Systemanalys för förbättrade beslut avseende energi, miljö och ekonomi i ett regionalt perspektiv

Storlek: px
Starta visningen från sidan:

Download "Systemanalys för förbättrade beslut avseende energi, miljö och ekonomi i ett regionalt perspektiv"

Transkript

1 Systemanalys för förbättrade beslut avseende energi, miljö och ekonomi i ett regionalt perspektiv Exemplet energi från avfall Ola Eriksson*, KTH Avd. för Industriellt Miljöskydd Andras Baky, JTI (Jordbrukstekniska Institutet) Anna Björklund, KTH Avd. för Industriellt Miljöskydd Marcus Carlsson, SLU Institutionen för Ekonomi Jessica Granath, IVL Svenska Miljöinstitutet Jan-Olov Sundqvist, IVL Svenska Miljöinstitutet Lennart Thyselius, JTI Björn Frostell, KTH Avd. för Industriellt Miljöskydd Sammanfattning Utvecklingen av ett mer ekologiskt hållbart energisystem har av regeringen satts upp som ett prioriterat samhällsmål. Av avgörande betydelse för att nå detta mål är frågan om hur miljöpåverkan i samband med energiomvandling kan kvantifieras och minskas. Särskilt viktigt är att utveckla metoder för att kunna prognostisera och följa upp olika materialflöden (t.ex. kol, svavel, kväve, tungmetaller) som ett resultat av olika energilösningar. Detta för att de ökande globala materialflödena och inte energiflödena i sig utgör hotet mot en ekologiskt hållbar utveckling. I omställningen av det svenska energisystemet ligger stor del av fokus på ökad användning av biobränslen och en utbyggnad av kraftvärmen i de kommunala fjärrvärmenäten. Stora mängder biobränsle finns där energin behövs i form av det hushållsavfall som uppstår i samhällena. Genom att direkt eller indirekt utnyttja energipotentialen i avfallet kan ett värdefullt bidrag till ett hållbart energisystem uppnås. KTH har tillsammans med IVL, JTI och SLU utvecklat en modell för systemanalys av energiutvinning från avfall, den s.k. ORWARE-modellen. Modellen är en kombination av materialflödesanalys och livscykelanalys, till vilken även en ekonomisk modell finns kopplad. Med modellen kan de materialflöden som är kopplade till olika utnyttjande av avfall som energiråvara beräknas och bedömas enligt livscykelmetodik. Modellen har en regional inriktning, men kan omstruktureras till att även utnyttjas av enskilda företag. I den här artikeln beskriver vi ORWARE-modellen kortfattat och ger några resultat från en nyligen genomförd studie av energiutvinning från avfall. * Kontaktperson Ola Eriksson, doktorand Industriellt Miljöskydd Inst. för Kemiteknik KTH 1 44 Stockholm tel fax e-post olae@ket.kth.se

2 1 Inledning Avfall är ett vitt begrepp som kan tolkas på olika sätt. Definitionen enligt EUs direktiv om avfall (91/156/EEG) lyder: "föremål, ämne eller substans som ingår i en avfallskategori och som innehavaren gör sig av med eller avser eller är skyldig att göra sig av med" Med denna definition blir alla ämnen och material vare sig de är gasformiga, flytande eller fasta avfall om avsikten är att göra sig av med dem. På motsatt sätt är restprodukter som man avser att återanvända eller återvinna inte i strikt mening avfall. Med framväxandet av en modernare syn på material och materialflöden har därmed gränsen mellan avfallshantering och materialhantering gradvis börjat suddas ut. Detta förutspåddes 1991 i en definition av integrerad avfallshantering som: Integrated waste management is a process of change in which the concept of waste management is gradually broadened to eventually include the necessary control of gaseous, liquid and solid material flows in the human environment, emphasizing precautionary actions (Anonymous,1991) Vi avser här med begreppet avfallshantering olika aktiviteter som har till uppgift att omhänderta och fysiskt förändra avfall och restprodukter. Det innebär att ett avfallshanteringssystem är en kombination av olika tekniska processer för att lösa ett avfallshanteringsproblem. Exempel på ett avfallshanteringssystem är insamling av avfall med sopbil, komprimering och omlastning av avfallet till en långtradare, transport till en avfallsförbränningsanläggning, termisk behandling (förbränning) av avfallet, lastning av slagg på långtradare för transport till deponi och slutligen deponering. Det primära syftet med avfallshantering är att minska avfallets miljöpåverkan. Det kan gälla såväl direkt påverkan som indirekt. Med direkt påverkan avses här emissioner som avfallet självt eller avfallssystemet (insamling, transport, omlastning, behandling, efterbehandling, restproduktdeponering) ger upphov till. Med indirekt påverkan avses här de emissioner som hör till olika kringsystem till avfallssystemet. Det gäller olika former av materialförsörjning och energiförsörjning, som har en koppling till avfallssystemet. Såväl den direkta som indirekta påverkan sker i form av emissioner till luft, mark och vatten. Men avfallshantering innefattar inte endast avfallsmaterialet som ett potentiellt problem, utan på längre sikt i än högre grad att utnyttja de resurser som finns i avfallet. Avfall kan användas som bränsle, det går att tillvarata näringsämnen som kan tillgodogöras vid odling av växter och det är också möjligt att ta tillvara olika typer av material som t.ex. papper, plast och olika metaller. Frågan om hur man på ett optimalt sätt skall hantera olika sorters avfall är ytterligt komplicerad. En viktig aspekt av denna komplexitet är att en mycket stor mängd aktörer är inblandade i diskussionen. Ett antal av dessa aktörer är: Hushållen som genererar en viktig del av avfallet och som betalar en taxa för sin avfallshantering. De kan även fungera som konsumenter av avfallsgenererade produkter, t.ex. fjärrvärme.

3 Företagen som liksom hushållen genererar avfall av varierande slag. Hushållsavfall är i sig heterogent, men verksamhets- och industriavfall kan skilja än mer mellan olika källor. De privata avfallsföretagen som dels räknas in bland företagen ovan, men som även är utförare av olika tjänster inom avfallshanteringen. Här hittar vi företag som hämtar avfall och driver olika behandlingsanläggningar. Kommunen som med olika kommunala verksamheter sköter den tekniska servicen åt invånarna. Hit räknas förvaltningar för vatten, avlopp, avfall, energi, trafik, miljö, Agenda 21 m.fl. Energibolagen som ofta varit kommunala förvaltningar men som numera allt oftare ombildats till och uppträder som vinstdrivande bolag. Med tanke på avfallets starka energirelevans, tillhör denna grupp de tongivande aktörerna på avfallsområdet. De areella näringarna utgör slutanvändare av de produkter som uppstår vid näringsåtervinning från avfall. Här finns en tydlig koppling till livsmedelsindustrin och därmed till konsumenterna som oftast utgörs av hushållen. Materialbolagen som här definieras som de företag som agerar på marknader för återvunna material. Myndigheterna som med sin övervakande uppgift tillser att den lagstiftning som finns inom området tillämpas. Till denna grupp hör t.ex. Naturvårdsverket, Yrkesinspektionen, Kemikalieinspektionen, Smittskyddsinstitutet m.fl. De oberoende organisationerna - NGOs - (Non Governmental Organisations) som ofta är mycket aktiva inom miljöområdet och bl a granskar den verksamhet som pågår. Till exempel Greenpeace, Fältbiologerna, Gröna bilister för miljön m.fl. Media som fungerar som ett forum för debatt men också granskar och driver opinionsbildning. Frågan om en väl fungerande avfallshantering innefattar även ett stort antal tekniska dellösningar såsom visas av följande exempel: Insamling (frontlastare, baklastare, flerkärlstömmare, sopsug etc.), Behandling (produktåtervinning, materialåtervinning, förbränning, förgasning, biologisk behandling, deponering), Produktanvändning (nytt papper, ny plast, olika bränslen, näring till åker och skog). En tredje faktor i den mångfacetterade avfallshanteringen är de olika effekter på samhället och miljön som uppstår: (radbrytning) Miljöpåverkan genom bidrag till försurning, övergödning, växthuseffekt m.m., Energipåverkan genom att avfallet till stor del kan energiåtervinnas och Ekonomipåverkan på de olika aktörerna. Till detta kan läggas många andra typer av effekter som t.ex. hälsorisker m.m. Mängden aktörer, mängden möjliga tekniska lösningar och ett komplicerat spektrum av olika sorters påverkan gör att avfallshanteringen ofta diskuteras och ifrågasätts och att krav på ny- och omorienteringar reses. Som exempel på detta kan nämnas: Nya bestämmelser kommer från myndigheter på alla nivåer (från enskild kommun och länsstyrelse upp till riksnivå, EU-nivå och global nivå), Avfallet förändras till sin karaktär och mängd över tiden, Nya effekter på miljö och hälsa upptäcks löpande, Marknader avregleras, Ständig teknikutveckling.

