Bildanalys. Segmentering. Föreläsning 7. Split and Merge. Region Growing

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Bildanalys. Segmentering. Föreläsning 7. Split and Merge. Region Growing"

Transkript

1 Föreläsning 7 1 Föreläsning 7 2 Bildanalys Rikard Berthilsson Kalle Åström Matematikcentrum Lund 27 september 2005 Segmentering Mål: Dela upp bilden i segment, d.v.s. områden som hör till samma objekt eller har samma egenskaper. Föreläsning 7 Segmentering Region growing Split and Merge Morfologi Erosion, dilatation Öppning, slutning Avståndstransform (Euklidisk, manhattan, chess-boart, Chamfer-3-4) Skelett Tröskling Maskin-inlärning Föreläsning 7 3 Föreläsning 7 4 Region Growing Sätt upp ett kriterium för vad som kan anses vara en region. Börja med en pixel (ett frö). Lägg till pixlar till mängde så länge som kriteriet är uppfyllt. Split and Merge Mål: Dela upp bilden R i n regioner R 1,R 2,...,R n. Använd ett kriterium på vad som är en region: P R i = R R i sammanhängande R i R j = /0, i j (R i disjunkta) P(R i )=TRUE, i = 1,...,n P(R i R j )=FALSE, i j. Exempel 7.1. (Pixelaggregering) P(R i )=TRUE om skillnaden i intensitet är 3 grånivåer. Starta med några punkter och lägg till efter hand.

2 Föreläsning 7 5 Föreläsning 7 6 Split and Merge (forts.) Idé: Slå ihop områden som är lika och dela upp områden som är olika. P bestämmer vad som är lika och olika. Algoritm 7.1. (Split and Merge) Givet en bild R och en egenskap P. 1. Starta med uppdelningen R = {R 1 } 2. Om P(R i ) =FALSE: Dela upp R i i fyra mindre regioner (SPLIT) 3. Om P(R i R j )=TRUE för två intilliggande regioner R i och R j : Slå ihop R i och R j till en region (MERGE) 4. Fortsätt med steg 2 och 3 tills det inte går att göra något mer Morfologi Operationer på binära bilder. A = {(x,y) Z 2 f(x,y) = 1} betraktas som en delmängd av bilden. Definition 7.1. Låt A och B Z 2. Translationen av A med x = (x 1,x 2 ) Z 2 definieras (A) x = {c c = a+x, a A}. Reflektionen av A definieras  = {c c = a, a A}. Komplementet till A definieras A c = {c c / A}. Differensen av A och B definieras A B = {c c A, c / B} = A B c. Föreläsning 7 7 Föreläsning 7 8 Erosion och dilatation Låt B Z 2 vara en strukturmängd. (Ofta väljs B= cirkel med cntrum i origo.) Definition 7.2. Dilatationen av A med B definieras Kan också skrivas A B = {x ( ˆB) x A /0}. A B = {x (( ˆB) x A) A}. Dilatationen av A med B kan sägas utvidga A med B. Definition 7.3. Erosionen av A med B definieras A B = {x ( ˆB) x A}. Erosionen av A med B kan sägas minska (erodera) A med B. Öppning och slutning Definition 7.4. Öppningen av A med B definieras A B = (A B) B. Öppning = först erosion, sedan dilatation. Ger jämnare kontur. Tar bort trånga passager. Eliminerar tunna delar. Definition 7.5. Slutningen av A med B definieras A B = (A B) B. Slutning = först dilatation, sedan erosion. Ger också jämnare kontur. Fyller ihop smala delar. Fyller i hål.

3 Föreläsning 7 9 Föreläsning 7 10 Gråskalemorfologi antag att f : R R och b : D b R är funktioner av en variabel Definiera dilatationen som Jämför med faltning ( f b)(s) = max x D b ( f(s x)+b(x)) Erosion definieras som Z ( f b)(s) = ( f(s x)b(x))dx x ( f b)(s) = min x D b ( f(s+x) b(x)) Fysikaliskt är detta precis vad som händer vid svepelektronmikroskåp. Man drar en prob med formen b över ett prov med ytstrukturen f. Resultatet av mätningen blir f b. Gråskalemorfologi Precis som innan definierar vi öppning och slutning som f b = ( f b) b. f b = ( f b) b. Morfologi har visat sig extremt användbart för segmentering Exempel ur boken. Exempel på segmentering. Exempel på top hat transform h = f (f b) Top hat transformen gör detaljerna tydligare. Bilden ( f b) är i någon mening är utjämnad, (bakgrund). Genom att dra bort den får vi fram detaljerna. Föreläsning 7 11 Föreläsning 7 12 Avståndstransform Utgå från en binär bild A Z 2 och en metrik d(x,y) som beskriver avståndet mellan x och y och uppfyller d(x,y) 0 med likhet då och endast då x = y. d(x,y) = d(y,x). d(x,z) d(x,y)+d(y,z) (triangelolikheten) Försök att för varje pixel beräkna det kortaste avståndet till A. Olika metriker ger olika avstånd d E (x,y) = x 2 + y 2 d 4 (x,y) = x + y (Euklidiskt avstånd) (Manhattan) d ch = Chamfer 3-4 ges av masken Kan beräknas Forward propagation eller Backward propagation Man låter en mask propagera bilden radvis från övre vänstra hörnet och en annan mask radvis från nedre högra hörnet. Detta upprapas tills bilden inte ändrar sig. d 8 (x,y) = max( x, y ) (Chess-board) d oct = kompromiss mellan d 4 och d 8 (Oktagonal)

