29. Stimulerad och spontan emission

Storlek: px
Starta visningen från sidan:

Download "29. Stimulerad och spontan emission"

Transkript

1 29. Stimulerad och spontan emission [Främst ur Alonso-Finn III sid 532] Vi betraktar nu ett system av atomer med två energinivåer E 1 och E 2 (> E 1 ) och ett omgivande fotonsystem med energin ω = hν = E 2 E 1. Antalet atomer i grundtillståndet är N 1 och antalet atomer i det exciterade tillståndet är N 2 : E 2 - N 2 E 1 - N 1 Atomerna i tillståndet E 2 deexciteras med tiden om tillståndet inte är fullständigt stabilt. Beteckna sannolikheten per tidsenhet för att en atom i E 2 deexciteras spontant A 21. Då gäller naturligtvis Termofysik, Kai Nordlund

2 dn 2 dt = A 21N 2 (1) Närvaron av ett fotonfält med energin = E 2 E 1 gör det möjligt för atomer i grundtillståndet att exciteras till E 2. Det är naturligt att anta att excitationssannolikheten per tidsenhet är proportionell mot antalet fotoner med frekvensen ν: antalet excitationer/tidsenhet = b 12 e(ν)n 1 (2) Funktionen e(ν) betecknar energidensiteten av tillstånd med frekvensen ν (så för att vara exakt ger ekvationen ovan energin excitationssannolikhet). Excitationssannolikheten per tidsenhet är då B 12 = Z dνb 12 e(ν) (3) dn 1 dt = b 12e(ν)N 1 (4) Termofysik, Kai Nordlund

3 Dessutom kan det närvarande fotonsystemet stimulera de-excitation av elektroner i E 2 (en foton absorberas, två emitteras). E 2 - N 2 e e γ γ γ e E 1 - N 1 Sannolikheten per tidsenhet för stimulerad emission är då naturligt av formen B 12 = Z dνb 21 e(ν). (5) dn 2 dt = b 21e(ν)N 2 (6) Termofysik, Kai Nordlund

4 De fullständiga dynamiska ekvationerna är 8 >< >: dn 1 dt = b 12e(ν)N 1 + A 21 N 2 dn 2 dt = b 12e(ν)N {z } 1 [ A 21 {z N } 2 + b 21 e(ν)n 2 ] {z } absorption spontan em. stimulerad em. (7) I (statisk eller dynamisk) jämvikt gäller så dn 2 dt = 0 (8) b 12 e(ν)n 1 = [A 21 + b 21 e(ν)]n 2 (9) Om man vidare antar att nivåerna fylls med termisk excitation enligt vanlig Boltzmannstatistik gäller N 1 e E 1 /k B T (10) N 2 e E 2 /k B T (11) Termofysik, Kai Nordlund

5 och därmed Genom att sätta in detta i ekv. 9 fås N 1 N 2 = e (E 2 E 1 )/k B T = e hν/k B T (12) b 12 e(ν)e hν/k B T = A 21 + b 21 e(ν) (13) Vi löser nu ut e(ν) ur detta: b 12 e hν/k B T b 21 e(ν) = A 21 (14) b 12 e hν/k B T b 21 /b 12 e(ν) = A 21 (15) = e(ν) = A 12 /b 12 e hν/k B T b 21 /b 12 ; (16) Men vi vet från förra kapitlet att för fotongasen gäller också e(ν) = 8πhν3 c 3 1 e hν/k B T 1 (17) Termofysik, Kai Nordlund

6 För att dessa två ekvationer skulle vara konsistenta med varann krävs det uppenbart att A 21 b 12 = 8πhν3 c 3 & b 21 = b 12 (18) Från den spontana emissionssannolikheten A 21 kan alltså de stimulerade emissionssannolikheterna b 21, b 12 beräknas! (Einstein, 1917): A 21 = spontan emissionssannolikhet b 12 e(ν) = b 21 e(ν) = stimulerad emissionssannolikhet Från ekvation 16 erhåller man dessutom också direkt A 21 b 12 e(ν) = ehν/k B T 1 e hν/k B T, om hν >> k B T (19) och därmed A 21 >> b 12 e(ν) om hν >> k B T (20) Termofysik, Kai Nordlund

7 För höga frekvenser och låga temperaturer är alltså den spontant emitterade strålningen dominerande. Den spontana strålningen har stokastiskt fördelade faser eftersom atomerna emitterar spontant oberoende av varandra. Den stimulerade strålningen av däremot koherent eftersom varje atom stimulerats av samma foton med konstant fas. Antalet emitterade fotoner från E 2 per tidsenhet är (A 21 + b 21 e(ν))n 2 (21) medan antalet absorberade fotoner i E 2 av är b 12 e(ν)n 1 (22) A 21 + b 21 e(ν) b 12 e(ν) N 2 N 1 = ( A 21 b 12 e(ν) + 1)N 2 N 1 N 2 N 1, omhν << k B T (23) Termofysik, Kai Nordlund

8 hν << k B T är möjligt för mikrovågor vid rumstemperatur, däremot inte för synligt ljus som har fotonenergier 1 ev. Emissionsraten > absorptionsraten om N 2 > N 1 (24) N 2 > N 1 är omöjligt i jämvikt då N 2 N 1 e (E 2 E 1 )/k B T (25) Men ifrån jämvikt kan N 2 > N 1 och då uppstår en laser eller maser. För att uppnå N 2 > N 1 måste man pumpa in elektroner till det högre tillståndet. Lasrar kräver alltså populationsinversion! Detta kan göras t.ex. med ett tre-nivå-energischema, som i ett möjligast enkelt system skulle fungera på följande sätt: Termofysik, Kai Nordlund

9 optisk pumpning metastabilt tillstånd grundtillstånd Kommentera kort om haldledarlasrar Termofysik, Kai Nordlund

10 30. Fasta ämnens specifika värme [Alonso-Finn III s. 536-, Mandl ch 6] För det mesta behandlar vi under denna kurs gaser. Men det visar sig att man även kan beräkna fasta ämnens värmekapacitet utgående från gasekvationer! Empiriskt gäller att C V för fasta ämnen vid höga temperaturer är 3Nk B = 3R (Dulong-Petit) medan vid låga temperaturer C V = αt 3 + γt 0 då T 0 (26) Den huvudsakliga rörelsen i fasta ämnen vid höga temperaturer utgörs av vibrationer omkring atomernas jämviktslägen. Om antalet atomer är N kan denna rörelse beskrivas som rörelser hos 3N harmoniska oskillatorer. Om atomerna vibrerar i fas kan denna vibrationsrörelse iakttas som ljudvågor. Enligt ekvipartitionsprincipen blir då C V = 3Nk B. Termofysik, Kai Nordlund

11 Om oskillatorernas vibrationsfrekvenser är {ω k } och vibrationsrörelsen beskrives kvantmekaniskt är den totala energin i vibrationsrörelsen E = V 0 + 3NX k=1 ω k (n k ) (27) 3NX = V ω k + 2 k=1 {z } konstant A Här är A = grundtillståndets energi. 3NX k=1 ω k n k (28) Dessa vibrationskvanta kallas fononer. De är analoga med fotoner i att deras antal inte bevaras, och kan i likhet med fotoner tänkas bilda en gas (dock växelverkar de med varandra betydligt mer än fononer). Fononerna kan beskrivas med Bose-Einstein statistik så att det sannolika antalet vibrationskvanta med frekvensen ω k är Termofysik, Kai Nordlund