4 Med detta som bakgrund står det klart att behovet av systemangreppssätt är stort och att olika aktörers perspektiv behöver belysas tydligt. Datormodeller som förmår hantera stora mängder information kan här utgöra praktiska verktyg för att utföra olika beräkningar syftande till att underlätta för beslut. Den snabbt förbättrade informationstekniken skapar hela tiden nya möjligheter till att samla in, bearbeta och presentera information. Med modeller finns möjligheter att bringa olika aktörer närmare varandra i och med att bättre och mer överskådlig information kommer på bordet. Samtidigt måste man undvika att få en övertro till dessa verktyg. I ett beslutsunderlag ingår många aspekter som aldrig låter sig inlemmas i en datormodell och det är därför viktigt att man använder modellerna med förnuft och inte tillåter sig att dra alltför enkla slutsatser. En datorbaserad modell för systemanalys av avfallshantering är den i Sverige utvecklade ORWARE-modellen. ORWARE är en akronym som står för ORganic WAste REsesarch. I sin bredaste bemärkelse är ORWARE ett koncept för att planera, utvärdera och utveckla avfallshantering ur ett systemperspektiv med avseende på miljöpåverkan, energiutvinning och finansiella kostnader. I en snävare tolkning är det en datorbaserad matematisk modell av materialflödena i ett avfallshanteringssystem. Med modellen kan olika systemutformningar simuleras och resultat för miljö, energi och ekonomi utläsas. Till en början omfattade modellen endast lättnedbrytbart organiskt avfall men den har utvidgats till att omfatta hushållsavfall och liknande avfall från kommersiella verksamheter. Modellen är inte anpassad för att räkna på farligt avfall, specialavfall eller grovavfall. I den här artikeln beskriver vi ORWARE-modellen kortfattat och ger några resultat från en nyligen genomförd studie av energiutvinning från avfall.

5 2 ORWARE-modellen 2.1 Allmänt ORWARE-modellen har utvecklats i samarbete mellan fem olika parter som var och en bidragit med kunskap och kompetens: KTH Industriellt Miljöskydd har utvecklat delmodeller för deponering, förbränning och termisk förgasning. IVL Svenska Miljöinstitutet har utvecklat delmodeller för materialåtervinning och bidragit med värdefull kunskap vid modellering av förbränning och deponering. JTI Jordbrukstekniska Institutet har utvecklat delmodeller för bioförgasning (rötning), kommunal avloppsvattenrening och näringsläckage från åkermark. SLU Lantbruksteknik har utvecklat modeller för insamlings- och transportfordon, kompostering och spridning av organiska växtnäringsmedel på åkermark. SLU Ekonomi har utvecklat ekonomiska modeller till samtliga delmodeller. Utvecklingen av ORWARE-modellen har i huvudsak finansierats med hjälp av Naturvårdsverket under perioden via Avfallsforskningsnämnden (tidigare Avfallsforskningsrådet). Under 1998 och 1999 har en viss nyutveckling skett - framför allt av återvinningsmodeller - med stöd från Energimyndigheten. ORWARE-modellen är uppbyggd av ett antal delmodeller som kan användas för att i datorn bygga upp ett avfallshanteringssystem för en godtycklig kommun eller annan aktör. En delmodell beskriver en delprocess i ett praktiskt avfallshanteringssystem, t ex avfallstransport, förbränning eller rötning. En första grundläggande beskrivning av ORWARE-modellen finns i Dalemo et al (1997). Utförligare beskrivningar av olika delar av ORWARE återfinns i Björklund (1998), Sonesson (1998), samt Dalemo (1999). Delmodellerna är uppbyggda med avfallshanteringssystemen i Stockholm och Uppsala som förebilder, men är i princip helt generella och kan modifieras för att simulera ett specifikt avfallshanteringssystem i en kommun. Förutom i Stockholm och Uppsala, har ORWARE använts i följande kommuner: Älvdalen Värmdö Växjö Falun Borlänge Jönköping Det är inte bara kommuner som använder sig av ORWARE. Såväl avfallsalstrare som privata intressenter, entreprenörer och organisationer kan komma ifråga. Som exempel på detta kan nämnas Norsk Hydro som utvärderat organiska gödselmedel mot handelsgödselmedel och Birka Energi som utvärderat storskalig avfallsförbränning mot storskalig kompostering.

6 2.2 Allmän beskrivning av delmodell, konceptuell modell och implementering av ORWARE i datormiljö Delmodeller ORWARE är som ovan beskrivits uppbyggd av ett antal delmodeller, som beräknar omsättningen av material, energi och finansiella resurser i delsystemet (jfr Figur 1). Ett delsystem som modelleras i en delmodell kan vara t ex transport, förbränning eller rötning. Materialomsättningen karakteriseras som tillförsel av avfall och tillsatsmaterial och på utflödessidan av produkter, restprodukter samt emissioner till luft, mark och vatten. Med energiomsättning avses tillförsel av olika energibärare såsom el, olja, kol, värme och produktion av t.ex. värme, el, biogas. Vissa delmodeller uppvisar endast energiförbrukning medan andra såväl förbrukar som genererar energi. Kapitalomsättning slutligen, definieras som enskilda delsystems kostnader och intäkter. Avfall Tillsatsmaterial Energi Kostnader Delmodell för avfallshantering Emissioner er Energi Intäkter Produkter Restprodukter Figur 1. Konceptuell uppbyggnad av en delmodell i ORWARE, där modellen beräknar flöden av material, energi och finansiella resurser Konceptuell modell Ett antal delmodeller kan i ORWARE byggas samman till ett komplett avfallssystem i en godtycklig kommun (eller för någon annan systemgräns). En sådan konceptuell ORWARE-modell finns illustrerad i Figur 2. Figur 2. Konceptuell modell av ett komplett avfallssystem i ORWARE bestående av ett antal olika delsystem återgivna i olika delmodeller. Överst i figuren finns avfallskällorna och nedanför återfinns avfallsrelaterade processer där produkter och restprodukter tas om hand och nyttiggörs. Innanför heldragen linje

7 återfinns själva avfallsbehandlingssystemet där behandling av primära och sekundära avfall sker. Ett primärt avfall är vad som passerar systemgränsen från avfallskällorna medan t.ex. slagg från avfallsförbränning är ett sekundärt avfall. I den praktiska utformningen av ORWARE-modellen har sedan varje delsystem enligt Figur 1 modellerats i programmet MATLAB/Simulink, vilket medger hopkoppling av olika delsystem (delmodeller) till en större helhet enligt Figur 2. På detta sätt kan ett avfallssystem av en specifik uppbyggnad relativt enkelt återskapas i datormiljö med hjälp av ett antal hopkopplade delmodeller Materialflödesanalys i ORWARE ORWARE kan beskrivas som en kombination av en materialflödesanalys (Baccini och Brunner, 1991) och en livscykelanalys (ISO, 1997). Modellen hanterar ett stort antal fysiska flöden och kan därmed betraktas som en flerdimensionell materialflödes- och substansflödesanalys. Såväl sammansatta materialflöden (t.ex. torrsubstans och PAH) liksom enskilda grundämnen (t.ex. klor och koppar) kan följas i systemet. I den nuvarande utformningen av modellen är det möjligt att utvärdera resultaten från flödet av över 5 olika parametrar. Det är dock vanligen så att i praktiken begränsas antalet parametrar som bidrar till analysens fullständighet av bristen på bra data LCA-perspektivet i ORWARE Den materialflödesanalys som görs i ORWARE genererar en stor mängd data. Dessa data aggregeras i olika s.k. effektkategorier enligt metoder som utvecklats för livscykelanalys (LCA). Med hjälp av viktningsfaktorer kan sedan jämförelser av t.ex. växthuseffekt, eutrofiering, ekotoxicitet m.fl. effektkategorier göras för de olika studerade handlingsalternativen. Resultaten återges vanligen i form av jämförande staplar för de olika studerade handlingsalternativen. Systemgränserna i ORWARE bygger på LCA-perspektivet, att inkludera alla de processer som är kopplade till en produkts (eller ett systems) livscykel. Detta illustreras av Figur 3, där kärnsystemet enligt Figur 2 utvidgats för att ta hänsyn även till vissa uppströms och nedströms aktiviteter. Kärnsystemet i Figur 3 motsvaras av systemet innanför den heldragna linjen i Figur 2. I modellen beräknas även de uppströms flöden som är associerade med förbrukning av energiresurser i kärnsystemet. På motsvarande sätt kan nedströms aktiviteter såsom spridning av växtnäring och utnyttjande av biogas inkluderas i analysen. Uppströms system FLÖDEN Kärnsystem FLÖDEN Nedströms system Figur 3. Livscykelanalysen tar hänsyn till såväl kärnsystem som uppströms och nedströms aktiviteter. En ytterligare aspekt av LCA-perspektiv i ORWARE hänför sig till begreppet funktionell enhet, som i ISO standarden för LCA (ISO, 1997) definieras som kvantifierad prestanda hos ett produktsystem. Det är ett mått på den funktion en produkt (eller ett system) uppfyller, som ska användas som referens när man jämför olika produkter (eller system). Varje studerat avfallssystem uppfyller vissa funktioner. Som ovan nämnts är den första och primära funktionen hos ett avfallssystem att omhänderta en viss mängd avfall. Ytterligare funktioner är emellertid möjliga. Så kan avfallssystemet fylla funktionen att förse samhället med t ex energi, gödningsämnen och återcirkulerade produkter eller material. För att göra en rättvis jämförelse mellan olika

