare, är Leonardo Fibonacci s berömda kaninproblem (1200 e Kr): Ett kaninpar får ett par ungar (av båda könen) varje år. Ungarna är fullvuxna efter ett år. Dräktighetstiden är ett år. Beräkna tillväxten (den s k Fibonacciföljden). Övning:Visa att antalet honor resp. honungar ges av följande tabell. Försök att bestämma den enkla tillväxtsregeln. år 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,... h. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,... hu. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... Det sen-sumeriska hjordproblemet och det medeltida kaninproblemet är båda helt teoretiska, strängt schematiserade och orealistiska. Bl a är ju dödlighetstalet lika med noll. Inte ens till skatteunderlag kan lösningen här nedan till hjordproblemet ha dugt. Lösningen till det sen-sumeriska hjordproblemet år kor 3-åriga 2-åriga 1-åriga kalvar tjurar 3-åriga 2-åriga 1-åriga kalvar Sammanfattning Det är nu för första gången möjligt att rekonstruera (i grova drag) matematikens hela utvecklingshistoria. Man ser hur tal och mått och den elementära aritmetiken var fullt utvecklade redan vid tiden för uppfinnandet av skriften, och hur teoretiska matematiska problem övades i de mesopotamiska skolorna under hela det tredje årtusendet. Speciellt intressant är observationen att distinktionen mellan reguljära och icke-reguljära sexagesimaltal (7, 11,...), som var en av hörnstenarna i den babyloniska matematiken, 16

6 utgör bakgrunden till en hel rad matematiska övningsuppgifter från samtliga utvecklingsperioder under det tredje årtusendet i Mesopotamien, den för-sumeriska, den gammal-sumeriska, den gammal-akkadiska och den sen-sumeriska. Det går därför en rak linje från vår moderna matematik, via grekernas, babyloniernas, sumerernas och för-sumerernas matematik till räknandet med talsymboler av lera (små stavar, koner och klot) i det förhistoriska Mellanöstern ( f Kr). Litteratur Friberg, J. Numbers and measures in the earliest written records, Scientific American 250 (1984) Friberg, J. "Mesopotamisk matematik del 1", Nämnaren nr 4, 1992, s Nissen, H., Damerow, P., Englund, R. Frühe Schrift und Techniken der Wirtschaftsverwaltung im alten Vorderen Orient (Berlin, 1990). (En engelsk översättning skall publiceras inom kort.) 17

Mesopotamisk matematik del 1

Mesopotamisk matematik del 1 Mesopotamisk matematik del 1 Jöran Friberg är professor i matematik vid Chalmers tekniska högskola och Göteborgs Universitet. Han är en internationellt känd forskare i matematikhistoria med särskild inriktning

Läs mer

Övningshäfte 2: Induktion och rekursion

Övningshäfte 2: Induktion och rekursion GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

8-6 Andragradsekvationer. Namn:..

8-6 Andragradsekvationer. Namn:.. 8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,

Läs mer

Complex numbers. William Sandqvist

Complex numbers. William Sandqvist Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den

Läs mer

Lathund, geometri, åk 9

Lathund, geometri, åk 9 Lathund, geometri, åk 9 I årskurs 7 och 8 räknade ni med sträckor och ytor i en dimension (1D) respektive två dimensioner (2D). Nu i årskurs 9 har ni istället börjat räkna volymer av geometriska kroppar

Läs mer

Linjära ekvationer med tillämpningar

Linjära ekvationer med tillämpningar UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel

Läs mer

Explorativ övning 7 KOMPLEXA TAL

Explorativ övning 7 KOMPLEXA TAL Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

Övningshäfte 2: Komplexa tal (och negativa tal)

Övningshäfte 2: Komplexa tal (och negativa tal) LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa

Läs mer

Ekvationer och system av ekvationer

Ekvationer och system av ekvationer Modul: Undervisa matematik utifrån problemlösning Del 4. Strategier Ekvationer och system av ekvationer Paul Vaderlind, Stockholms universitet Ekvationslösning är ett av de viktiga målen i skolmatematiken.