12 < n k >= Därmed fås för energin 1 e ω k /k B T 1 (µ = 0 då antalet kvanta är obestämt). (29) Ē = V X ω k + X 2 k k {z } konstant ω k e ω k /k B T 1 (30) Fonongasens specifika värme Vi beräknar nu värmekapaciteten för fononsystemet: C V = Ē T = X k ω k `e ω k /k B T 1 2 ( 1)e ω B /k B T ω «k k B T 2 (31) = k B 3NX k=1 ωk «2 e ω k /k B T (32) k B T [e ω k /k B T 1] 2 Termofysik, Kai Nordlund

13 Vid höga temperaturer k B T >> ω k gäller och man får C V k B 3NX ωk e ω k /k B T 1 + ω k k B T ; (33) «2 1 + ω k k B T k k=1 B T [1 + ω k k B T = k B 1]2 k=1 och om man ännu approximerar bort den senare termen får man gränsvärdet för höga temperaturer: Detta är Dulong-Petit lagen. 3NX 1 + ω k k B T (34) 3NX C V = k B 1 = 3Nk B (35) k=1 Å andra sidan vid låga temperaturer ω k >> k B T är e ω k /k B T >> 1 (36) Termofysik, Kai Nordlund

14 C V X k B ( ω k k B T )2 e ω k /k B T 0 då T 0 (37) k vilket visar att fonongasen uppfyller den III grundlagen! En mer detaljerad beskrivning av C V vad som är ω = ω(k). kräver information om fononernas dispersionsrelation, alltså (För jämförelses skull gäller för ljusvågor den enkla dispersionsrelationen ω = ck) Dulong-Petit-lagen C V = 3R gäller för de flesta ämnen vid rumstemperatur, men i slutet av 1800-talet upptäckte Weber att diamants specifika värme redan vid rumstemperatur är mycket mindre än 3R, eller c V << 3k B. Termofysik, Kai Nordlund

15 30.1. Einstens modell för det specifika värmet Einstein försökte förklara avvikelsen från Dulong-Petit-lagen med ansatsen att alla fononfrekvenser är lika ω k = ω E (38) Detta leder till att summan över k i uttrycket för C V ger en faktor 3N: C V = k B 3N ωe «2 e ω E /k B T (39) k B T [e ω E /k B T 1] 2 som man kan skriva enklare som där vi definierat funktionen C V = 3Nk B E( ω E k B T ) (40) E(x) = ex x 2 (e x 1) 2 (41) Denna funktion beteer sig på följande sätt: x 0 : E(x) (1 + x)x2 (1 + x 1) = 1 + x 1 (42) 2 Termofysik, Kai Nordlund

16 x : E(x) x 2 e x (43) Alltså leder detta helt korrekt till Dulong-Petit-lagen vid höga T (låga x), medan för låga T (höga x) erhålls C V 3Nk B 1 T 2e ω E /k B T (44) vilket inte överensstämmer med data: C V = αt 3 + γt. Alltså hade Einstein fel i denna härledning! Termofysik, Kai Nordlund

17 30.2. Debye s modell För att komma vidare måste vi veta (eller anta) något mera om fononernas egenskaper. I Debyes modell betraktar man inte kvantiserade fononer, utan antar att gittervibrationerna är klassiska vågor. Temperatur i fasta ämnen representeras av atomernas vibrationer omkring sina jämviktslägen. Kollektiva atomära vibrationer uppträder som elastiska vågor: ljudvågor. Ljudvågorna är täthetsvågor av formen som satisfierar dispersionsrelatonen e ik r iωt (45) ω = ck = c2π/λ (46) där c = ljudets hastighet (i hårda fasta ämnen typiskt av storleksordningen 1000 m/s). Det finns en longitudinell och två transversa vågor: longitudinell: Termofysik, Kai Nordlund

18 transversell: Den longitudinella ljudhastigheten är c L och den transversella c T. Antalet moder i ett vågvektorintervall d 3 k är (av samma orsak som för fotoner): X kɛd 3 k = d3 k ( 2π L )3 = V d3 k (2π) 3 (47) Inom (dk + k, k) finns alltså Då V (2π) 3k2 dk4π moder. ω = ck dω = dk (48) c så vi kan skriva om tillståndstätheten som en funktion av ω som V 2π 2ω2 dω 1 c 3 (49) Termofysik, Kai Nordlund

19 Det totala antalet ljudvågsmoder är med beaktande av att två vågor är transversella och en longitudinell: dn ω = V dω[ ] (50) 2π 2ω2 c 3 T c 3 L Det totala antalet vibrationsmoder i ett fast ämne är 3N, ty man kan inte ha fler oberoende vibrationer en rörelsefrihetsgrader för atomerna i ämnet. Därigenom bör 3N = Z dn ω (51) Men uttrycket för dn ω ω 2. Detta innebär ju att om man integrarar detta över alla ω går svaret mot oändligt. För att lösa detta dilemma gjorde Debye ett enkelt antagande: att det finns en maximumfrekvens ω D (Debyefrekvensen) för vibrationer i kristallen. Detta antagande kan kvalitativt motiveras med att vid låga temperaturer (som nu alltså intresserar oss) är det osannolikt att moder med hög energi (och därmed hög frekvens) är aktiverade. Termofysik, Kai Nordlund

20 Den viktigare motivationen kommer dock från att experimentella mätningar ofta visar att beteende där antalet vibrationsmoder sjunker kraftigt vid någon frekvens: Den streckade linjen är Debye-modellens approximation. Trots att överenstämmelsen uppenbart inte är perfekt, kan Debye-modellenas integral upp till en lämpligt vald Debye-frekvens ändå anses ge ett någorlunda bra medeltal av den verkliga integralen över ett mer komplicerat beteende. Därför används Debye-modellen fortfarande brett inom många olika branscher av fysiken. Termofysik, Kai Nordlund

21 Med Debyes antagande får vi alltså 3N = Z ωd 0 dn ω = V 2 2π 2[ CT Z ωd ] dωω 2 CL 3 0 {z } ω 3 D /3 (52) Denna ekvation bestämmer Debye frekvensen ω D : ω 3 D = 18Nπ 2 V ( 1 C T C L 3 ) (53) Vi kan också skriva där vi introducerat funktionen dn ω = g(ω)dω (54) g(ω) = V ω2 2π [ ]θ(ω 2 CT 3 C {z L 3 D ω) (55) } 18Nπ 2 V ω D 3 Termofysik, Kai Nordlund

22 där θ(x) är stegfunktionen: g(ω) = 9N ω2 θ(ω ωd 3 D ω) (56) θ(x) = j 1 då x > 0 0 då x 0 (57) g(ω) ger alltså vibrationernas spektralfördelning. Vi beräknar först modellens energi Debyemodellens värmekapacitet E = Z ωd 0 dωg(ω) 1 2 ω[n(ω) ] (58) = konstant med avseende på T + 9N Z ωd dω ωg(ω) e ω/k B T 1 0 {z } Z ωd ωd 3 0 ωω 2 dω e ω/k B T 1 (59) Termofysik, Kai Nordlund