8 alternativ till utformning av avfallssystemet, måste därför de funktionella enheterna vara desamma för varje studerat alternativ. Detta krav uppfylls i ORWARE genom att man vidgar systemgränsen till att omfatta olika s.k. komplementära system, se Figur 4. Ej jämförbara system Jämförbara system System 1 System 2 System 1 System 2 Kompl. system A 1 B 1 A 2 A 1 B 1 A 2 B 2 Figur 4. Genom att utöka analysen med ett kompletterande system kan olika system bli jämbördiga. (Finnveden, 1998) Även komplementära system har sina kärnsystem, samt uppströms och nedströms system. Detta gör att varje studerat handlingsalternativ kommer att ha sin unika utformning av såväl kärnsystem som olika komplementära system. Detta illustreras i Figur 5. Uppströms system Avfallssystem med delmodeller Funktionella enheter Komplementära system Nedströms system Figur 5. Principskiss för hur ett totalt system (=handlingsalternativ) i ORWARE utformas, bestående av (i) ett antal delmodeller i avfallssystemet, (ii) nyckelflöden som härrör sig till uppströms och nedströms aktiviteter till kärnsystemet, samt (iii) olika komplementära system (inkl. sina uppströms- och nedströms aktiviteter) för att fylla upp de funktionella enheterna som studien omfattar.

9 3 Studie av energi från avfall 3.1 Studiens innehåll Hanteringen av avfall genomgår just nu stora förändringar. Statsmakterna försöker på olika sätt se till att en mindre mängd avfall deponeras och i stället materialåtervinns, förbränns eller behandlas biologiskt genom rötning eller kompostering. För kommuner som idag baserar sin avfallshantering på deponering gäller det att på olika sätt få tillgång till anläggningar som kan materialåtervinna, förbränna, röta eller kompostera avfallet. För kommuner som bygger sin avfallshantering på till exempel förbränning gäller det att se till att man utnyttjar sin anläggning på bästa sätt med hänsyn till energiutnyttjande, miljöpåverkan och ekonomi. I studien har analyserats hantering av hushållsavfall och verksamhetsavfall. För vissa avfallstyper finns det flera alternativ till behandling. De fraktioner vi har studerat närmare är: Lättnedbrytbart organiskt avfall såsom matrester, restaurangavfall och liknande kan läggas tillsammans med brännbart avfall så att dess energiinnehåll tillvaratas genom förbränning. Lättnedbrytbart organiskt avfall kan också sorteras ut som en egen fraktion och behandlas i en rötningsanläggning där man utvinner en brännbar biogas som kan utnyttjas på olika sätt. Man får även en kompostliknande rötrest som kan användas som jordförbättringsmedel. Lättnedbrytbart organiskt avfall kan också sorteras ut och behandlas genom kompostering, där man får en kompost som kan användas som jordförbättringsmedel. Kartong kan läggas tillsammans med brännbart avfall så att dess energiinnehåll tillvaratas genom förbränning. Det kan också sorteras ut och materialåtervinnas, det vill säga användas som råvara för framställning av nytt papper eller ny kartong. Plast kan läggas tillsammans med brännbart avfall så att dess energiinnehåll tillvaratas genom förbränning. Det kan också sorteras ut och materialåtervinnas, det vill säga användas som råvara för framställning av nya plastprodukter. I denna studie har vi jämfört olika behandlingsmetoder och kombinationer av behandlingsmetoder för olika avfall med hjälp av ORWARE-modellen. Vi har studerat tre kommuner (Uppsala, Stockholm och Älvdalen) och där utvärderat hur olika avfallsfraktioner bäst bör tas om hand med hänsyn till energiutnyttjande, miljöpåverkan och ekonomi. Alternativ som studerats är: Fjärrvärme kan framställas från avfall genom direkt förbränning av avfallet eller genom förbränning av biogas från rötning, annars genom förbränning av biobränsle (ved, flis), kol eller olja. Elektricitet fås från avfall genom förbränning av avfall, biogas eller deponigas, annars genom elektricitet från elnätet (se även nästa stycke). Drivmedel för bussar eller personbilar fås från avfall i form av biogas från rötning, annars genom att använda vanlig diesel eller bensin. Kväve- och fosforgödsel fås från avfall genom att använda rötrest från rötning, kompost från kompostering, annars genom att använda handelsgödsel. Plast (polyeten) fås från avfall genom att återvinna plastförpackningar, annars genom att framställa ny plast från råolja. Kartong fås från avfall genom att återvinna kartongförpackningar, annars genom att framställa ny kartong från biomassa (ved).

10 Det är flera yttre faktorer som har mycket stor inverkan på resultatet, och som ibland påverkar resultatet mer än valet av behandlingsmetod: Ersättningsbränsle: Vad är det för bränsle som används då avfall inte förbränns, eller vad är det för bränsle som ersätts om avfallsförbränningen utökas? I normalfallet har vi valt att betrakta biobränsle som ersättningsbränsle. I känslighetsanalyser har vi undersökt hur resultatet skulle bli om kol eller olja istället skulle vara ersättningsbränsle. Elproduktion: Hur framställs den elektricitet som förbrukas? Vi har i vår studie använt marginalel baserad på kolkondenskraft (framställning av elektricitet genom förbränning av kol med relativt låg verkningsgrad) som normalfall, men i en känslighetsanalys studerat hur resultatet blir då förbrukad el i stället framställs som medelel (Sveriges elmix består av ungefär 45 % vattenkraft, lika mycket kärnkraft och resten övrig värmekraft). Systemgränser: Vad är det för processer som räknas in och inte räknas in i systemet? Vi har till exempel inte tagit med kostnader eller transporter som är förknippade med hushållens hantering av avfallet, utan antagit att avfall, inklusive källsorterat avfall, levereras gratis till soptunnan eller återvinningsstationen. I studien utgår vi från att allt potentiellt brännbart avfall som uppstår i respektive kommun skall behandlas. I olika scenarier slussas olika delar av detta avfall till olika behandlingar och energiförbrukning, miljöpåverkan och kostnader beräknas. Parametrar vi beaktat i denna studie är: Förbrukning av primära energibärare (energiråvaror). Med detta menas energin i form av råvaror; biobränsle i skogen, råolja i oljekällan, etc. I energiråvaror ingår till exempel den energi som förbrukas i samband med råvaruutvinning och transporter samt olika förluster i samband med energiutvinningen. Vi har betraktat både den totala förbrukningen av energiråvaror och förbrukningen av icke-förnyelsebara energiråvaror, där olja, kol, naturgas och uran (räknat som termisk energi från ett svenskt kärnkraftverk) inkluderas. Olika miljöeffekter som växthuseffekt, försurning, eutrofiering (övergödning) och bildande av marknära ozon (mätt som utsläpp av NOx och VOC). Flöden av tungmetaller har studerats separat. Företagsekonomisk och samhällsekonomisk kostnad. I den samhällsekonomiska kostnaden inkluderas miljökostnaden (med miljökostnad menas en ekonomisk värdering av de uppkomna emissionerna). 3.2 Studiens upplägg och genomförande Kommunernas olika storlek återspeglas i avfallsmängderna; Uppsala med 186 invånare ger upphov till ca 113 ton/år, Stockholms befolkning på 496 personer (antal boende i Stockholm var 1999 enligt USK (Utrednings- och Statistikkontoret i Stockholm) st. vilket betyder att vi inte räknar på alla stockholmares avfall) genererar 33 ton/år och Älvdalens 8 1 personer producerar 3 7 ton/år. Dessa mängder omfattar hushållsavfall och verksamhetsavfall. Den mängd avfall som faktiskt behandlas inom systemet för denna studie är dock lägre för alla kommuner. Detta beror på att en del av vissa fraktioner, såsom glas, metall och tidningar, antas återvinnas i alla scenarier. Denna återvinning betraktas inte inom det studerade systemet. Demografi och andra förutsättningar skiljer sig också mycket åt mellan kommunerna. Uppsala och Stockholm är tätortskommuner med egna fjärrvärmenät och anläggningar för förbränning av avfall. Älvdalen är en glesbygdskommun som transporterar sina