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen:

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen: Modul: Algebra Del 8: Avslutande reflektion och utvärdering Distributiva lagen Cecilia Kilhamn, Göteborgs Universitet Distributiva lagen a (b + c) = a b + a c Den distributiva lagen kallas den räknelag

Läs mer

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

Kvalificeringstävling den 29 september 2009

Kvalificeringstävling den 29 september 2009 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 29 september 2009 Förslag till lösningar Problem Visa att talet 2009 kan skrivas som summan av 7 positiva heltal som endast

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1 Kattis Lektion 1 I kursen används onlinedomaren Kattis (från http://kattis.com) för att automatiskt rätta programmeringsproblem. För att få ett konto på Kattis anmäler du dig på Programmeringsolympiadens

Läs mer

Undersökande arbetssätt i matematik 1 och 2

Undersökande arbetssätt i matematik 1 och 2 Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

Hela tal LCB 1999/2000

Hela tal LCB 1999/2000 Hela tal LCB 1999/2000 Ersätter Grimaldi 4.3 4.5 1 Delbarhet Alla förekommande tal i fortsättningen är heltal. DEFINITION 1. Man säger att b delar a om det finns ett heltal n så att a Man skriver b a när

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet

Läs mer

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Tentamen i Matematikens utveckling, 1MA163, 7,5hp fredagen den 28 maj 2010, klockan 8.00 11.00 Tentamen består

Läs mer

= a) 12 b) -1 c) 1 d) -12 [attachment:1]räkneoperation lektion 1.odt[/attachment] = a) 0 b) 2 c) 2 d) 1

= a) 12 b) -1 c) 1 d) -12 [attachment:1]räkneoperation lektion 1.odt[/attachment] = a) 0 b) 2 c) 2 d) 1 Lektion. + 8= 0 0. := 0 0. : = 8. : ( )= 8. 0/0 = 8. +(+ ) = 8. + = 0 8. ( )+0= 0 8. 8/ = - 0 8 0 0. = - - [attachment:]räkneoperation lektion.odt[/attachment]. = 0. /( )= - -. ( )= 0. 0 (0 0: )+ = 0.

Läs mer

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför

Läs mer

PROBLEMLÖSNINGSUPPGIFTER

PROBLEMLÖSNINGSUPPGIFTER PROBLEMLÖSNINGSUPPGIFTER ADDERA RÄTT 1. Bestäm vilka siffror bokstäverna A, B, C, och D bör bytas ut mot i additionen nedan för att additionen ska vara riktig. A 6 3 7 B 2 + 5 8 C D 0 4 2 2. Gör ett eget

Läs mer

Sidor i boken 8-9, 90-93

Sidor i boken 8-9, 90-93 Sidor i boken 8-9, 90-93 Absolutbelopp Men först lite om Absolutbelopp., kallas absolutbeloppet av, och är avståndet för till origo på tallinjen. Som bekant är avståndet till origo för talet 4, 4. Detta

Läs mer

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Historisk tidslinje & matematisk publikation

Historisk tidslinje & matematisk publikation Historisk tidslinje & matematisk publikation Niels Chr. Overgaard 2016-11-07 N. Chr. Overgaard Historia 2016-11-07 logoonly 1 / 12 Översikt Vi ska idag behandla tre ämnen: Snabb överblick över matematikens

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist Föreläsning II Mikael P. Sundqvist Att bygga matematisk teori Odefinierade begrepp Axiom påstående som ej behöver bevisas Definition namn på begrepp Sats påstående som måste bevisas Lemma hjälpsats Proposition

Läs mer

Explorativ övning 11 GEOMETRI

Explorativ övning 11 GEOMETRI Explorativ övning 11 GEOMETRI Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

Lösningar till utvalda uppgifter i kapitel 5

Lösningar till utvalda uppgifter i kapitel 5 Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar

Läs mer

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

48 p G: 29 p VG: 38 p

48 p G: 29 p VG: 38 p 11F322 MaI Provmoment: Matematik 5 hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet F-3 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-31 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel Totalt

Läs mer

5.6 MATEMATIK. Hänvisning till punkt 7.6 i Lpgr 16.1.2004

5.6 MATEMATIK. Hänvisning till punkt 7.6 i Lpgr 16.1.2004 5.6 MATEMATIK Hänvisning till punkt 7.6 i Lpgr 16.1.2004 Undervisningen i matematik skall hos eleverna utveckla det matematiska tänkandet, ge matematiska begrepp samt de mest använda lösningsmetoderna.