4 Föreläsning 7 13 Föreläsning 7 14 Skelett Skelettet till en binär bild, A, definieras För varje punkt, x, i A leta upp den närmaste randpunkten. Om det finns mer en en närmast grannpunkt så tillhör x skelettet till A. Skelettet beror på vilket avstånd (metrik) som valts. Givet skelettet och det aktuella avståndet till randen för varje punkt på skelettet, så kan den binära bilden A återskapas. Beräkningsmetoder: Tröskling Bilda binär bild g från f 1, f(x,y) > T g(x,y) = 0, f(x,y) T T kallas tröskel. Global tröskling Lokal tröskling Optimal tröskling (Lineär diskriminantanalys) Tröskling av kant-bild Med hjälp av avståndskarta (till omgivningen) Med morfologiska operationer (tunning). Föreläsning 7 15 Föreläsning 7 16 Maskin-inlärning Lära en algoritm att hitta intressanta områden (urklipp) i bilder. Två klasser - A (ointressanta urklipp) och B (intressanta urklipp). Tränar algoritmen på många exempel från klasserna A och B. Skapa exempel från klasserna Gråskalebild (x,y) φ(x,y) R. Svep över bilden och klipp ut småbilder Välj features Välj mängd av funktioner Ω (x,y) ψ j (x,y), Tex Haar wavelet bas på Ω. j = 1,...m. Som features kan vi ta RR Ω f k (φ) = φ(x,y)ψ k(x,y)dxdy RRΩ φ(x,y)dxdy, k = 1,...m. Oberoende av intensitet i den urklippta bilden φ. Detta ger värdena f k (a j ) och f k (b j ), j = 1,...n, k = 1,...m. φ j,k (x,y) = φ(σ j (x a k ),σ j (y b k )), (x,y) Ω på olika skalor σ j :s och translationer (a k,b k ). Generera flera sådana urklipp för två klasser A och klass B. Kalla bilderna i klass A för a j, j = 1,...,n och bilderna i klass B för b j, j = 1,...,n.

5 Föreläsning 7 17 Föreläsning 7 18 Välj nu p fetures f j1,..., f jp. p trösklar σ 1,...,σ p. p+1 vikter c 0,...c p så att funktionen F(φ) = sign(c 0 + p k=1 c j sign( f jk (φ) σ j )). uppfyller F(a j ) = 1 och F(b j ) = 1 för de flesta exempel ur klass A och B. Formulera som optimeringsproblem och lös! Intressanta områden. Intressanta områden. Föreläsning 7 19 Repetition Föreläsning 7 Region growing Split and Merge Morfologi Erosion, dilatation Öppning, slutning Avståndstransform (Euklidisk, manhattan, chess-boart, Chamfer-3-4) Skelett Tröskling Maskin-inlärning

Signaler, information & bilder, föreläsning 15

Signaler, information & bilder, föreläsning 15 Signaler, information & bilder, föreläsning 5 Michael Felsberg Computer Vision Laboratory Department of Electrical Engineering michael.felsberg@liu.se Översikt Histogram och tröskelsättning Histogramutjämning

Läs mer

Ansiktsigenkänning med MATLAB

Ansiktsigenkänning med MATLAB Ansiktsigenkänning med MATLAB Avancerad bildbehandling Christoffer Dahl, Johannes Dahlgren, Semone Kallin Clarke, Michaela Ulvhammar 12/2/2012 Sammanfattning Uppgiften som gavs var att skapa ett system

Läs mer

TNM030 Tentasammanfattning (frågor) Nathalie Ek, Sammanfattning. TNM030 - Bildbehandling och bildanalys

TNM030 Tentasammanfattning (frågor) Nathalie Ek, Sammanfattning. TNM030 - Bildbehandling och bildanalys Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping 1 I det mänskliga ögats näthinna finns två typer av ljussensorer. a) Vad kallas de två typerna?