11 brännbara sopor till en angränsande kommun, eftersom förbränningsanläggning och fjärrvärmenät saknas i den egna kommunen. I de olika scenarier som studerats slussas avfallet till olika behandlingsalternativ. Samtliga scenarier är mer eller mindre hypotetiska och utvalda för att representera olika ytterlighetsfall. Lättnedbrytbart organiskt avfall kan antingen ingå i det avfall som förbränns eller sorteras ut för att rötas eller komposteras. Plastförpackningar och kartongförpackningar kan antingen ingå i det avfall som förbränns eller sorteras ut för materialåtervinning. Som ett ytterlighetsalternativ har vi också med ett scenario då allt avfall deponeras. En närmare definition av scenarierna för de olika kommunerna finns i tabell 1. Tabell 1. Behandling av avfallet i de olika scenarierna. Stockholm* Uppsala* Älvdalen* A1 Förbränning av allt fast avfall. Förbränning av allt fast avfall. Förbränning av allt fast avfall. A2 Förbränning av 9 % av allt fast avfall, 1 % deponeras. Förbränning av 9 % av allt fast avfall, 1 % deponeras. Förbränning av 9 % av allt fast avfall, 1 % deponeras. B1 Utsortering och rötning av 7 % av det lättnedbrytbara organiska avfallet. Biogas till bussar. Resten av det fasta avfallet förbränns. Utsortering och rötning av 7 % av det lättnedbrytbara organiska avfallet. Biogas till bussar. Resten av det fasta avfallet förbränns. Utsortering och rötning av 7 % av det lättnedbrytbara organiska avfallet. Biogas till bussar. Resten av det fasta avfallet förbränns. B2 B3 C D Utsortering och rötning av 7 % av det lättnedbrytbara organiska avfallet. Biogas till kraft och värme från gasmotor. Resten av det fasta avfallet förbränns. Utsortering och rötning av 7 % av det lättnedbrytbara organiska avfallet. Biogas till personbilar. Resten av det fasta avfallet förbränns. Utsortering av 7 % hårdplast från hushåll och 8 % hård- och mjukplast från affärsverksamheter. Plasten återvinns. Resten av det fasta avfallet förbränns. Utsortering av 7 % kartong från hushåll och 8 % kartong från affärsverksamheter. Kartongen återvinns. Resten av det fasta avfallet förbränns. Utsortering och rötning av 7 % av det lättnedbrytbara organiska avfallet. Biogas till kraft och värme från gasmotor. Resten av det fasta avfallet förbränns. Utsortering av 7 % av det lättnedbrytbara organiska avfallet som komposteras i strängkompost. Resten av det fasta avfallet förbränns. Utsortering av 7 % hårdplast från hushåll och 8 % hård- och mjukplast från affärsverksamheter. Plasten återvinns. Resten av det fasta avfallet förbränns. Utsortering av 7 % kartong från hushåll och 8 % kartong från affärsverksamheter. Kartongen återvinns. Resten av det fasta avfallet förbränns. Utsortering av 7 % av det lättnedbrytbara organiska avfallet. Av detta komposteras 3 % i hemmen och 7 % i en strängkompost. Resten av det fasta avfallet förbränns. Utsortering av 7 % av det lättnedbrytbara organiska avfallet som komposteras i strängkompost. Resten av det fasta avfallet förbränns. Utsortering av 7 % hårdplast från hushåll. Plasten återvinns. Resten av det fasta avfallet förbränns. Utsortering av 7 % kartong från hushåll. Kartongen återvinns. Resten av det fasta avfallet förbränns. E Deponering av allt avfall. Deponering av allt avfall. Deponering av allt avfall. * I samtliga regioner sorteras tidningspapper (75 %), glas (7 %) och metallföremål (5 %) ut och återvinns utanför det betraktade systemet. För vissa avfallsfraktioner sker speciell behandling, enligt nedan: Stockholm: Förbränning av bygg- och rivningsavfall i scenario A-D Uppsala: Rötning av organiskt industriavfall, slakteriavfall och sockervatten i scenario A-E. Kompostering av park- och trädgårdsavfall i scenario A-E.

12 3.3 Resultatredovisning i diagramform Uppsala Behandlade avfallsmängder, ton Avfallsdeponering Kartongåtervinning Plaståtervinning Strängkompostering Rötning Förbränning Energiråvaror, TJ Förnyelsebara Ej förnyelsebara 7 Växthuseffekt, kton CO2-ekvivalenter Försurning, ton SO2-ekvivalenter Övergödning, ton syreförbrukande ämnen Kostnader, Mkr/år Miljö Externt system Avfallssystemet 4 2

13 3.3.2 Stockholm 3 Behandlade avfallsmängder, ton 25 Avfallsdeponering 2 Kartongåtervinning Plaståtervinning Rötning Förbränning 4 Energiråvaror, TJ Förnyelsebara 2 15 Ej förnyelsebara Växthuseffekt, kton CO2-ekvivalenter Försurning, ton SO2-ekvivalenter Övergödning, ton syreförbrukande ämnen Kostnader, Mkr/år Miljö Externt system Avfallssystemet 1

14 3.3.3 Älvdalen 3 5 Behandlade avfallsmängder, ton 3 Avfallsdeponering Kartongåtervinning Plaståtervinning Strängkompostering Rötning Förbränning 4 Energiråvaror, TJ Förnyelsebara 2 Ej förnyelsebara Växthuseffekt, kton CO2-ekvivalenter Försurning, ton SO2-ekvivalenter 45 4 Övergödning, ton syreförbrukande ämnen Kostnader, Mkr/år Miljö Externt system Avfallssystemet

15 3.4 Kommentarer till diagram och resultat Energiförbrukning. Den höga förbrukningen av primära energibärare för deponering (scenario E) beror på att man vid deponering inte utnyttjar den energi eller de material som finns i avfallet (i Uppsala och Stockholm antas dock 5 % av den bildade deponigasen utvinnas och användas för framställning av elektricitet). Deponering av avfall får till följd att energi och material måste produceras från jungfruliga råvaror. Emissioner av växthusgaser. Det höga bidraget av växthusgaser från deponering (scenario E) beror på metangasemissioner. Detta trots att vi i Uppsala och Stockholm räknat med att en stor del av den bildade metangasen utvinns och nyttiggörs. Även det scenario då en mindre mängd avfall deponeras under sommaren (scenario A2) ger höga emissioner av metangas. Emissioner av försurande ämnen. De höga emissionerna av försurande ämnen från rötning där gasen används för framställning av el och värme (scenario B2 i Stockholm och Uppsala) beror på NO X -emissioner från förbränningen av biogasen. De höga emissionerna av försurande ämnen från kompostering (scenario B3 i Uppsala och Älvdalen) beror på emissioner av ammoniak från komposteringsprocessen. Spridning av rötrest och kompost på åkermark orsakar också ammoniakemissioner. Emissioner av övergödande ämnen. De höga emissionerna av övergödande ämnen från kompostering (scenario B3 i Uppsala och B2 och B3 i Älvdalen) beror till större delen på emissioner av ammoniak från komposteringsprocessen. De höga emissionerna av övergödande ämnen från deponering beror på utlakning från deponin av både ammoniak och av organisk syreförbrukande substans (samt NO X -emissioner från förbränningen av deponigas i Uppsala och Stockholm). Rötning (B1-B3 i Stockholm, B1-B2 i Uppsala och B1 i Älvdalen) ger högre emissioner av övergödande ämnen, främst genom emissioner från marken där rötresten sprids. Företagsekonomi. De företagsekonomiska kostnaderna skiljer sig lite mellan de olika scenarierna förutom vid deponering av allt avfall. Att deponering blir dyrare beror på att det kostar mer att framställa fjärrvärme, drivmedel, gödselmedel, plast och kartong från jungfruliga råvaror i stället för från avfallet. Samhällsekonomi. Samhällsekonomin grundar sig i princip på den företagsekonomiska kostnaden, till vilka lagts en värdering av de olika emissionerna. Deponering samt rötning och kompostering ger relativt höga miljökostnader. Detta beror på metanemissioner för deponering (scenario E), samt på kväveläckage och tungmetallspridning på åker för kompostering och rötning (scenario B1, B2 och B3).