Läs mer

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n Årgång 48, 1965 Första häftet 2505. Låt M = {p 1, p 2,..., p k } vara en mängd med k element. Vidare betecknar M 1, M 2,..., M n olika delmängder till M, alla bestående av tre element. Det gäller alltså

Läs mer

TATM79: Föreläsning 3 Komplexa tal

TATM79: Föreläsning 3 Komplexa tal TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Övningar - Andragradsekvationer

Övningar - Andragradsekvationer Övningar - Andragradsekvationer Uppgift nr 1 x x = 36 Uppgift nr 2 x² = 64 Uppgift nr 3 0 = x² - 81 Uppgift nr 4 x² = -81 Uppgift nr 5 x² = 7 Ange också närmevärden med 3 decimaler med hjälp av miniräknare.

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning Absolutbelopp, summor och binomialkoefficienter Johan Thim 15 augusti 015 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0 x

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

Kvalificeringstävling den 26 september 2017

Kvalificeringstävling den 26 september 2017 SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 6 september 017 1. Bestäm alla reella tal x, y, z som uppfyller ekvationerna x + = y y + = z z + = x Lösning 1. Addera

Läs mer

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna

Läs mer

8F Ma Planering v2-7 - Geometri

8F Ma Planering v2-7 - Geometri 8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

MÖNSTER OCH TALFÖLJDER

MÖNSTER OCH TALFÖLJDER MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll

Läs mer

Explorativ övning Geometri

Explorativ övning Geometri Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

Ellipsen. 1. Apollonius och ellipsen som kägelsnitt.

Ellipsen. 1. Apollonius och ellipsen som kägelsnitt. Ellipsen 1. Apollonius och ellipsen som kägelsnitt. Vi skall stifta bekantskap med, och ganska noga undersöka, den plana kurva som kallas ellips. Man kan närma sig kurvan på olika sätt men vi väljer som

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

9E Ma Planering v2-7 - Geometri

9E Ma Planering v2-7 - Geometri 9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 6, 977 Årgång 6, 977 Första häftet 36. Lös ekvationssystemet { x y = 8 y log x + x log y = 2 (Svar: x = y = 8) 36. lös ekvationen 6sin x 6sin2x + 5sin3x =. (Svar: x = n 8, 84,26 + n 36,

Läs mer

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det femte skolåret: Eleven skall ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna beskriva och hantera situationer

Läs mer

vilket är intervallet (0, ).

vilket är intervallet (0, ). Inledande kurs i matematik, avsnitt P. P..3 Lös olikheten 2x > 4 och uttryck lösningen som ett intervall eller en union av intervall. P..7 Lös olikheten 3(2 x) < 2(3 + x), Multiplicera båda led med 2.

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet

Läs mer

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter: Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Föreläsning 3: Ekvationer och olikheter

Föreläsning 3: Ekvationer och olikheter Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta

Läs mer

Explorativ övning Geometri

Explorativ övning Geometri Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

Lösningar till udda övningsuppgifter

Lösningar till udda övningsuppgifter Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.

Läs mer

x2 6x x2 6x + 14 x (x2 2x + 4)

x2 6x x2 6x + 14 x (x2 2x + 4) Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Måndagen den 5:e november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. För vilka reella tal x gäller olikheten x 6x + 14? Lösningsalternativ 1: Den

Läs mer

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet Stokastisk geometri Lennart Råde Chalmers Tekniska Högskola och Göteborgs Universitet Inledning. I geometrin studerar man geometriska objekt och deras inbördes relationer. Exempel på geometriska objekt

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 1715 kl. 14. - 18. Tentamen Telefonvakt: Jonny Lindström 733 674 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

EXTRA UPPGIFTER I C++ PROGRAMMERING-A

EXTRA UPPGIFTER I C++ PROGRAMMERING-A EXTRA UPPGIFTER I C++ PROGRAMMERING-A Uppgifterna är ej sorterade efter svårighetsgrad 1. Gör ett program som kan beräkna arean och omkretsen av en cirkel om användaren (du) matar in cirkelns radie. Skapa

Läs mer

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Fira Pi-dagen med Liber!