Läs mer

Ett enkelt OCR-system

Ett enkelt OCR-system P r o j e k t i B i l d a n a l y s Ett enkelt OCR-system av Anders Fredriksson F98 Fredrik Rosqvist F98 Handledare: Magnus Oskarsson Lunds Tekniska Högskola 2001-11-29 - Sida 1 - 1.Inledning Många människor

Läs mer

Signal- och bildbehandling TSBB03, TSBB14

Signal- och bildbehandling TSBB03, TSBB14 Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Projekt i bildanalys Trafikövervakning

Projekt i bildanalys Trafikövervakning Projekt i danalys Trafikövervakning F 99 F 00 Handledare : Håkan Ardö Hösten 3 vid Lunds Tekniska Högskola Abstract Using traffic surveillance cameras the authorities can get information about the traffic

Läs mer

Objektorienterad programmering Föreläsning 8. Copyright Mahmud Al Hakim Agenda (halvdag)

Objektorienterad programmering Föreläsning 8. Copyright Mahmud Al Hakim  Agenda (halvdag) Objektorienterad programmering Föreläsning 8 Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Agenda (halvdag) Objektorienterad programutveckling Algoritmer Algoritmkonstruktionerna Relationer

Läs mer

6 OPERATIONER PÅ BINÄRA BILDER

6 OPERATIONER PÅ BINÄRA BILDER 6 OPERATIONER PÅ BINÄRA BILDER (Detta avsnitt har producerats i samarbete med Ingemar Ragnemalm) 6.1 Morfologiska operationer I en typisk tillämpning av bildanalys utmynnar operationer och manipulationer

Läs mer

Tentamen Bildanalys (TDBC30) 5p

Tentamen Bildanalys (TDBC30) 5p Tentamen Bildanalys (TDBC30) 5p Skrivtid: 9-15 Hjälpmedel: kursboken Digital Image Processing Svara på alla frågor på nytt blad. Märk alla blad med namn och frågenummer. Disponera tiden mellan frågorna

Läs mer

5 GRÅSKALEOPERATIONER

5 GRÅSKALEOPERATIONER 5 GRÅSKALEOPERATIONER 5.1 Histogramoperationer Histogrammet av en bild f(x,y) är frekvensfunktionen, sannolikhetsfunktionen p(f) som utsäger med vilken frekvens (= hur ofta) en viss intensitetsnivå f förekommer.

Läs mer

TANA81: Föreläsning 10

TANA81: Föreläsning 10 TANA81: Föreläsning 10 - Matematisk eller Teknisk Forskning. - Exempel på Kandidat eller Magister projekt. - Vad skall dokumenteras? Typeset by FoilTEX 1 Matematisk Grundforskning Definition Avståndet

Läs mer

TNM030 -Sammanfattning Nathalie Ek, 2011. Sammanfattning. TNM030 - Bildbehandling och bildanalys

TNM030 -Sammanfattning Nathalie Ek, 2011. Sammanfattning. TNM030 - Bildbehandling och bildanalys Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping Bildbehandling och bildanalys - Bildbehandling Kan kort sammanfattas som signalbehandling

Läs mer

Att skapa en bakgrundsbild och använda den i HIPP

Att skapa en bakgrundsbild och använda den i HIPP Att skapa en bakgrundsbild och använda den i HIPP Bakgrundsbilder i HIPP kan användas till olika saker, t ex som ett rutnät för en tabell eller en grundkarta. Här visas hur man gör en grundkarta som en

Läs mer

Repetitionsfrågor i Flervariabelanalys, Ht 2009

Repetitionsfrågor i Flervariabelanalys, Ht 2009 Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.

Läs mer

7 SIGNALER I TRE DIMENSIONER

7 SIGNALER I TRE DIMENSIONER 7 SIGNALER I TRE DIMENSIONER 7.1 Tredimensionell signalbehandling Endimensionell signalteori och signalbehandling är möjlig att utvidga inte bara till tvådimensionella signaler och funktioner utan i princip

Läs mer

.I Minkowskis gitterpunktssats

.I Minkowskis gitterpunktssats 1.I Minkowskis gitterpunktssats Minkowskis sats klarar av en mängd problem inom den algebraiska talteorin och teorin för diofantiska ekvationer. en kan ses som en kontinuerlig, eller geometrisk, variant,

Läs mer

Linjär Algebra, Föreläsning 9

Linjär Algebra, Föreläsning 9 Linjär Algebra, Föreläsning 9 Tomas Sjödin Linköpings Universitet Euklidiska rum Vi ska nu införa en extra struktur på vektorrum, en så kallad skalärprodukt, vilken vi kan använda för att definiera längd