16 3.5 Känslighetsanalys av bränsleval De tydligaste effekterna av att anta att kol eller olja är ersättningsbränsle för värmeproduktion istället för biobränsle är att förbränning blir mer gynnsamt än materialåtervinning och biologisk behandling av avfall, framförallt vad gäller bidrag till växthuseffekten. Detta beror på att de besparingar av växthusgaser från värmeproduktion som fås när värme genereras från avfall i stället för på konventionellt sätt blir större. En förändring av alternativt elproduktionssätt från marginalel till medelel missgynnar framförallt deponering och rötning (samt i Stockholm förbränning) relativt de andra behandlingsmetoderna, då det är från dessa processer som avfallshanteringssystemet genererar elektricitet. Detta beror på att de miljöbesparingar som fås när elektricitet genereras från avfall blir mindre när genomsnittselektricitet med lägre miljöbelastning antas vara det konventionella alternativet. 3.6 Generella slutsatser De erhållna resultaten visar hur svårt och komplicerat det är att diskutera ett helt avfallshanteringssystem. Det är omöjligt att peka ut något entydigt bästa system och det går att urskilja fördelar och nackdelar med alla alternativ. Deponering är dock nästan genomgående sämre än övriga alternativ. Med hänsyn till osäkerheter i resultatet och det faktum att skillnaderna är små i de flesta fall, så kan följande slutsatser dras: Utnyttjande av energin och materialet i avfallet är positivt ur såväl miljösynpunkt som ur samhällsekonomisk synvinkel. Detta beror framför allt på att valet av behandlingsmetod har en påverkan utanför avfallssystemet på framställning av fjärrvärme, elektricitet, fordonsbränsle, plast, kartong och gödselmedel. Denna slutsats innebär att deponering av energiinnehållande avfall ska undvikas i största möjliga utsträckning, p.g.a. det låga energiutnyttjande och den miljöpåverkan som erhålls vid deponering. Förbränning bör utgöra en bas i avfallssystemet för vardera av de tre kommunerna, även om avfallet måste transporteras till en regional anläggning. Då avfallet väl är insamlat så har även längre regionala transporter liten betydelse, under förutsättning att transporterna genomförs på ett effektivt sätt. Under den tid på sommaren då förbränningsanläggningen står avställd för planerat underhåll, och för att värmebehovet är lågt, är det bättre ur alla betraktade aspekter att bala och lagra avfall än att deponera avfall. Vid jämförelse mellan materialåtervinning och förbränning, samt mellan biologisk behandling och förbränning, har inga entydiga slutsatser kunnat dras vad gäller miljöpåverkan. Det finns fördelar och nackdelar med alla metoder. Materialåtervinning av plast är samhällsekonomiskt jämförbart med förbränning och ger mindre miljöpåverkan och lägre energiförbrukning, detta under förutsättning att den återvunna plasten ersätter nyproducerad plast. I den plaståtervinning som förekommer idag är det bara en liten del av den återvunna plasten som ersätter jungfrulig plast (tillverkad av olja eller naturgas), i stället används den återvunna plasten till bullerplank, pallklotsar och liknande där den återvunna plasten i princip ersätter trä. Materialåtervinning av kartong är samhällsekonomiskt och energimässigt jämförbart med förbränning, men har både miljömässiga fördelar och miljömässiga nackdelar. Rötning av lättnedbrytbart organiskt avfall ger en högre samhällsekonomisk kostnad än förbränning, och har både fördelar och nackdelar vad gäller miljöpåverkan. Energimässigt beror det på hur

17 rötgasen används. Kompostering av lättnedbrytbart organiskt avfall är samhällsekonomiskt jämförbart med rötning, men ger större energiförbrukning och miljöpåverkan. Det bör påpekas att samtliga slutsatser för lättnedbrytbart organiskt avfall grundar sig på antagandet att all rötrest eller kompost får avsättning i jordbruket och då ersätter handelsgödsel. Emellertid har detta antagande relativt liten inverkan på slutresultaten. För att entydigt motivera en ökad materialåtervinning och ökad biologisk behandling krävs en teknik- och produktutveckling och/eller en annan värdering av utsläpp och miljöeffekter. Vi har i studien inte räknat in transporter av avfall som görs av hushållen, eller den tid och andra resurser som hushållen lägger ned på källsortering. Miljömässigt uppskattas detta inte ha någon betydelse. Samhällsekonomiskt kan dock hushållens tidsåtgång för källsortering göra detta mindre lönsamt, beroende på vilken värdering man lägger på hushållens tid. 4 Referenser Anonymous (1991) Elaboration of a Regional Strategy on Integrated Waste Management (Chair B. Frostell), final report by an ECE task force with Sweden as lead country, ENVWA/WP.2/R.3, 26 August 1991, Economic Commission for Europe, Geneva. Baccini, P. och Brunner, P.H. (1991) Metabolism of the Anthroposphere, Springer-Verlag, Berlin. Björklund, A., (1998), Environmental systems analysis of waste management with emphasis on substance flows and environmental impact, licentiatavhandling, Avd. för Industriellt Miljöskydd, Institutionen för kemiteknik, KTH, Stockholm, Sverige (ISSN , TRITA-KET-IM 1998:16, AFR-rapport 211). Dalemo et al, (1997), ORWARE - A simulation model for organic waste handling systems. Part 1: Model description, Publicerad i Resources, Conservation and recycling 21 (1997) Dalemo, M., (1999), Environmental Systems Analysis of Organic Waste Management - The ORWARE model and the sewage plant and anaerobic digestion submodels, doktorsavhandling, Institutionen för Lantbruksteknik, SLU, Uppsala, Sverige (Agraria 146, AFR-rapport 239). Finnveden, G., (1998), On the possibilities of Life-Cycle Assessment - Development of methodolgy and review of case studies, doktorsavhandling, Inst. för Systemekologi, Stockholms Universitet, Stockholm, Sverige (ISBN , fms-rapport nr 73, IVL-rapport nr A 1199, AFR-rapport nr 222). ISO (1997) Miljöledning Livscykelanalys Principer och struktur. SS-EN ISO 144 Sonesson, U., (1998), Systems Analysis of Waste Management The ORWARE Model, Transport and Compost Sub-Models, doktorsavhandling, Institutionen för Lantbruksteknik, SLU, Uppsala, Sverige (Agraria 13).

ENERGIUTNYTTJANDE FRÅN AVFALL SYSTEMANALYS AV SAMMANDRAG UTVÄRDERING AV ENERGI, MILJÖ OCH EKONOMI. Stockholm 2000-03-09

ENERGIUTNYTTJANDE FRÅN AVFALL SYSTEMANALYS AV SAMMANDRAG UTVÄRDERING AV ENERGI, MILJÖ OCH EKONOMI. Stockholm 2000-03-09 SYSTEMANALYS AV ENERGIUTNYTTJANDE FRÅN AVFALL UTVÄRDERING AV ENERGI, MILJÖ OCH EKONOMI SAMMANDRAG Stockholm 2-3-9 Jan-Olov Sundqvist, IVL Svenska Miljöinstitutet (projektledare) Andras Baky, Jordbrukstekniska

Läs mer

Bilaga 3. Resultat studier av olika fraktioner och material

Bilaga 3. Resultat studier av olika fraktioner och material Sid 1 Bilaga 3. Resultat studier av olika fraktioner och material 1. Inledning 1.1 Studerade scenarier En fördjupad analys har gjorts av några scenarier där olika fraktioner och material hanteras på olika

Läs mer

Bilaga 4. Resultat - Studie av effekter av ändrad avfallshantering i Uppsala

Bilaga 4. Resultat - Studie av effekter av ändrad avfallshantering i Uppsala Sid 1 Bilaga 4. Resultat - Studie av effekter av ändrad avfallshantering i Uppsala 1. Inledning 1.1 Studerade scenarier I Uppsala finns en avfallsplan för hur den framtida avfallshanteringen ska se ut