23 och därur värmakapaciteten C V = E T = 9N ω 3 D Z ωd 0 ωω 2 dω B T ( ) ω (60) (e ω/k B T 1) 2( 1)e ω/k k B T 2 = 9 2 N (kt B ) 2 k B ω 3 D Z ωd 0 ω4 e ω/k B T dω (61) (e ω/k B T 1) 2 Vi definierar nu vidare där θ D är den s.k. Debye-temperaturen. Med detta variabelbyte får man ω k B T = x ω = k BT x samt ω D θ D (62) k B C V = 9 2 N k B (k B T ) 5 (k B T ) 2 ωd 3 5 Z θd /T 0 x4 e x dx (63) (e x 1) 2 Termofysik, Kai Nordlund

24 C V = 9Nk B ( T Z θd ) 3 /T x 4 e x dx θ D 0 (e x 1) {z 2 } x 4 d 1 dx e x 1 (64) =, θd /T C V = 9Nk( T θ D ) 3 ( 0 x 4 Z θd /T e x (θ D/T ) 4 e θ D /T x3 dx e x 1 Z θd /T 0 x3 dx e x 1 Längre än däthär kommer vi tyvärr inte i analytisk form, men vi kan igen se på hög- och lågtemperatursgränsvärden: ) (65) (66) Vid höga temperaturer är θ D T << 1 och (67) e x 1 x (68) Termofysik, Kai Nordlund

25 så man får så man får C V Z θd /T 0 x3 dx e x 1 Z θd /T 0 dxx 2 = 1 3 θd T «3 (69) 9N( T θ D ) 3 k B [ 1 3 (θ D T )3 ] = 3Nk B då T >> θ D (70) vilket ju igen är Dulong-Petits lag. Så vi får rätt gränsvärde vid höga T. För låga T, T << θ D : och man får Z θd /T 0 x3 dx e x 1 Z x3 dx e x 1 0 {z } = π4 15 C V 9N( T " ) 3 k B ( θ # D θ D T )4 e θ D /T + 4π4 15 (71) (72) Termofysik, Kai Nordlund

26 Den första termen inom klammern går mot 0 då T 0, så kvar blir C V 9Nπ Nk( T ) 3 = 12π4 Nk B ( T ) 3 (73) θ D 5 θ D Så kontentan av detta är att för låga temperaturer förutspår Debyemodellen att C V T 3 Detta förklarar det experimentellt observerade T 3 -beteendet! (Vi får senare på kursen en förklaring till den sista experimentella termen, T 1 -beroendet). Alternativt till att räkna de nedre och övre gränserna av Z θd /T 0 x4 e x dx (74) (e x 1) 2 approximativt för små och stora x kunde man givetvis ha gjort integralen numeriskt. Detta kan man göra snabbt med en brute-force numerisk integrering där elegans ersätts med tätt integreringsintervall: {\tt Termofysik, Kai Nordlund

27 awk BEGIN { dy=0.02; for(y=dy;y<500;y+=(dy>1?dy:(dy>40?dy*5:dy*20))) { \ (awk är ett kommando i Unix/Linux-system som har en enkel variant av C-språket inbyggt). Detta ger gränsvärdet som överensttämmer med det exakta resultatet 4π 4 /15 = och har formen: /15 Debye-integral x Termofysik, Kai Nordlund

28 För att få C V θ D /T som funktion av T/θ D ur detta bör man invertera x-axeln (för att integralen är till {\tt cat out.debyeint awk { print 1/$1,$2 } > out.debyeint.inv } Varefter C V /Nk B fås med att multiplicera datat med (T/θ D ) 3, vilket blir: C V 12 4 /5 (T/ D ) C V /N k B T/ D Termofysik, Kai Nordlund

29 31. Boseidealgasen Vi betraktar ett idealgassystem av partiklar med massan m som beskrivs av Bose-Einsteinfördelningen. n k = N = X k g k e (ɛ k µ)/k B T 1 n k = Ω µ (75) (76) Ω = k B T X k ln[1 e (µ ɛ k )/k B T ] (77) För fria partiklar gäller ɛ = p 2 /2m För att utföra summan över kvantiserade energitillstånd X k (78) Termofysik, Kai Nordlund

30 är det fördelaktikt att ersätta summan med en integral över klassiska positions och impulsvariabler: X k Z d 3 rd 3 p h 3 = Z d 3 p (2π ) 3 Z d 3 r (79) Då energin för en idealgaspartikel är ɛ = p 2 /2m och inte beror av r kan volymintegralen omedelbart utföras: Z d 3 r = V (80) så kvar av summan över k blir X k V (2π ) 3 Z d 3 p (81) Alltså blir Ω = k B T V (2π ) 3 Z d 3 p {z } 4π R dpp 2 ln[1 e (µ ɛ p)/k B T ] (82) Termofysik, Kai Nordlund

31 Vi gör variabelbytet så man får p 2 2m = ɛ pdp m = dɛ (83) p 2 dp = mdɛ 2mɛ (84) I steget P k R d 3 pd 3 r h 3 görs ett fel i att bidraget från grundtillståndet ɛ k = 0 automatiskt kommer att bortlämnas: integralen får inget bidrag från = 0 då integranden är 0 där. Grundtillståndets bidrag till Ω är k B T ln[1 e µ/k B T ] (85) Storheten e µ/k B T = z kallas systemets fugacitet. Ω = kt ln(1 z) + V m3/2 2π2 3(kT ) Z 0 dɛɛ 1/2 ln[1 ze ɛ/k B T ] (86) I.o.m. att ɛ 1/2 = 2 d 3 dɛ ɛ3/2 (87) kan vi använda kedjeregeln för integrering (Duv = vu + uv R u v = /uv R uv ) och får Termofysik, Kai Nordlund

32 för integralen, ɛ3/2 ln[1 ze ɛ/k B T ] 2 3 Z dɛɛ 3/2 0 d dɛ ln[1 ze ɛ/k B T ] {z } 1 1 ze ɛ/k B T ( z)e ɛ/kt ( 1 k B T ) (88) Den första termen blir 0 och kvar blir = 2 3kT Z dɛɛ 3/2 ze ɛ/k B T 1 ze ɛ/k B T (89) Nu ser man att den senare delen av integranden är ju summan av den geometriska serien: X (ze ɛ/k B T ) n = n=1 X z n e nɛ/k B T (90) n=1 så man får m 3/2 Ω = kt ln(1 z) V π 2 2 X Z z n n=1 dɛɛ 3/2 e nɛ/k B T (91) Termofysik, Kai Nordlund

33 Kvar är att räkna integralen Vi gör variabelbytet I = Z 0 dɛɛ 3/2 e nɛ/k B T (92) ɛ = x 2 dɛ = 2xdx = 2ɛ 1/2 dx (93) och får I = Z 0 2x 4 dxe nx2 /k B T (94) För att beräkna denna integral av formen Z 0 dxx 4 e αx2 (95) noterar vi att detta = d2 dα 2 Z 0 dxe αx2 (96) Termofysik, Kai Nordlund

34 och den senare delen är ju bara en Gaussisk integral = 1 2 πα 1/2 så man får och med att sätta in α = n/k B T fås med detta = d2 1 πα dα 2 1/2 = 1 3 π( )( 1 2 ) 1 (97) α 5/2 I = 2 Z 0 x 4 dxe nx2 /k B T = 3 π 4 (k BT n )5/2 (98) Därmed är Här är alltså Ω = kt ln(1 z) V 2 3 m 3/2 3 π 2 π (k BT ) 5/2 {z } V (k B T )( mk B T 2π 2 )3/2 X n=1 z n n 5/2 (99) z = e µ/k B T (100) Termofysik, Kai Nordlund