Läs mer

Föreläsning 9: NP-fullständighet

Föreläsning 9: NP-fullständighet Föreläsning 9: NP-fullständighet Olika typer av problem: 1. Beslutsproblem: A(x) =Ja. 2. Optimeringsproblem: A(x) =m Vanligen max/min. 3. Konstruktionsproblem: A(x) =En struktur. Vanligen lösningen till

Läs mer

Histogramberäkning på en liten bild. Signal- och Bildbehandling FÖRELÄSNING 9 Histogram och. Olika histogram

Histogramberäkning på en liten bild. Signal- och Bildbehandling FÖRELÄSNING 9 Histogram och. Olika histogram Signl- och Bildehndling FÖRELÄSNING 9 Histogrm och Konnektivitet tröskelsättning Logisk omgivningsopertorer i Binär ildehndling Konnektivitetsevrnde Morfologisk opertioner krympning Diltion (Expnsion)

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:

Läs mer

Bildanalys för vägbeläggningstillämplingar

Bildanalys för vägbeläggningstillämplingar Bildanalys för vägbeläggningstillämplingar Hanna Källén I denna avhandling har några forskningsfrågor gällande bestämning av vägars beständighetundersökts. Bildanalys har används för att försöka komplettera

Läs mer

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik DD1350 Logik för dataloger Fö 7 Predikatlogikens semantik 1 Kryssprodukt av mängder Om A och B är två mängder så är deras kryssprodukt A B mängden av alla par (a,b), där a A och b B. Ex: A={1,2}, B={3,4},

Läs mer

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna

Läs mer

Laboration 4: Digitala bilder

Laboration 4: Digitala bilder Objektorienterad programmering, Z : Digitala bilder Syfte I denna laboration skall vi återigen behandla transformering av data, denna gång avseende digitala bilder. Syftet med laborationen är att få förståelse

Läs mer

Flerdimensionell analys i bildbehandling

Flerdimensionell analys i bildbehandling Flerdimensionell analys i bildbehandling Erik Melin 27 november 2006 1. Förord Målet med den här lilla uppsatsen är att ge några exempel på hur idéer från kursen flerdimensionell analys kan användas i

Läs mer

Föreläsning 12+13: Approximationsalgoritmer

Föreläsning 12+13: Approximationsalgoritmer Föreläsning 12+13: Approximationsalgoritmer Många av de NP-fullständiga problemen är från början optimeringsproblem: TSP, Graph Coloring, Vertex Cover etc. Man tror att P NP och att det alltså inte går

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Tentamen, Programmeringsteknik för BME, F och N

Tentamen, Programmeringsteknik för BME, F och N LUNDS TEKNISKA HÖGSKOLA 1(6) Institutionen för datavetenskap Tentamen, Programmeringsteknik för BME, F och N 2015 06 03, 14.00 19.00 Anvisningar: Preliminärt ger uppgifterna 7 + 11 + 16 + 11 = 45 poäng.

Läs mer

Lektion 2. Funktioner av två eller flera variabler variabler

Lektion 2. Funktioner av två eller flera variabler variabler Lektion 2 Funktioner av två eller flera variabler variabler Innehål 1. Grundlägande topologi (10.1) 2. Funktioner av två variabler (12.1) Innehål 1. Grundlägande topologi (10.1) 2. Funktioner av två variabler

Läs mer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra

Läs mer

Kapitel 0. Introduktion

Kapitel 0. Introduktion Kapitel 0 Introduktion Jag tänkte börja med en kort introduktion där jag kommer förklara hur dessa läsanvisningar är upplagda, samt ge några tips hur man läser matematik. Låt mig börja att berätta om dessa

Läs mer

Bildregistrering Geometrisk anpassning av bilder

Bildregistrering Geometrisk anpassning av bilder Bildregistrering Geometrisk anpassning av bilder Björn Svensson, Johanna Pettersson, Hans Knutsson Inst. för Medicinsk Teknik, Linköpings Univeristet Maj, 2007 1 Problembeskrivning Sök förflyttningsfält

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

Läsanvisningar till Analys B, HT 15 Del 1

Läsanvisningar till Analys B, HT 15 Del 1 Läsanvisningar till Analys B, HT 15 Del 1 Dag 1 Avsnitt 6.1 Definition av trappfunktion och integral av en trappfunktion. Räkneregler (de är mer eller mindre uppenbara). Definition av Riemannintegralen

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 36-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning

Läs mer

Statistikens grunder HT, dagtid Statistiska institutionen

Statistikens grunder HT, dagtid Statistiska institutionen Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet

Läs mer

Medicinsk Informatik IT VT2002

Medicinsk Informatik IT VT2002 Bildbehandling Medicinsk Informatik IT VT2002 Medicinsk bildbehandling Mål Extraktion av relevant information ur medicinska bilder för diagnostisk tolkning, terapiplanering, dokumentation och patientinformation

Läs mer

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander)

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Böiers 5.3 Relationer. Vi har definierat en funktion f: A B som en regel som kopplar ihop ett element a A, med ett element

Läs mer

Funktionella beroenden - teori

Funktionella beroenden - teori Relationell databasdesign, FB Teori 7-12 Funktionella beroenden - teori Vid utformning av databassystem är det av största vikt att man kan resonera systematiskt om funktionella beroenden bl.a. för att

Läs mer

avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion.

avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion. Ordlista 1 1 Analysens grunder avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion. Bolzano-Weierstrassegenskapen En delmängd M i ett metriskt rum har Bolzano- Weierstrass-egenskapen

Läs mer

7 MÖNSTERDETEKTERING

7 MÖNSTERDETEKTERING 7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden

Läs mer

Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen

Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen Faktorisering med hjälp av kvantberäkningar Lars Engebretsen 003-11-18 Bakgrund Vanliga datorer styrs av klassiska fysikens lagar. Vanliga datorer kan simuleras av turingmaskiner i polynomisk tid. Kanske

Läs mer

Projektarbete i Bildanalys vid Institutionen för Matematik Lunds Tekniska Högskola. Segmentering. Av: Karin Kolmert och Julia Stojanov

Projektarbete i Bildanalys vid Institutionen för Matematik Lunds Tekniska Högskola. Segmentering. Av: Karin Kolmert och Julia Stojanov Projektarbete i Bildanalys vid Institutionen för Matematik Lunds Tekniska Högskola Segmentering Av: Karin Kolmert och Julia Stojanov Handledare: Björn Johansson 29 November, 2001 1 Inledning I detta projekt

Läs mer

Bildtillämpningar av flervariabelanalys. Supplement till Persson Böiers, Analys i flera variabler

Bildtillämpningar av flervariabelanalys. Supplement till Persson Böiers, Analys i flera variabler Bildtillämpningar av flervariabelanalys Supplement till Persson Böiers, Analys i flera variabler Matematik, LTH, 6 oktober 2006 Rikard Berthilsson Gunnar Sparr 2 Innehåll 0 Förord 5 Funktioner av flera

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

Lösning till fråga 5 kappa-06

Lösning till fråga 5 kappa-06 Lösning till fråga 5 kappa-06 Figurer till uppgift a) ligger samlade efter uppgiften. Inledning Betrakta först N punkter som tillhör den slutna enhetskvadraten inlagd i ett koordinatsystem enligt figur

Läs mer

2MA105 Algebraiska strukturer I. Per-Anders Svensson

2MA105 Algebraiska strukturer I. Per-Anders Svensson 2MA105 Algebraiska strukturer I Per-Anders Svensson Föreläsning 4 Innehåll Bijektiva avbildningar en repetition Permutationsgrupper Permutationer skrivna som produkter av cykler Jämna och udda permutationer

Läs mer

Medicinsk Informatik VT 2004

Medicinsk Informatik VT 2004 Informatik VT 2004 bildbehandling Bildbehandling Mål Extraktion av relevant information ur medicinska bilder för diagnostisk tolkning, terapiplanering, dokumentation och patientinformation Digital bildbehandling

Läs mer

Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen

Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen Faktorisering med hjälp av kvantberäkningar Lars Engebretsen 00-1-03 Lars Engebretsen 00-1-03 Bakgrund Vanliga datorer styrs av klassiska fysikens lagar. Vanliga datorer kan simuleras av turingmaskiner

Läs mer

Föreläsning 6. Slumptal Testa slumptal Slumptal för olika fördelningar Grafer Datastrukturen graf

Föreläsning 6. Slumptal Testa slumptal Slumptal för olika fördelningar Grafer Datastrukturen graf Föreläsning 6 Slumptal Testa slumptal Slumptal för olika fördelningar Grafer Datastrukturen graf Repetition En dator kan inte generera slumptal då den är helt deterministisk, däremot kan den generera pseudo-slumptal

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övningsmästarprovsövning 2 Anton Grensjö grensjo@csc.kth.se 20 november 2017 1 Dagordning 1. Genomgång av uppgiftens lösning 2. Genomgång av bedömningskriterier

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Mer om integraler. Kapitel I. I.1 Integraler

Mer om integraler. Kapitel I. I.1 Integraler Kapitel I Mer om integraler I detta kapitel bevisar vi de resultat om integraler som i boken lämnats utan bevis. En del av bevisen utnyttjar begreppet likformig kontinuitet från Kapitel K i detta nätmaterial.