Läs mer

Bilaga 3 Resultat studier av olika fraktioner och material

Bilaga 3 Resultat studier av olika fraktioner och material Sid. Inledning Bilaga Resultat studier av olika fraktioner och material. Studerade scenarier En analys har gjorts av ett urval scenarier. Studien har lagts upp så att en fraktion i taget sorteras ut och

Läs mer

Bilaga 4 Resultat - Studie av effekter av ändrad avfallshantering i Stockholm

Bilaga 4 Resultat - Studie av effekter av ändrad avfallshantering i Stockholm Resultat - Studie av effekter av ändrad avfallshantering i Stockholm Innehåll BILAGA 4 RESULTAT - STUDIE AV EFFEKTER AV ÄNDRAD AVFALLSHANTERING I STOCKHOLM...1 1. INLEDNING...2 1.1 Studerade scenarier...2

Läs mer

Mattias Bisaillon. Profu. Delägare i forsknings- och utredningsföretaget

Mattias Bisaillon. Profu. Delägare i forsknings- och utredningsföretaget Mattias Bisaillon Delägare i forsknings- och utredningsföretaget, 2001- Doktorand i avfallsgruppen på Chalmers 1998-2004 (tekn. doktor i avfalls- och energisystemanalys 2004) (Projektinriktad forskning

Läs mer

Johan Sundberg. Profu. Profu. Delägare i forsknings- och utredningsföretaget

Johan Sundberg. Profu. Profu. Delägare i forsknings- och utredningsföretaget Johan Sundberg Delägare i forsknings- och utredningsföretaget, 1999 Forskningsledare för avfallsgruppen på Chalmers 1993-2005 (tekn. doktor i avfallssystemanalys 1993) (Projektinriktad forskning och utveckling)

Läs mer

FRAMTIDA BEHANDLING AV LÄTTNEDBRYTBART ORGANISKT AVFALL I JÖNKÖPINGS KOMMUN

FRAMTIDA BEHANDLING AV LÄTTNEDBRYTBART ORGANISKT AVFALL I JÖNKÖPINGS KOMMUN Uppdragsrapport FRAMTIDA BEHANDLING AV LÄTTNEDBRYTBART ORGANISKT AVFALL I JÖNKÖPINGS KOMMUN EN SYSTEMSTUDIE AV EFFEKTER PÅ MILJÖ, ENERGI OCH EKONOMI Slutrapport 00-09-18 Ola Eriksson Leif Svanblom Industriellt

Läs mer

Hur skall hushållsavfallet tas om hand? Utvärdering av olika behandlingsmetoder

Hur skall hushållsavfallet tas om hand? Utvärdering av olika behandlingsmetoder För Statens Energimyndighets forskningsprogram Energi från Avfall Projektnr: P10544-2 Hur skall hushållsavfallet tas om hand? Utvärdering av olika behandlingsmetoder Jan-Olov Sundqvist, IVL Svenska Miljöinstitutet

Läs mer

Biogas och miljön fokus på transporter

Biogas och miljön fokus på transporter och miljön fokus på transporter Maria Berglund Regionförbundet Örebro län, Energikontoret ÖNET Tel: +46 19 602 63 29 E-post: Maria.Berglund@regionorebro.se Variationsrikedom Varierande substrat Avfall,

Läs mer

KO M P O S T E R I N G E L L E R F Ö R B R Ä N N I N G AV H U S H Å L L S AV FA L L I S T O C K H O L M

KO M P O S T E R I N G E L L E R F Ö R B R Ä N N I N G AV H U S H Å L L S AV FA L L I S T O C K H O L M Uppdragsrapport KO M P O S T E R I N G E L L E R F Ö R B R Ä N N I N G AV H U S H Å L L S AV FA L L I S T O C K H O L M EN SYSTEMSTUDIE AV EFFEKTER PÅ MILJÖ, ENERGI OCH EKONOMI Getachew Assefa Björn Frostell

Läs mer

Potential för ökad materialåtervinning av hushållsavfall och industriavfall

Potential för ökad materialåtervinning av hushållsavfall och industriavfall Potential för ökad materialåtervinning av hushållsavfall och industriavfall CHRISTINE AMBELL, ANNA BJÖRKLUND, MARIA LJUNGGREN SÖDERMAN TRITA-INFRA-FMS 2010:4 ISSN 1652-5442 KTH Samhällsplanering och miljö

Läs mer

Systemanalys av avfallshanteringen i kommunerna Falun och Borlänge

Systemanalys av avfallshanteringen i kommunerna Falun och Borlänge JTI-rapport Kretslopp & Avfall 23 Systemanalys av avfallshanteringen i kommunerna Falun och Borlänge Systems analysis of waste treatment in the municipalities of Falun and Borlänge Andras Baky Linda Malmén

Läs mer

FAKTA OM AVFALLSIMPORT. Miljö och importen från Italien. Fakta om avfallsimport 1 (5) 2012-04-17

FAKTA OM AVFALLSIMPORT. Miljö och importen från Italien. Fakta om avfallsimport 1 (5) 2012-04-17 1 (5) FAKTA OM AVFALLSIMPORT Fortum genomför test med import av en mindre mängd avfall från Italien. Det handlar om drygt 3000 ton sorterat avfall som omvandlas till el och värme i Högdalenverket. Import

Läs mer

Rapport: U2014:01 ISSN 1103-4092. Avfallsindikatorer Vägledning för hur man kan mäta och följa utvecklingen mot en resurseffektiv avfallshantering

Rapport: U2014:01 ISSN 1103-4092. Avfallsindikatorer Vägledning för hur man kan mäta och följa utvecklingen mot en resurseffektiv avfallshantering Rapport: U2014:01 ISSN 1103-4092 Avfallsindikatorer Vägledning för hur man kan mäta och följa utvecklingen mot en resurseffektiv avfallshantering förord INNehållSförteckNINg 1. Varför indikatorer? 3 2.

Läs mer

Systemanalys av energiutnyttjande från avfall utvärdering av energi, miljö och ekonomi. Översiktsrapport

Systemanalys av energiutnyttjande från avfall utvärdering av energi, miljö och ekonomi. Översiktsrapport För Statens Energimyndighets forskningsprogram Energi från Avfall Projektnr: P10544-1 Systemanalys av energiutnyttjande från avfall utvärdering av energi, miljö och ekonomi Översiktsrapport Stockholm 1999-12-31

Läs mer

2. MILJÖKONSEKVENSER AV MÅL I AVFALLSPLANEN

2. MILJÖKONSEKVENSER AV MÅL I AVFALLSPLANEN Bilaga till avfallsplaneförslag 2009-09-07 Miljökonsekvensbeskrivning Avfallsplan för Skellefteå kommun BAKGRUND Enligt bestämmelser i miljöbalken (1998:808), kap 6 samt föreskrifter från Naturvårdsverket

Läs mer

Syntesrapport: Klimatnytta med plaståtervinning

Syntesrapport: Klimatnytta med plaståtervinning Göran Erselius 2017-09-14 Syntesrapport: Klimatnytta med plaståtervinning Sammanfattning I de studier som har studerats är resultatet, vid valet mellan att materialåtervinna och energiåtervinna, att plast

Läs mer

Utvärdering av materialval i tre olika skyltar utifrån klimatpåverkan och primärenergianvändning. Energiteknik Systemanalys.