35 och vi definierar n c ( mk BT 2π 2 )3/2 och får slutresultatet Ω = kt ln(1 z) V kt n c X n=1 ( zn n5/2) (101) Partikelantalet är N = Ω µ och z n = e nµ/k B T (102) så µ zn = n k B T zn och specifikt för n = 1: µ z = 1 k B T z (103) Med hjälp av detta får vi N = kt 1 1 z ( ) z k B T + V k BT n c X n=1 n k B T z n n 5/2 (104) Termofysik, Kai Nordlund

36 så sammanfattningsvis 8 >< >: N = z 1 z + V n X z n c n 3/2 n=1 X Ω = k B T ln(1 z) V k B T n c n=1 z n (105) n 5/2 Detta är en implicit form för Bose-systemets tillståndsekvation Ω = P V ; (106) Den inre energin För energin gäller E = X k n k ɛ k = X k ɛ k e (ɛ k µ)/k B T 1 (107) Då ɛ 0 = 0 faller grundtillståndets term bort ur uttrycken för energin. Termofysik, Kai Nordlund

37 Nu ersätter vi igen X k V (2π ) 3 Z d 3 p {z} 4π p 2 dp {z } m 2mɛdɛ (108) = V m3/2 2π2 3 Z ɛdɛ; (109) Alltså är E = V Z m3/2 ɛɛdɛ (110) 2π2 3 e (ɛ µ)/k B {z T 1 } 2 π 4 (k B T )5/2 P z n n=1 n 5/2 Orsaken att vi kunde skriva ner svaret direkt är att detta är samma integral som uppträder i utrycket för Ω, integralen i ekvation 89! E = 3 2 V (k BT )n c X n=1 z n n 5/2 (111) Termofysik, Kai Nordlund

38 Alltså om man bortser från noll-energitermen visar jämförelse av resultaten för E och Ω att E = 3 2 Ω = 3 2 P V (112) Tillståndsekvationen vid höga temperaturer: Vi ser på fallet där fugaciteten z = e µ/k B T är litet, d.v.s. µ negativt och T stort eller alternativt µ stort och negativt. Då blir och N = z 1 z {z } 0 +V n c X n=1 X Ω = k B T ln(1 z) V k {z } B T n c 0 n=1 z n n 3/2 V n c z n " z + n 5/2 V kt n c # z " z + # z (113) (114) där vi tagit med termerna n = 1 och n = 2 i summorna. Termofysik, Kai Nordlund

39 Om vi nu använder oss av partikeltätheten n N V (115) kan man skriva ekvationen för N enkelt som n n c = z + z (116) Vi vill nu vända på denna serie och istället få en serie av z som funktion av n/n c : z = α 1 ( n n c ) + α 2 ( n n c ) (117) För att bestämma konstanterna α 1 sätter vi nu in denna serie för z i uttrycket för n/n c, men behåller bara termerna av ordningen n/n c samt (n/n c ) 2 : n n = α 1 + α 2 ( n ) n c n c n c 2 2 α2 1 ( n ) 2 (118) n c Termofysik, Kai Nordlund

40 För att detta skall stämma ser man genast att man bör ha α 1 = 1 samt α 2 = (119) Alltså är vår serieuteveckling för z: z ( n n c ) ( n n c ) 2 (120) Insättning av detta z i uttrycket för Ω, ekv. 114, ger j n Ω = V kt B n c 1 n c 2 2 ( n ) n c 4 2 ( n ff ) n c (121) j n = V k B T n c 1 n c 4 2 ( n ff ) 2... (122) n c Men det gäller fortfarande också att Ω = P V (123) Termofysik, Kai Nordlund

41 så man får N/V z} { n P V = V k B T n c {1 1 n c 4 2 ( n )... } n c (124) = Nk B T [ ( n )...] n c (125) Nu ser man att för n << n c övergår Bose-gasens tillståndsekvation i den klassiska idealgaslagen. Alltså är n c = ( mk BT 2π 2 )3/2 : (126) en kritisk täthetsparameter för giltighet av klassisk statistisk mekanik. Vidare ser man ur P V = Nk B T [ ( n )...] (127) n c att Bose-gasens tryck är mindre än den klassiska idealgasens tryck! Termofysik, Kai Nordlund

42 32. Bosegasen vid låga temperaturer [Mandl 11.6] Mest intressant är Bose-Einstein-gasen dock vid låga temperaturer. Vi skriver där vi definierat N = z 1 z + V n c X n=1 z n n 3/2 (128) N 0 + N e (129) N 0 = antalet partiklar i grundtillståndet (130) N e = antalet partiklar i de exciterade tillståndena (131) (132) Termofysik, Kai Nordlund

43 Vi påminner oss om att µ alltid är < 0 för en Bose-Einstein-gas (jämför kapitel 26). Vi betraktar nu uttrycket ovan för exciterade tillstånd N e, alltså N e V = n c X n=1 z n n 3/2 = (mk BT 2π 2 )3/2 X n=1 e µn/k B T n 3/2 = (133) Vi tänker oss nu att man skulle kyla ner en dylik gas vid konstant N e, V (kom ihåg att om man bara använder integralen är N 0 = 0). Detta innebär att N e /V måste vara konstant, och alltså också det högra ledet konstant. För att T sjunker, måste summan i ekvationen ovan öka. För att summan skulle öka, måste e µn/k B T öka, och alltså µ/t öka. Alltså måste µ öka. Men µ måste ju hela tiden vara negativ. Alltså betyder detta att µ 0. [Paakkari 12.2, Mandl 11.6, Landau-Lifshitz s. 180 och ekv. 56.5] Då µ 0 leder detta till att z 1. Termofysik, Kai Nordlund

44 Alltså innebär detta att då T 0 gäller X n=1 n z n 3/2 X n=1 1 n 3/2 ζ(3 2 ) (134) där vi känt igen att summan är definitionen på Riemanns zeta-funktion: ζ(z) X n=1 1 n z (135) Från tabeller (eller ett simpelt dataprogram) får man lätt att ζ( 3 ) (136) 2 Antalet partiklar i de exciterade tillstånden blir begränsat av N e < V n c ζ( 3 2 ) N max (137) Termofysik, Kai Nordlund

45 Tänk oss nu att vi skulle ha ignorerat N 0 hela vägen. Då skulle N = N e och villkoret ovan skulle vara N < N max. Men N max sjunker ju med temperaturen, så detta skulle säga att vid någon kritisk temperatur borde partiklar börja försvinna från systemet. Detta skulle vara en renodlad paradox! Lösningen är givetvis den explicit utsatta termen N 0, som förklarar vad som sker: om partikeltalet i gasen N överstiger N max måste N N max partiklar vara i grundtillståndet! För att se vad detta betyder skriver vi ut n c : N max = V ζ( 3 2 )(mk BT 2π 2 )3/2 (138) Man ser att N max sjunker med T 3/2. Om man alltså kan kyla ner ett bosonsystem så att N bevaras, kommer förr eller senare partiklarna att tvingas i grundtillståndet. Denna effekt kallas Bose-Einstein kondensation! Termofysik, Kai Nordlund