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende

Läs mer

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 25 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion

Läs mer

Läsanvisningar till kapitel

Läsanvisningar till kapitel Läsanvisningar till kapitel 7.1 7.4 7.1 Invarians av Laplaceekvationen Om f O(Ω), Ω C ett område, är bijektiv med holomorf invers så säger vi att f är biholomorf. Detta avsnitt handlar om att harmoniska

Läs mer

Introduktion till programmering SMD180. Föreläsning 5: Fruktbara funktioner

Introduktion till programmering SMD180. Föreläsning 5: Fruktbara funktioner Introduktion till programmering Föreläsning 5: Fruktbara funktioner 1 Retur-värden Funktioner kan både orsaka en effekt och returnera ett resultat. Hittills har vi ej definierat några egna funktioner med

Läs mer

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Martin Enqvist Överföringsfunktioner, poler och stegsvar Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(8) Repetition: Öppen styrning & återkoppling 4(8)

Läs mer

LINJÄR ALGEBRA II LEKTION 6

LINJÄR ALGEBRA II LEKTION 6 LINJÄR ALGEBRA II LEKTION 6 JOHAN ASPLUND INNEHÅLL 1 Inre produktrum 1 2 Cauchy-Schwarz olikhet 3 3 Ortogonala projektioner och Gram-Schmidts process 3 4 Uppgifter 4 61:13(a) 4 61:23(a) 4 61:29 5 62:7

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

Kapitel 1. betecknas detta antal med n(a). element i B; bet. A B. Den tomma mängden är enligt överenskommelsen en delmängd. lika; bet. A = B.

Kapitel 1. betecknas detta antal med n(a). element i B; bet. A B. Den tomma mängden är enligt överenskommelsen en delmängd. lika; bet. A = B. Kapitel 1 Mängdlära Begreppet mängd är fundamentalt i vårt tänkande; en mängd är helt allmänt en samling av objekt, vars antal kan vara ändligt eller oändligt. I matematiken kallas dessa objekt mängdens

Läs mer

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 27 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion

Läs mer

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk

Läs mer

EDAA20 Programmering och databaser. Mål komprimerat se kursplanen för detaljer. Om att lära sig programmera. Föreläsning 1-2 Innehåll.

EDAA20 Programmering och databaser. Mål komprimerat se kursplanen för detaljer. Om att lära sig programmera. Föreläsning 1-2 Innehåll. EDAA20 Programmering och databaser Mål komprimerat se kursplanen för detaljer Läsperiod 1 7.5 hp anna.axelsson@cs.lth.se http://cs.lth.se/edaa20 Mer information finns på kursens webbsida samt på det utdelade

Läs mer

Digitala bilder. Matris, pixel, pixeldjup, signal, brus, kontrast

Digitala bilder. Matris, pixel, pixeldjup, signal, brus, kontrast Digitala bilder Matris, pixel, pixeldjup, signal, brus, kontrast Den nukleärmedicinska bilden Historik Analoga bilder. Film exponerades för ljusblixtar som producerades när strålning detekterades. oändligt

Läs mer

Laboration 2 - Heltalsoptimering

Laboration 2 - Heltalsoptimering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 2 Optimeringslära 4 februari 203 Laboration 2 - Heltalsoptimering Problemställning Synande av cellprover När

Läs mer

LARS ULVELAND HOPFIELDNÄTVERK FÖR IGENKÄNNING AV DEGRADERADE BILDER OCH HANDSKRIVNA TECKEN

LARS ULVELAND HOPFIELDNÄTVERK FÖR IGENKÄNNING AV DEGRADERADE BILDER OCH HANDSKRIVNA TECKEN LARS ULVELAD HOPFIELDÄTVERK FÖR IGEKÄIG AV DEGRADERADE BILDER OCH HADSKRIVA TECKE E PROJEKTRAPPORT FÖR PROJEKTKURSE I BILDAALYS HT 02 Teori för Hopfieldnätverk Hopfieldmodellen är en typ av neuronnät,

Läs mer

Avancerad Bildbehandling Stitching av bilder

Avancerad Bildbehandling Stitching av bilder Linköping Universitet, Campus Norrköping Itn/TNM034 HT1/2009 Avancerad Bildbehandling Stitching av bilder Stefan Olausson: steol272@student.liu.se Fredrik Lundell: frelu@student.liu.se Martin Sturk: marst496@student.liu.se