Utvärdering av materialval i tre olika skyltar utifrån klimatpåverkan och primärenergianvändning. Energiteknik Systemanalys. Utvärdering av materialval i tre olika skyltar utifrån klimatpåverkan och primärenergianvändning Energiteknik Systemanalys SP Rapport 2 Innehållsförteckning 1.Bakgrund och sammanfattning...3 2.Metod...4

Läs mer

Systemanalys av energiutnyttjande från avfall utvärdering av energi, miljö och ekonomi. Fallstudie - Uppsala

Systemanalys av energiutnyttjande från avfall utvärdering av energi, miljö och ekonomi. Fallstudie - Uppsala För Statens Energimyndighets forskningsprogram Energi från Avfall Projektnr: P10544-1 Systemanalys av energiutnyttjande från avfall utvärdering av energi, miljö och ekonomi Fallstudie - Uppsala Stockholm

Läs mer

Alternativ för hantering av Haparanda kommuns matavfall

Alternativ för hantering av Haparanda kommuns matavfall Alternativ för hantering av Haparanda kommuns matavfall HAPARANDA STAD DECEMBER 2010 2 Alternativ för hantering av Haparanda kommuns matavfall Sofia Larsson Klimatstrateg Kommunledningsförvaltningen december

Läs mer

Systemanalys av energiutnyttjande från avfall utvärdering av energi, miljö och ekonomi. Fallstudie - Älvdalen

Systemanalys av energiutnyttjande från avfall utvärdering av energi, miljö och ekonomi. Fallstudie - Älvdalen För Statens Energimyndighets forskningsprogram Energi från Avfall Projektnr: P10544-1 Systemanalys av energiutnyttjande från avfall utvärdering av energi, miljö och ekonomi Fallstudie - Älvdalen Stockholm

Läs mer

Avfallets roll i framtidens energisystem

Avfallets roll i framtidens energisystem Avfallets roll i framtidens energisystem Ambjörn Lätt Futureheat konferens, 2018-11-21 ARFEN Bakgrund Litteraturstudie ARFEN Scenarier Slutsatser Intervjustudie Bakgrund Recap Energiåtervinning uravfall

Läs mer

Bilaga 1, Samrådsredogörelse Presentationsmaterial Plan för avfallshantering i ett hållbart samhälle

Bilaga 1, Samrådsredogörelse Presentationsmaterial Plan för avfallshantering i ett hållbart samhälle Bilaga 1, Samrådsredogörelse Presentationsmaterial Plan för avfallshantering i ett hållbart samhälle Nu gör vi en gemensam avfallsplan för SÖRAB kommunerna Ett nytt angreppssätt som är kraftfullt och berör

Läs mer

Förbränningsskatt- effekt på biologiskt avfall

Förbränningsskatt- effekt på biologiskt avfall Förbränningsskatt- effekt på biologiskt avfall 2007-09-18 Författare: Jenny Sahlin, Tomas Ekvall, IVL Mattias Bisaillon, Johan Sundberg, (alla tidigare Avfallsgruppen, Chalmers) Agenda Bakgrund Om förbränningsskatten

Läs mer

2014-10-30 Svensk* Fjärrvärme. Milj ödepartementet m.registrator@regeringskansliet.se. Kopia: erika.nygren@regeringskansliet.se

2014-10-30 Svensk* Fjärrvärme. Milj ödepartementet m.registrator@regeringskansliet.se. Kopia: erika.nygren@regeringskansliet.se 2014-10-30 Svensk* Fjärrvärme Milj ödepartementet m.registrator@regeringskansliet.se Kopia: erika.nygren@regeringskansliet.se Svensk Fjärrvärme AB Raziyeh Khodayari 101 53 Stockholm raziyeh.khodayari@svenskfjarrvarme.se

Läs mer

Hållbar avfallshantering Avfallshantering som bidrar till utvecklingen mot ett hållbart samhälle: Miljö Ekonomi Acceptans

Hållbar avfallshantering Avfallshantering som bidrar till utvecklingen mot ett hållbart samhälle: Miljö Ekonomi Acceptans HÅLLBAR AVFALLSHANTERING Ett tvärvetenskapligt forskningsprogram om framtidens avfallshantering IVL Svenska Miljöinstitutet, Kungliga Tekniska Högskolan, Göteborgs Universitet, Konjunkturinstitutet, Högskolan

Läs mer

Syntes av systemanalyser av avfallshantering

Syntes av systemanalyser av avfallshantering För Energimyndigheten Syntes av systemanalyser av avfallshantering Editors: Jan-Olov Sundqvist, IVL Swedish Environmental Research Institute Göran Finnveden, fms (Environmental Strategies Research Group),

Läs mer

Optimering av olika avfallsanläggningar

Optimering av olika avfallsanläggningar Optimering av olika avfallsanläggningar ABBAS GANJEHI Handledare: LARS BÄCKSTRÖM Inledning Varje dag ökar befolkningen i världen och i vår lilla stad Umeå. Man förutsäg att vid år 2012 har Umeås folkmängd

Läs mer

Förkortad version av Avfallsplan för Robertsfors kommun

Förkortad version av Avfallsplan för Robertsfors kommun Förkortad version av Avfallsplan för Robertsfors kommun 2006-02-23 Avfallsplanering Avfallsfrågor är viktiga element i arbetet mot en hållbar utveckling. Avfall uppstår som ett resultat av de olika mänskliga

Läs mer

Biogas från skogen potential och klimatnytta. Marita Linné

Biogas från skogen potential och klimatnytta. Marita Linné Biogas från skogen potential och klimatnytta marita@biomil.se 046-101452 2011-02-10 Konsulttjänster inom biogas och miljö Över 30 års erfarenhet av biogas Unika expertkunskaper Erbjuder tjänster från idé

Läs mer

Människan i centrum Avfallshanteringen ska utgå från människans behov och vara anpassad både till den som lämnar och den som hämtar avfall.

Människan i centrum Avfallshanteringen ska utgå från människans behov och vara anpassad både till den som lämnar och den som hämtar avfall. Människan i centrum Avfallshanteringen ska utgå från människans behov och vara anpassad både till den som lämnar och den som hämtar avfall. Det innebär att insamlingen ska vara enkel, lätt att förstå och

Läs mer

Det svenska hushållsavfallet

Det svenska hushållsavfallet Det svenska hushållsavfallet 2018 Avfallshantering i världsklass Sveriges kommuner och svenskarna är duktiga på avfallshantering. Från insamling till sortering och återvinning. Med den här skriften vill

Läs mer

Det svenska hushållsavfallet

Det svenska hushållsavfallet Det svenska hushållsavfallet 2018 Avfallshantering i världsklass 99,5% 99,5 procent av hushållsavfallet återvanns under 2017. Utmaningen nu är att minska mängden avfall. Sveriges kommuner och svenskarna

Läs mer

Klimatpåverkan av rötning av gödsel

Klimatpåverkan av rötning av gödsel Klimatpåverkan av rötning av gödsel Maria Berglund HS Halland maria.berglund@hushallningssallskapet.se tel. 035-465 22 Röta stallgödsel hur påverkar det växthusgasutsläppen? ± Utsläpp från lager? - Utsläpp

Läs mer

För Statens Energimyndighets forskningsprogram Energi från Avfall Projektnr: P10544-1

För Statens Energimyndighets forskningsprogram Energi från Avfall Projektnr: P10544-1 SE754 För Statens Energimyndighets forskningsprogram Energi från Avfall Projektnr: P1544-1 Systemanalys av energiutnyttjande från avfall - utvärdering av energi, miljö och ekonomi Översiktsrapport Stockholm

Läs mer

Bilaga 7. Begreppsförklaringar

Bilaga 7. Begreppsförklaringar Bilaga 7 sförklaringar Avfallsplan 2012-2015 för Lomma kommun 2010-12-01 sförklaring och definitioner Avfall Avfall Web Avfallshantering Avfallshierarki Avfallsminimering Avfallsplan Avslutade deponier

Läs mer

Nu kör vi igång. Ditt matavfall blir biogas och biogödsel

Nu kör vi igång. Ditt matavfall blir biogas och biogödsel Nu kör vi igång Ditt matavfall blir biogas och biogödsel Visste du att Biogas är ett miljöanpassat fordonsbränsle och ger inget nettotillskott av koldioxid till atmosfären vid förbränning. släpper ut betydligt

Läs mer

Framtidens kretsloppsanläggning

Framtidens kretsloppsanläggning Framtidens kretsloppsanläggning Kretsloppsanläggningen i Högbytorp förvandlar det som ingen vill ha till sådant som alla behöver. Här gör vi el, värme, biogas och biogödsel av avfall. Varför bygger vi

Läs mer

Miljöpåverkan av framtida avfallshantering

Miljöpåverkan av framtida avfallshantering Miljöpåverkan av framtida avfallshantering Göran Finnveden, Yevgeniya Arushanyan och Anna Björklund, KTH Ola Norrman Eriksson, Högskolan i Gävle Maria Ljunggren Söderman, Åsa Stenmarck och Jan-Olov Sundqvist,

Läs mer

Primärenergifaktorer för avfall och restvärme

Primärenergifaktorer för avfall och restvärme Primärenergifaktorer för avfall och restvärme T.f. Enhetschef Klimat och Hållbara Samhällssystem jenny.gode@ivl.se 08-598 563 18 Avfall Sveriges temadag Aktuellt inom energiåtervinning Skövde, Budskap

Läs mer

Underlag till Länsstyrelsens sammanställning

Underlag till Länsstyrelsens sammanställning Bilaga 7 Underlag till Länsstyrelsens sammanställning 1(5) 1 Administrativa uppgifter Kommuner: Nyköping och Oxelösund År: 2010 Datum när planen antogs: 2012-XX-XX (Nyköping) och 2012-XX-XX (Oxelösund)

Läs mer

Kursmaterial, Chalmers tekniska högskola, Johan Sundberg, 2001-10-16

Kursmaterial, Chalmers tekniska högskola, Johan Sundberg, 2001-10-16 Avfallssystemet. Kursmaterial, Chalmers tekniska högskola, Johan Sundberg, 21-1-16 Materialflöden i samhället Mängden avfall som produceras i samhället är proportionell mot vår materiella levnadsstandard.