46 Antal partiklar N N max Antal partiklar i grundtillståndet Antal partiklar i exciterade tillstånd T 0 T Notera betydelsen av termen kondensation här: detta innebär att partiklarnas energi är 0, alltså att deras rörelsemängd kondenseras till 0. Detta är alltså inte samma sak som konventionell kondensering där gas övergår till vätska! I.o.m. att alla eller de flesta atomer i ett BE-kondensat är i samma kvanttillstånd (grundtillståndet), kan de anses bilda ett enda kvantmekaniskt objekt, som kan anta makroskopiska dimensioner. Därmed har de många mycket exotiska egenskaper. (En mycket bra mer allmännfattlig presentation av detta är vid ). Termofysik, Kai Nordlund

47 Kondensationstemperaturen T 0 fås ur N = N max = V ζ( 3 2 )(mk BT 0 2π 2 )3/2 (139) = T 0 = 2π 2 mk B n ζ( 3 2 )! 2/3 (140) För T > T 0 är N = N e För T < T 0 är N = N 0 + N max (T ) 8 >< >: N max = V ζ( 3 2 )(mk BT 2π 2 )3/2 N = V ζ( 3 2 )(mk BT 0 2π 2 )3/2 (141) Termofysik, Kai Nordlund

48 Alltså är N max N = ( T T 0 ) 3/2 (142) och N 0 = N N max = N[1 ( T T 0 ) 3/2 ] (143) Alltså ökar antalet partiklar i grundtillståndet snabbare än linjärt då T 0. Antal partiklar N Antal partiklar i grundtillståndet T 0 T Termofysik, Kai Nordlund

49 Tillståndsekvationen för T < T 0 : E = 3 2 V n c(k B T ) X n=1 z n n 5/2 (144) Termofysik, Kai Nordlund

50 Nu räknar vi först värmekapaciteten för området Bose-Einstein-gasens värmekapacitet T < T 0 med approximationen : z 1 (145) Då är E = 3 X 2 V n c(k B T ) n=1 1 n 5/2 {z } = ζ( 5 2 ) (146) varur fås Alltså är E = 3 2 V (k BT )ζ( 5 2 )(mk BT 2π 2 C V )3/2 = 3 2 V (k B)ζ( 5 2 )(mk B 2π 2)3/2 T 5/2 (147) = de dt = 3 2 V (k B)ζ( 5 2 )(mk B 2π 2)3/2 5 2 T 3/2 = 15 4 V n ck B ζ( 5 2 ) (148) C V T 3/2 (T < T 0 ) (149) Termofysik, Kai Nordlund

51 Ovanför T 0 är U = 3 2 P V 3 2 k BT N{1 n 4 2n c +...} (150) C V = 3 2 k BN d dt {T nt } (151) 2n c För att göra derivatan måst vi komma ihåg att n c T 3/2 : Vi deriverar termen med T/n c med kedjeregeln för en produkt T 1/n c : = 3 2 k BN{1 n 4 2n c nt 4 2 ( 1 n 2 c = 3 2 k BN{1 n n c 8 2 n ) dn c {z} dt 3 2 n c T...} (152) n c...} (153) = 3 2 k BN{ n +...} (154) 2 n c Termofysik, Kai Nordlund

52 Detta är uppenbart så vår beräkning förutspår en form kring T 0 på > 3 2 k BN (155) C V 3/2 k B T 0 T T.ex. Flytande He : m = g, V = 27 cm 3 /mol vid 1 atm. Detta ger T 0 = 3.18 K. Experimentellt har man observerat T exp = 2.19 K vilket är tämligen nära vårt estimat om man tänker på att vi gjorde ganska grova approximationer längs med vägen. Termofysik, Kai Nordlund

53 Experimentellt är också C V ln T T λ vilket är en liknande form som vad vi beräknade, men har en skarp singularitet vid T λ. Systemets E = U = 3 2P V, så vi får för trycket: P = 2 3V E = 8 >< >: k B T n c X n=1 z n n 5/2, T > T 0 k B T n c ζ( 3 2 ), T < T 0 (156) Termofysik, Kai Nordlund

54 Notera att under T 0 är trycket oberoende av volymen! Detta är en drastisk avvikelse från klassiskt idealgas-beteende, och f.ö. också från beteendet i alla normala vätskor och fasta ämnen! P Isoterm V 0 V Här har den kritiska volymen V 0 bestämts genom att lösa definitionen på T 0 (ekvation 139) med avseende på V :! 3/2 T 0 = 2π 2 N/V m ζ( 3 2 ) (157) Termofysik, Kai Nordlund

55 32.2. Typer av Bose-Einstein-kondensat Som ovan antyddes har BE-kondensation uppnåtts i flytande He (ett av de mest framstående labben att forska i detta i världen är köldlabbet i Otnäs). Detta gjordes redan för tiotals år sedan. Mera nyligen har BE-kondensation uppnåtts i verkliga gaser som kyls ner av lasrar. Sådana gaser måsta ha låg densitet, annars skulle de helt enkelt övergå i fast form. Om t.ex. avståndet mellan atomer skulle vara 1000 Å, skulle n = 1/10 12 Å 3. Då kan man uppskatta att den kritiska temperaturen är! 2/3 = 0.4µK (158) T 0 = 2π 2 n mk B ζ( 3 2 ) Detta är rätt storleksordning, och orsaken till att det är så svårt att erhålla Bose-Einsteinkondensation i gaser: att kyla ner något till nanokelvin är inte lätt precis... Elektrisk supraledning förklaras som att det orsakas av elektronpar-bosoner, som bildar ett Bose- Einstein-kondensat. Termofysik, Kai Nordlund

VII. Bose-Einstein-statistik

VII. Bose-Einstein-statistik VII. Bose-Einstein-statistik Hittills har vi under kursen behandlat statistik för klassiska partiklar. Nu börjar vi se på s.k. kvantstatistik, dvs. statistisk mekanik för partiklar som beter sig kvantmekaniskt.

Läs mer

VII. Bose-Einstein-statistik

VII. Bose-Einstein-statistik VII. Bose-Einstein-statistik Viktiga målsättningar med detta kapitel Kunna härleda Bose-Einstein-distributionen och känna till dess fysikaliska innebörd Känna till Plancks lag för svartkroppsstrålning

Läs mer

VII. Bose-Einstein-statistik

VII. Bose-Einstein-statistik VII. Bose-Einstein-statistik Viktiga målsättningar med detta kapitel Kunna härleda Bose-Einstein-distributionen och känna till dess fysikaliska innebörd Känna till Plancks lag för svartkroppsstrålning

Läs mer

VII. Bose-Einstein-statistik

VII. Bose-Einstein-statistik VII. Bose-Einstein-statistik Hittills har vi under kursen behandlat statistik för klassiska partiklar. Nu börjar vi se på s.k. kvantstatistik, dvs. statistisk mekanik för partiklar som beter sig kvantmekaniskt.