Läs mer

Golvelement. Innehåll... Sidan Golv i vån. 1 i DDS-CAD Arkitekt... 2 Golvelement i DDS-CAD Konstruktion... 7

Golvelement. Innehåll... Sidan Golv i vån. 1 i DDS-CAD Arkitekt... 2 Golvelement i DDS-CAD Konstruktion... 7 10.03.2014 DDS-CAD Arkitekt & Konstruktion 9 Golvelement Kapitel Innehåll... Sidan Golv i vån. 1 i DDS-CAD Arkitekt... 2 Golvelement i DDS-CAD Konstruktion... 7 2... Kapitel 8 10.03.2014 Golvelement DDS-CAD

Läs mer

Bildbehandling, del 1

Bildbehandling, del 1 Bildbehandling, del Andreas Fhager Kapitelhänvisningar till: Image Processing, Analysis and Machine Vision, 3rd ed. by Sonka, Hlavac and Boyle Representation av en bild Så här kan vi plotta en bild tex

Läs mer

Bildbehandling i frekvensdomänen

Bildbehandling i frekvensdomänen Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267

Läs mer

IsoKurs övningshäfte. Namn:...

IsoKurs övningshäfte. Namn:... IsoKurs övningshäfte Namn:... Klass: MicroTech Systemutveckling AB 2004 2 IsoKurs övningshäfte IsoKurs övningshäfte 3 Innehåll INLEDNING........ 6 ÖVNING 1 (ISOA130)....... 7 ÖVNING 2 (ISOA131).......

Läs mer

Laboration 3. Redovisning Uppgifterna skall vara demonstrerade och godkända av en handledare senast måndag 22/2.

Laboration 3. Redovisning Uppgifterna skall vara demonstrerade och godkända av en handledare senast måndag 22/2. Programmerade system I. Syfte Syftet med denna laboration är att få övning i att strukturera sina program genom att använda metoder och klasser, samt att få övning i att använda sig av fält och for-satsen.

Läs mer

Introduktion till programmering D0009E. Föreläsning 5: Fruktbara funktioner

Introduktion till programmering D0009E. Föreläsning 5: Fruktbara funktioner Introduktion till programmering D0009E Föreläsning 5: Fruktbara funktioner 1 Retur-värden Funktioner kan både orsaka en effekt och returnera ett resultat. Hittills har vi ej definierat några egna funktioner

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 25 mars 2008. DEL I 1. (3p Bestäm antalet binära ord av längd

Läs mer

Bruksanvisning för mentometer DM-230

Bruksanvisning för mentometer DM-230 Bruksanvisning för mentometer DM-230 Vad är DM-230? DM-230 är en mikroprocessorstyrd mentometer som kan användas för att mäta hur många procent av en grupp människor som röstar ja i en viss fråga. Till

Läs mer

MS-A0409 Grundkurs i diskret matematik Appendix, del II

MS-A0409 Grundkurs i diskret matematik Appendix, del II MS-A0409 Grundkurs i diskret matematik Appendix, del II G. Gripenberg Aalto-universitetet 17 oktober 2013 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematikappendix, del II 17 oktober

Läs mer

Problemdel 1: Uppgift 1

Problemdel 1: Uppgift 1 STOCKHOLMS UNIVERSITET MT 00 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, CH 8 februari 0 LÖSNINGAR 8 februari 0 Problemdel : Uppgift Rätt svar är: a) X och X är oberoende och Y och Y

Läs mer

Segmentering av celler med hjälp av aktiva konturer och level sets

Segmentering av celler med hjälp av aktiva konturer och level sets Segmentering av celler med hjälp av aktiva konturer och level sets - Modifiering av befintlig algoritm Abstrakt Detta projekt är en modifiering av en redan befintlig algoritm med en hypotes att kunna segmentera

Läs mer

Föreläsning 7+8: NP-problem. Begreppet effektiv algoritm är alltså synonymt med går i polynomisk tid i den här kursen. Är detta en rimlig uppdelning?

Föreläsning 7+8: NP-problem. Begreppet effektiv algoritm är alltså synonymt med går i polynomisk tid i den här kursen. Är detta en rimlig uppdelning? Formalisering av rimlig tid Föreläsning 7+8: NP-problem En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1 är för långsam.

Läs mer

Innehåll. Innehåll... 2 Detaljövningar Övning 1 Skiss och Intersect Övning 2 Path, Pattern Övning 3 - Featureträdet...

Innehåll. Innehåll... 2 Detaljövningar Övning 1 Skiss och Intersect Övning 2 Path, Pattern Övning 3 - Featureträdet... Innehåll Innehåll Innehåll... 2 Detaljövningar... 5 Övning 1 Skiss och Intersect... 5 Övning 2 Path, Pattern... 9 Övning 3 - Featureträdet... 12 Övning 4 Feature Copy... 15 Övning 5 3D Skiss, Work feature...