Fira Pi-dagen med Liber! Fira Pi-dagen med Liber! Specialuppdrag från Uppdrag: Matte o Kul-diagram o Geometri med färg UPPDRAG: MATTE Mattedetektiverna Mattespanarna Hej! Den 14 mars är det Pi-dagen (3.14). Det är värt att uppmärksammas

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6 freeleaks NpMaB vt2001 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2001 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 9 uppgifter med miniräknare 6 Förord Skolverket har endast

Läs mer

4-7 Pythagoras sats. Inledning. Namn:..

4-7 Pythagoras sats. Inledning. Namn:.. Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter Johan Thim 2 augusti 2016 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

SF1661 Perspektiv på matematik Tentamen 20 oktober 2011 kl Svar och lösningsförslag

SF1661 Perspektiv på matematik Tentamen 20 oktober 2011 kl Svar och lösningsförslag Hans Thunberg KTH Matematik SF66 Perspektiv på matematik Tentamen 0 oktober 0 kl 08.00.00 Svar och lösningsförslag () Bestäm ekvationen för den cirkel som passerar genom punkten (, 4) och har sin medelpunkt

Läs mer

Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven

Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven Nationella strävansmål i matematik Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära

Läs mer

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term

Läs mer

Säger man ordet ekvation brukar tyvärr

Säger man ordet ekvation brukar tyvärr kerstin hagland Buss på ekvationen! Bara ordet ekvation kan få många, både elever och vuxna, att direkt tänka på något som är svårt och obegripligt. I artikeln presenterar författaren några idéer om hur

Läs mer

Dugga 2 i Matematisk grundkurs

Dugga 2 i Matematisk grundkurs Linköpings tekniska högskola Matematiska institutionen Tillämpad matematik Kurskod: TATA68 Provkod: TEN Inga hjälpmedel är tillåtna. Dugga i Matematisk grundkurs 013 16 kl 8.00 1.00 Lösningarna skall vara

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Uppgifter till Första-hjälpen-lådan

Uppgifter till Första-hjälpen-lådan Uppgifter till Första-hjälpen-lådan Många Stockholmslärare har fått en första-hjälpen-låda i matematik då de deltagit i de kurser som letts av Karin Kairavuo, matematiklärare från Mattelandet i Helsingfors.

Läs mer

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand

Läs mer

INTRESSEVÄCKANDE UNDERVISNING I MATEMATIK. Izet Omanovic, förstelärare i matematik Söderkullaskolan i Malmö

INTRESSEVÄCKANDE UNDERVISNING I MATEMATIK. Izet Omanovic, förstelärare i matematik Söderkullaskolan i Malmö INTRESSEVÄCKANDE UNDERVISNING I MATEMATIK Izet Omanovic, förstelärare i matematik Söderkullaskolan i Malmö MIN AMBITION Inspirera lärare att arbeta med eget undervisningsmaterial som är anpassat efter

Läs mer

Anteckningar för kursen "Analys i en Variabel"

Anteckningar för kursen Analys i en Variabel Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 5 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av

Läs mer

8-3 Kvadreringsreglerna och konjugatregeln. Namn:

8-3 Kvadreringsreglerna och konjugatregeln. Namn: 8-3 Kvadreringsreglerna och konjugatregeln. Namn: Inledning I kapitlet med matematiska uttryck lärde du dig hur man förenklade ett uttryck med en faktor framför en parentes genom att multiplicera varje

Läs mer

Matematik C (MA1203)

Matematik C (MA1203) Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma C (MA103) Matematik 03-08- Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

En inblick i svensk forskning kring elever med särskilda förmågor och fallenhet i matematik. Eva Pettersson 2008

En inblick i svensk forskning kring elever med särskilda förmågor och fallenhet i matematik. Eva Pettersson 2008 En inblick i svensk forskning kring elever med särskilda förmågor och fallenhet i matematik Eva Pettersson 2008 Projektets mål Vårt mål med projektet är att studera hur matematisk förmåga hos skolelever

Läs mer