Läs mer

VI. Reella gaser. Viktiga målsättningar med detta kapitel. VI.1. Reella gaser

VI. Reella gaser. Viktiga målsättningar med detta kapitel. VI.1. Reella gaser I. Reella gaser iktiga målsättningar med detta kapitel eta vad virialutvecklingen och virialkoefficienterna är Kunna beräkna första termen i konfigurationsintegralen Känna till van der Waal s gasekvation

Läs mer

VIII. Fermi-Dirac-statistik

VIII. Fermi-Dirac-statistik VIII. Fermi-Dirac-statistik Viktiga målsättningar med detta kapitel Kunna härleda Feri-Dirax-distributionen och känna till dess fysikaliska innebörd Känna till begreppet degenererat Fermisystem, termodynamiskt

Läs mer

18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1)

18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1) 18. Fasjämvikt Om ett makroskopiskt system består av flere homogena skilda komponenter, som är i termisk jämvikt med varandra, så kallas dessa komponenter faser. 18.0.1. Tvåfasjämvikt Jämvikt mellan två

Läs mer

VI. Reella gaser. Viktiga målsättningar med detta kapitel

VI. Reella gaser. Viktiga målsättningar med detta kapitel VI. Reella gaser Viktiga målsättningar med detta kapitel Veta vad virialutvecklingen och virialkoefficienterna är Kunna beräkna första termen i konfigurationsintegralen Känna till van der Waal s gasekvation

Läs mer

Re(A 0. λ K=2π/λ FONONER

Re(A 0. λ K=2π/λ FONONER FONONER Atomerna sitter inte fastfrusna på det regelbundna sätt som kristallmodellerna visar. De rubbas ur sina jämviktslägen av tillförd värme, ljus, ljud, mekaniska stötar mm. Atomerna i kristallen vibrerar

Läs mer

VIII.1. Fermi-Dirac fördelningen

VIII.1. Fermi-Dirac fördelningen VIII.1. Fermi-Dirac fördelningen Vi betraktar ett idealgassystem av partiklar så beskaffade att varje kvanttillstånd högst kan ockuperas av en enda partikel (exklusionprincipen). Sådana partiklar kallas

Läs mer

Innehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation

Innehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation Innehållsförteckning Notera: denna förteckning uppdateras under kursens lopp, men stora förändringar är inte att vänta. I. Introduktion och första grundlagen I.1. Överblick och motivation I.1.1. Vad behandlar

Läs mer

Bose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin

Bose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin Bose-Einsteinkondensation Lars Gislén, Malin Sjödahl, Patrik Sahlin 3 mars, 009 Inledning Denna laboration går ut på att studera Bose-Einsteinkondensation för bosoner i en tredimensionell harmonisk-oscillatorpotential.

Läs mer

7. Anharmoniska effekter

7. Anharmoniska effekter 7. Anharmoniska effekter [HH 2.7, Kittel 5, (AM 25)] Hittills har sambandet mellan atomers växelverkningsmodellers komplexitet och de effekter de kan förklara fortskridit ungefär på följande sätt: Term

Läs mer

7. Anharmoniska effekter

7. Anharmoniska effekter 7. Anharmoniska effekter [HH 2.7, Kittel 5, (AM 25)] Hittills har sambandet mellan atomers växelverkningsmodellers komplexitet och de effekter de kan förklara fortskridit ungefär på följande sätt: Term

Läs mer

7. Anharmoniska effekter

7. Anharmoniska effekter 7. Anharmoniska effekter [HH 2.7, Kittel 5, (AM 25)] Hittills har sambandet mellan atomers växelverkningsmodellers komplexitet och de effekter de kan förklara fortskridit ungefär på följande sätt: Term

Läs mer

7. Anharmoniska effekter

7. Anharmoniska effekter 7. Anharmoniska effekter [HH 2.7, Kittel 5, (AM 25)] Hittills har sambandet mellan atomers växelverkningsmodellers komplexitet och de effekter de kan förklara fortskridit ungefär på följande sätt: Term

Läs mer

6. Kristalldynamik Elastiska ljudvågor Gittervibrationer och fononer

6. Kristalldynamik Elastiska ljudvågor Gittervibrationer och fononer 6. Kristalldynamik 6.1.1. Elastiska ljudvågor [HH 2, Kittel 4-5, AM 22-23)] Hittills har vi på denna kurs enbart betraktat atomer som inte rör sig, och är antingen i sina jämviktslägen eller i fallet av

Läs mer

6. Kristalldynamik. [HH 2, Kittel 4-5, (AM 22-23)] Fasta tillståndets fysik, Kai Nordlund

6. Kristalldynamik. [HH 2, Kittel 4-5, (AM 22-23)] Fasta tillståndets fysik, Kai Nordlund 6. Kristalldynamik [HH 2, Kittel 4-5, (AM 22-23)] Hittills har vi på denna kurs enbart betraktat atomer som inte rör sig, och är antingen i sina jämviktslägen eller (i fallet av defekter) i något metastabilt

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

7. Kristalldynamik I. 7. Kristalldynamik I. 7.1 Gittervibrationer och fononer II. 7.1 Gittervibrationer och fononer I

7. Kristalldynamik I. 7. Kristalldynamik I. 7.1 Gittervibrationer och fononer II. 7.1 Gittervibrationer och fononer I 7. Kristalldynamik I 7. Kristalldynamik I 7.. Elastiska ljudvågor 7.. Vibrationer i en -dimensionell kristall 7..3 Vibrationer i en -dimensionell kristall med två atomtyper 7..4 Fononer 7.. Värmekapacitet

Läs mer

7. Anharmoniska effekter

7. Anharmoniska effekter 7. Anharmoniska effekter [HH 2.7, Kittel 5, (AM 25)] Hittills har sambandet mellan atomers växelverkningsmodellers komplexitet och de effekter de kan förklara fortskridit ungefär på följande sätt: Term

Läs mer

Studieanvisningar i statistisk fysik (SI1161) för F3

Studieanvisningar i statistisk fysik (SI1161) för F3 Studieanvisningar i statistisk fysik (SI1161) för F3 Olle Edholm September 15, 2010 1 Introduktion Denna studieanvisning är avsedd att användas tillsammans med boken och exempelsamlingen. Den är avsedd

Läs mer

Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl. 14.00-19.00

Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl. 14.00-19.00 EOREISK FYSIK KH Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den juni 1 kl. 14. - 19. Examinator: Olle Edholm, tel. 5537 8168, epost oed(a)kth.se. Komplettering:

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 204-08-30. a Vid dissociationen av I 2 åtgår energi för att bryta en bindning, dvs. reaktionen är endoterm H > 0. Samtidigt bildas två atomer ur en molekyl,

Läs mer

F2: Kvantmekanikens ursprung

F2: Kvantmekanikens ursprung F2: Kvantmekanikens ursprung Koncept som behandlas: Energins kvantisering Svartkroppsstrålning Värmekapacitet Spektroskopi Partikel-våg dualiteten Elektromagnetisk strålning som partiklar Elektroner som

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan

Läs mer

Räkneövning 5 hösten 2014

Räkneövning 5 hösten 2014 Termodynamiska Potentialer Räkneövning 5 hösten 214 Assistent: Christoffer Fridlund 1.12.214 1 1. Vad är skillnaden mellan partiklar som följer Bose-Einstein distributionen och Fermi-Dirac distributionen.

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det

Läs mer

X. Repetitia mater studiorum

X. Repetitia mater studiorum X. Repetitia mater studiorum Termofysik, Kai Nordlund 2012 1 X.1. Termofysikens roll Den statistiska fysikens eller mekanikens uppgift är att härleda de fysikaliska egenskaperna hos makroskopiska system

Läs mer

X. Repetitia mater studiorum. Termofysik, Kai Nordlund

X. Repetitia mater studiorum. Termofysik, Kai Nordlund X. Repetitia mater studiorum Termofysik, Kai Nordlund 2006 1 X.1. Termofysikens roll Den statistiska fysikens eller mekanikens uppgift är att härleda de fysikaliska egenskaperna hos makroskopiska system

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,

Läs mer

X. Repetitia mater studiorum

X. Repetitia mater studiorum X. Repetitia mater studiorum X.2. Olika processer En reversibel process är en makroskopisk process som sker så långsamt i jämförelse med systemets interna relaxationstider τ att systemet i varje skede

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Materiens Struktur Räkneövning 3 Lösningar 1. Studera och begrunda den teoretiska förklaringen till supralednigen så, att du kan föra en diskussion om denna på övningen. Skriv även ner huvudpunkterna som

Läs mer

Exempel på statistisk fysik Svagt växelverkande partiklar

Exempel på statistisk fysik Svagt växelverkande partiklar Exempel på statistisk fysik Svagt växelverkande partiklar I kapitlet om kinetisk gasteori behandlades en s k ideal gas där man antog att partiklarna inte växelverkade med varandra och dessutom var punktformiga.