Läs mer

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola atum: 2-3-9 kl. 8.3 2.3 Tentamen Telefonvakt: Richard Lärkäng tel. 73-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel

Läs mer

VIRKAT MOBILSKAL. - Finalist i Scheepjesutmaningen Blogg:

VIRKAT MOBILSKAL. - Finalist i Scheepjesutmaningen Blogg: VIRKAT MOBILSKAL Design @annavirkpanna - Finalist i Scheepjesutmaningen 2016 Instagram: @annavirkpanna Blogg: www.annavirkpanna.com 5 % av alla intäkter från försäljningen av garnkit till detta mobilskal

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

Hej Då, Karel! Programmering. Vårt första Javaprogram. hh.se/db2004. Java. Grundtyper, variabler och arrayer

Hej Då, Karel! Programmering. Vårt första Javaprogram. hh.se/db2004. Java. Grundtyper, variabler och arrayer Programmering hh.se/db2004 Föreläsning 3: Java. Grundtyper, variabler och arrayer Hej Då, Karel! Verónica Gaspes www2.hh.se/staff/vero www2.hh.se/staff/vero/programmering Center for Research on Embedded

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,

Läs mer

Digitalitet. Kontinuerlig. Direkt proportionerlig mot källan. Ex. sprittermometer. Elektrisk signal som representerar ljud.

Digitalitet. Kontinuerlig. Direkt proportionerlig mot källan. Ex. sprittermometer. Elektrisk signal som representerar ljud. Analog Digitalitet Kontinuerlig Direkt proportionerlig mot källan Ex. sprittermometer Elektrisk signal som representerar ljud Diskret Digital Representation som siffror/symboler Ex. CD-skiva Varje siffra

Läs mer

Mängder. 1 Mängder. Grunder i matematik och logik (2015) 1.1 Grundläggande begrepp. 1.2 Beskrivningar av mängder. Marco Kuhlmann

Mängder. 1 Mängder. Grunder i matematik och logik (2015) 1.1 Grundläggande begrepp. 1.2 Beskrivningar av mängder. Marco Kuhlmann Marco Kuhlmann 1 Diskret matematik handlar om diskreta strukturer. I denna lektion kommer vi att behandla den mest elementära diskreta strukturen, som alla andra diskreta strukturer bygger på: mängden.

Läs mer

Föreläsning 8+9: NP-problem. Begreppet effektiv algoritm är alltså synonymt med går i polynomisk tid i den här kursen. Är detta en rimlig uppdelning?

Föreläsning 8+9: NP-problem. Begreppet effektiv algoritm är alltså synonymt med går i polynomisk tid i den här kursen. Är detta en rimlig uppdelning? Formalisering av rimlig tid Föreläsning 8+9: NP-problem En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1 är för långsam.

Läs mer

räkna med vasa övningar att genomföra i vasamuseet

räkna med vasa övningar att genomföra i vasamuseet räkna med vasa övningar att genomföra i vasamuseet lärarhandledning 2 (av 2) övningar att genomföra i vasamuseet Denna handledning riktar sig till läraren som i sin tur muntligt instruerar sina elever.

Läs mer

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition.

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition. Eulercykel Definition En Eulercykel är en cykel som använder varje båge exakt en gång. Definition En nods valens är antalet bågar som ansluter till noden. Kinesiska brevbärarproblemet En brevbärartur är

Läs mer

Konvexa höljet Laboration 6 GruDat, DD1344

Konvexa höljet Laboration 6 GruDat, DD1344 Konvexa höljet Laboration 6 GruDat, DD1344 Örjan Ekeberg 10 december 2008 Målsättning Denna laboration ska ge dig övning i att implementera en algoritm utgående från en beskrivning av algoritmen. Du ska

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

Källkodning. Egenskaper hos koder. Några exempel

Källkodning. Egenskaper hos koder. Några exempel Källkodning Källkodning innebär att vi avbildar sekvenser av symboler ur en källas alfabet på binära sekvenser (kallade kodord). Mängden av alla kodord kalls för en kod. (Man kan förstås tänka sig att

Läs mer

Föreläsning 11: Beräkningsgeometri

Föreläsning 11: Beräkningsgeometri DD2458, Problemlösning och programmering under press Föreläsning 11: Beräkningsgeometri Datum: 2009-11-24 Skribenter: David Björklund, Christoer Lundell Johansson och Mårten Selin Föreläsare: Fredrik Niemelä

Läs mer