Läs mer

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0 LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift

Läs mer

TEORETISKT PROBLEM 2 DOPPLERKYLNING MED LASER SAMT OPTISK SIRAP

TEORETISKT PROBLEM 2 DOPPLERKYLNING MED LASER SAMT OPTISK SIRAP TEORETISKT PROBLEM 2 DOPPLERKYLNING MED LASER SAMT OPTISK SIRAP Avsikten med detta problem är att ta fram en enkel teori för att förstå så kallad laserkylning och optisk sirap. Detta innebär att en stråle

Läs mer

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Kapitel I Introduktion och första grundlagen Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal

Läs mer

Kapitel I. Introduktion och första grundlagen

Kapitel I. Introduktion och första grundlagen Kapitel I Introduktion och första grundlagen Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal partiklar (atomer, molekyler,...) i vilka temperaturen

Läs mer

16. Spridning av elektromagnetisk strålning

16. Spridning av elektromagnetisk strålning 16. Spridning av elektromagnetisk strålning [Jakson 9.6-] Med spridning avses mest allmänt proessen där strålning (antingen av partikel- eller vågnatur) växelverkar med något objekt så att dess fortskridningsriktning

Läs mer

VIII. Fermi-Dirac-statistik

VIII. Fermi-Dirac-statistik VIII. Fermi-Dirac-statistik Viktiga målsättningar med detta kapitel Kunna härleda Feri-Dirax-distributionen och känna till dess fysikaliska innebörd Känna till begreppet degenererat Fermisystem, termodynamiskt

Läs mer

21. Boltzmanngasens fria energi

21. Boltzmanngasens fria energi 21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Onsdagen den /, kl 4.-8. i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

7. Atomfysik väteatomen

7. Atomfysik väteatomen Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta

Läs mer

24. Ekvipartitionsprincipen. Termofysik, Kai Nordlund

24. Ekvipartitionsprincipen. Termofysik, Kai Nordlund 24. Ekvipartitionsprincipen Termofysik, Kai Nordlund 2004 1 24.1. Härledning av ekvipartitionsprincipen Betrakta en frihetsgrad för vilken energin är en kvadratisk funktion av koordinaten som beskriver

Läs mer

Energidiagram enligt FEM

Energidiagram enligt FEM MEALLER emperaturens inverkan på elektrontillståndens fyllnadsgrad i en frielektronmetall I grundtillståndet besätter elektronerna de lägsta N e /2 st tillstånden med två elektroner i varje tillstånd.

Läs mer

1. Elektromagnetisk strålning

1. Elektromagnetisk strålning 1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst

Läs mer

Lösningar del II. Problem II.3 L II.3. u= u MeV = O. 2m e c2= MeV. T β +=

Lösningar del II. Problem II.3 L II.3. u= u MeV = O. 2m e c2= MeV. T β += Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett γ

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,

Läs mer

R AKNE OVNING VECKA 2 David Heintz, 13 november 2002

R AKNE OVNING VECKA 2 David Heintz, 13 november 2002 RÄKNEÖVNING VECKA 2 David Heintz, 3 november 22 Innehåll Uppgift 29.4 2 Uppgift 29. 3 3 Uppgift 29.2 5 4 Uppgift 3. 7 5 Uppgift 3. 9 6 Uppgift 3.2 Uppgift 29.4 Prove that ln( + x) x for x >, and that ln(

Läs mer

10. Den semiklassiska modellen för elektrondynamik

10. Den semiklassiska modellen för elektrondynamik 10. Den semiklassiska modellen för elektrondynamik [AM12, HH 4.4] När man känner igen materials bandstruktur i detalj, kan man använda denna kunskap till att korrigera bristerna i Sommerfeld-modellen för

Läs mer

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella KVANTMEKANIKFRÅGOR Griffiths, Kapitel 4-6 Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths.

Läs mer

Hydrodynamik Mats Persson

Hydrodynamik Mats Persson Föreläsning 5/10 Hydrodynamik Mats Persson 1 De hydrodynamiska ekvationerna För att beskriva ett enkelt hydrodynamiskt flöde behöver man känna fluidens densitet,, tryck p hastighet u. I princip behöver

Läs mer

10. Den semiklassiska modellen för elektrondynamik

10. Den semiklassiska modellen för elektrondynamik 10. Den semiklassiska modellen för elektrondynamik [AM12, HH 4.4] När man känner igen materials bandstruktur i detalj, kanman använda denna kunskap till att korrigera bristerna i Sommerfeld-modellen för

Läs mer

Kvantmekanik - Gillis Carlsson

Kvantmekanik - Gillis Carlsson Kvantmekanik - Föreläsning 1 Gillis Carlsson gillis.carlsson@matfys.lth.se LP2 Föreläsningarna i kvantmekanik LP1 V1): Repetition av kvant-nano kursen. Sid 5-84 V2 : V3 : Formalism (I). Sid 109-124, 128-131,

Läs mer

14. Sambandet mellan C V och C P

14. Sambandet mellan C V och C P 14. Sambandet mellan C V och C P Vi skriver tillståndsekvationen i de alternativa formerna V = V (P, T ) och S = S(T, V ) (1) och beräknar ds och dv genom att dela upp dem i partiella derivator ds = (

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF14) Tid och plats: Tisdag 13/1 9, kl. 8.3-1.3 i V-huset. Examinator: Mats

Läs mer

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten

Läs mer

Termodynamiska potentialer Hösten Assistent: Frans Graeffe

Termodynamiska potentialer Hösten Assistent: Frans Graeffe Räkneövning 3 Termodynamiska potentialer Hösten 206 Assistent: Frans Graeffe (03-) Concepts in Thermal Physics 2.6 (6 poäng) Visa att enpartielpartitionsfunktionen Z för en gas av väteatomer är approximativt

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Milstolpar i tidig kvantmekanik

Milstolpar i tidig kvantmekanik Den klassiska mekanikens begränsningar Speciell relativitetsteori Höga hastigheter Klassisk mekanik Kvantmekanik Små massor Små energier Stark gravitation Allmän relativitetsteori Milstolpar i tidig kvantmekanik

Läs mer

Instuderingsfrågor, Griffiths kapitel 4 7

Instuderingsfrågor, Griffiths kapitel 4 7 Joakim Edsjö 15 oktober 2007 Fysikum, Stockholms Universitet Tel.: 08-55 37 87 26 E-post: edsjo@physto.se Instuderingsfrågor, Griffiths kapitel 4 7 Teoretisk Kvantmekanik II HT 2007 Tanken med dessa frågor

Läs mer

13. Plana vågors reflektion och brytning

13. Plana vågors reflektion och brytning 13. Plana vågors reflektion och brytning Extra material som ges som referens, men krävs inte i mellanförhören eller räkneövningarna: Elektrodynamik, vt 2008, Kai Nordlund 13.1 13.1. Vågledare... Hastigheter

Läs mer

@

@ Kinetisk gasteori F = area tryck Newtons 2:a lag på impulsformen: dp/dt = F, där p=mv Impulsöverföringen till kolven när en molekyl reflekteras i kolvytan A är p=2mv x. De molekyler som når fram till ytan

Läs mer

Räkneövning 2 hösten 2014

Räkneövning 2 hösten 2014 Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund 22.9.2014 1 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel Lösningsförslag till deltentamen i IM601 Fasta tillståndets fysik Heisenbergmodellen Måndagen den 0 augusti, 01 Teoridel 1. a) Heisenbergmodellen beskriver växelverkan mellan elektronernas spinn på närliggande

Läs mer

Termodynamik Föreläsning 4

Termodynamik Föreläsning 4 Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik Curt Nyberg, Igor Zoric

GÖTEBORGS UNIVERSITET Institutionen för fysik Curt Nyberg, Igor Zoric GÖTEBORGS UNIVERSITET 06-11 10 Institutionen för fysik Curt Nyberg, Igor Zoric PROJEKTTENTAMEN I FASTA TILLSTÅNDETS FYSIK FYN160, ht 2006 Inlämningsuppgifterna ersätter tentamen. Du skall lösa uppgifterna

Läs mer

Kinetik, Föreläsning 2. Patrik Lundström

Kinetik, Föreläsning 2. Patrik Lundström Kinetik, Föreläsning 2 Patrik Lundström Kinetik för reversibla reaktioner Exempel: Reaktion i fram- och återgående riktning, båda 1:a ordningen, hastighetskonstanter k respektive k. A B Hastighetsekvation:

Läs mer

Termodynamik och inledande statistisk fysik

Termodynamik och inledande statistisk fysik Några grundbegrepp i kursen Termodynamik och inledande statistisk fysik I. INLEDNING Termodynamiken beskriver på en makroskopisk nivå processer där värme och/eller arbete tillförs eller extraheras från

Läs mer

Lösningar Heureka 2 Kapitel 14 Atomen

Lösningar Heureka 2 Kapitel 14 Atomen Lösningar Heureka Kapitel 14 Atomen Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 14 14.1) a) Kulorna från A kan ramla på B, C, D, eller G (4 möjligheter). Från B kan de ramla

Läs mer

FyU02 Fysik med didaktisk inriktning 2 - kvantfysik

FyU02 Fysik med didaktisk inriktning 2 - kvantfysik FyU02 Fysik med didaktisk inriktning 2 - kvantfysik Rum A4:1021 milstead@physto.se Tel: 5537 8663 Kursplan 17 föreläsningar; ink. räkneövningar Laboration Kursbok: University Physics H. Benson I början

Läs mer

Föreläsning 1. Elektronen som partikel (kap 2)

Föreläsning 1. Elektronen som partikel (kap 2) Föreläsning 1 Elektronen som partikel (kap 2) valenselektroner i metaller som ideal gas ström från elektriskt fält mikroskopisk syn på resistans, Ohms lag diffusionsström Vår första modell valenselektroner

Läs mer

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637. KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ):

Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ): Parbildning Vi ar studerat två sätt med vilket elektromagnetisk strålning kan växelverka med materia. För ögre energier ar vi även en tredje: Parbildning E mc Innebär att omvandling mellan energi oc massa

Läs mer

Vågrörelselära & Kvantfysik, FK januari 2012

Vågrörelselära & Kvantfysik, FK januari 2012 Räkneövning 9 Vågrörelselära & Kvantfysik, FK00 9 januari 0 Problem 4.3 En elektron i vila accelereras av en potentialskillnad U = 0 V. Vad blir dess de Broglie-våglängd? Elektronen tillförs den kinetiska

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 16 8: 1: Tentamen består av två

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RM] Elektrodynamik, vt 013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

Kvantmekanik II (FK5012), 7,5 hp

Kvantmekanik II (FK5012), 7,5 hp Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 2012-05-23 1. a Molekylerna i en ideal gas påverkar ej varandra, medan vi har ungefär samma växelverkningar mellan de olika molekylerna i en ideal blandning.

Läs mer

= = i K = 0, K =

= = i K = 0, K = ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Viktiga målsättningar med detta delkapitel

Viktiga målsättningar med detta delkapitel Viktiga målsättningar med detta delkapitel Känna till begreppen ytenergi och ytspänning Förstå den stora rollen av ytor för nanomaterials egenskap Känna till storleksberoendet av nanopartiklars smältpunkt

Läs mer

KOMPLETTERANDE FORMELSAMLING FÖR FASTA TILLSTÅNDET I (reviderad version) 1. GITTER. RECIPROKT GITTER. KRISTALLPLAN.

KOMPLETTERANDE FORMELSAMLING FÖR FASTA TILLSTÅNDET I (reviderad version) 1. GITTER. RECIPROKT GITTER. KRISTALLPLAN. KOMPLETTERANDE FORMELSAMLING FÖR FASTA TILLSTÅNDET I (reviderad version) Nedanstående är en minneslista över väsentliga formler och detaljer i den inledande kursen i fasta tillståndets fysik. Observera

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011

TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011 TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011 Tid: Lokal: 2011-03-18 förmiddag VV salar Hjälpmedel: Hjälpmedel: Physics Handbook, bifogad formelsamling, typgodkänd räknare eller annan räknare i fickformat

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RMC] Elektrodynamik, ht 005, Krister Henriksson 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s 140528: TFEI02 1 TFEI02: Vågfysik Tentamen 140528: Svar och anvisningar Uppgift 1 a) En fortskridande våg kan skrivas på formen: t s(x,t) =s 0 sin 2π T x λ Vi ser att periodtiden är T =1/3 s, vilket ger

Läs mer

Föreläsning 4: Konfidensintervall (forts.)

Föreläsning 4: Konfidensintervall (forts.) Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika

Läs mer

1 Termisk rörelse - Statistisk fysik

1 Termisk rörelse - Statistisk fysik 1 Termisk rörelse - Statistisk fysik Denna stencil syftar till att ge en kort introduktion i hur temperatur påverkar gaser, vätskor och fasta ämnen på en mikroskopisk nivå. Man brukar kalla detta statistisk

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

Patologiska funktioner. (Funktioner som på något vis inte beter sig väl)

Patologiska funktioner. (Funktioner som på något vis inte beter sig väl) Patologiska funktioner (Funktioner som på något vis inte beter sig väl) Dirichletfunktionen Inte kontinuerlig någonstans Inte Riemannintegrerbar Weierstrass funktion Överallt kontinuerlig Inte deriverbar

Läs mer

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i Modern fysik, TFYA11/TENA IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Fredagen den 21/12 2012 kl. 14.00-18.00 i TER2 och TER3 Tentamen består av 2 A4-blad (inklusive

Läs mer

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik. Kap. 7. Kvantmekanik: introduktion 7A.1- I begynnelsen Kvantmekanik Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen och i den makroskopiska! Kvantmekanik Klassisk fysik Specialfall!

Läs mer

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar elativitetsteorins grunder, våren 2016 äkneövning 6 Lösningar 1. Gör en Newtonsk beräkning av den kritiska densiteten i vårt universum. Tänk dig en stor sfär som innehåller många galaxer med den sammanlagda

Läs mer