Läs mer

Perspektiv på framtida avfallsbehandling

Perspektiv på framtida avfallsbehandling Perspektiv på framtida avfallsbehandling Johan Sundberg, Profu Centrum för optimal resurshantering av avfall www.wasterefinery.se I ett miljöperspektiv så har Sverige världens bästa avfallsbehandling!

Läs mer

REGIONAL AVFALLSPLAN // BILAGA 4. Regional avfallsplan Bilaga 4: Miljöbedömning

REGIONAL AVFALLSPLAN // BILAGA 4. Regional avfallsplan Bilaga 4: Miljöbedömning Regional avfallsplan 2019 2023 Bilaga 4: Miljöbedömning 1 Bilaga 4. Miljöbedömning Bakgrund Enligt 6 kap. miljöbalken ska en miljöbedömning genomföras vid upprättande av planer som krävs enligt lag och

Läs mer

Lätt att göra rätt! så tar vi hand om ditt avfall! En kortversion av Strängnäs kommuns avfallsplan

Lätt att göra rätt! så tar vi hand om ditt avfall! En kortversion av Strängnäs kommuns avfallsplan Lätt att göra rätt! så tar vi hand om ditt avfall! En kortversion av Strängnäs kommuns avfallsplan 2 / Avfallsplan Vem ansvar för vad? Kommunens ansvar Det är kommunen som ansvarar för att samla in och

Läs mer

Utvärdering av saneringsmetoder - miljöprestanda & samhällsekonomi. Organisation. Upplägg föredrag

Utvärdering av saneringsmetoder - miljöprestanda & samhällsekonomi. Organisation. Upplägg föredrag Utvärdering av saneringsmetoder - miljöprestanda & samhällsekonomi Finansiering: Kunskapsprogrammet Hållbar Sanering Organisation Projektgrupp Karin Andersson, SIK uppdragsledare, LCA Joakim Johansson,

Läs mer

NFS 2004:X. Förslag till Naturvårdsverkets allmänna råd om hantering av brännbart avfall och organiskt avfall;

NFS 2004:X. Förslag till Naturvårdsverkets allmänna råd om hantering av brännbart avfall och organiskt avfall; 2003-09-16 NFS 2004:X Förslag till Naturvårdsverkets allmänna råd om hantering av brännbart avfall och organiskt avfall; beslutade den XX 2004. Dessa allmänna råd ersätter tidigare allmänna råd (NFS 2001:22)

Läs mer

Vart tar avfallet vägen?

Vart tar avfallet vägen? Vart tar avfallet vägen? Hushåll När du sorterar ditt avfall gör du en insats för bättre miljö och mindre resursförbrukning. Här har vi samlat de vanligaste avfallsslagen och beskrivit vad som händer efter

Läs mer

Johan Sundberg. Profu. Profu

Johan Sundberg. Profu. Profu Johan Sundberg Delägare i forsknings och utredningsföretaget. Forskningsledare för avfallsgruppen på Chalmers 1993 2005 (tekn. doktor i avfallssystemanalys 1993). (Projektinriktad forskning och utveckling)

Läs mer

Matavfall. Erfarenheter från insamlingssystem och förbehandlingsanläggningens krav på kommunernas insamling. Charlotta Ringdahl.

Matavfall. Erfarenheter från insamlingssystem och förbehandlingsanläggningens krav på kommunernas insamling. Charlotta Ringdahl. Matavfall Erfarenheter från insamlingssystem och förbehandlingsanläggningens krav på kommunernas insamling 18 april 20131 Charlotta Ringdahl Agenda 1.NATIONELLT MÅL 2.HUR BIDRAR VI TILL ATT UPPNÅ MÅLET?

Läs mer

Livscykelanalys av svenska biodrivmedel

Livscykelanalys av svenska biodrivmedel Livscykelanalys av svenska biodrivmedel Mikael Lantz Miljö- och energisystem Lunds Tekniska Högskola 2013-04-12 Bakgrund Flera miljöanalyser genomförda, både nationellt och internationellt. Resultaten

Läs mer

Skrivelse: Synpunkter på hearingversionen av Miljöbyggnad 3.0 angående miljövärdering av avfallsförbränning med energiåtervinning

Skrivelse: Synpunkter på hearingversionen av Miljöbyggnad 3.0 angående miljövärdering av avfallsförbränning med energiåtervinning Miljöbyggnad 3.0 Sweden Green Building Council Landsvägen 50A 172 63 Sundbyberg Malmö den 26 augusti 2016 Skrivelse: Synpunkter på hearingversionen av Miljöbyggnad 3.0 angående miljövärdering av avfallsförbränning

Läs mer

biogasanläggningar WR20

biogasanläggningar WR20 Förädling av rötrest t från storskaliga biogasanläggningar WR20 Sören Gotthardsson Purac/Läckeby Water Centrum för optimal resurshantering av avfall www.wasterefinery.se FRÅGESTÄLLNING Värdering av alternativ

Läs mer

Uppgifter till Länsstyrelsen

Uppgifter till Länsstyrelsen Avfallsplan Orust kommun 2017-2021 Uppgifter till Länsstyrelsen Bilaga 5 1 Avfallsplan Orust kommun 2017-2021 Administrativa uppgifter Kommun Orust kommun År 2017-2021 Datum när planen antogs Ansvarig

Läs mer

Avfall i verksamheter

Avfall i verksamheter Avfall i verksamheter Vellinge.se TYG PÅSE FÖREBYGGANDE RE FILL LOPPIS ÅTERANVÄNDA DEPONI MATERIALÅTERVINNA ENERGIÅTERVINNA Grafik: Sysav DEPONERING Reglerna på avfallsområdet är många och inte alltid

Läs mer

Vi slänger allt mer. Ett halvt ton per person Idag kastar varje person i Sverige nästan 500 kilo sopor per år. Tänk efter ett halvt ton!

Vi slänger allt mer. Ett halvt ton per person Idag kastar varje person i Sverige nästan 500 kilo sopor per år. Tänk efter ett halvt ton! Vi slänger allt mer Hur mycket grejer slänger du och din familj varje vecka? Gamla förpackningar, matrester, slitna kläder, batterier, värmeljus, tidningar Ja, om du tänker efter så kan det vara en hel

Läs mer

Nu kör vi igång Ditt matavfall blir biogas

Nu kör vi igång Ditt matavfall blir biogas Nu kör vi igång Ditt matavfall blir biogas 2 Det finns två sätt att se på matavfall: som rent skräp eller som en råvara med möjligheter. Vi väljer att satsa på möjligheter. Med början under hösten 2011

Läs mer

Miljödeklaration - Dörrskåp E30D25

Miljödeklaration - Dörrskåp E30D25 Miljödeklaration - Dörrskåp E30D25 Företaget EFG European Furniture Group AB Box 1017 573 28 TRANÅS Org.nr: 556236-7259 ISO 14001 certifikat nr: 194848 FSC-COC certifikat nr: EUR-COC-061003 EFG utvecklar,

Läs mer

Stockholm 15 november 2018

Stockholm 15 november 2018 Er ref/dnr: Fi2018/04173/S2 Vårt dnr: 2018/0104 Finansdepartementet 103 33 Stockholm Stockholm 15 november 2018 Yttrande avseende delar av betänkandet Brännheta skatter! Bör avfallsförbränning och utsläpp

Läs mer

Kort beskrivning av det strategiska innovationsprogrammet. RE:Source

Kort beskrivning av det strategiska innovationsprogrammet. RE:Source Kort beskrivning av det strategiska innovationsprogrammet RE:Source 2016 2018 Vad är RE:Source? RE:Source är ett nationellt strategiskt innovationsprogram inom området resurs- och avfallshantering. Medlemmar

Läs mer

Styrmedel för en mer hållbar avfallshantering

Styrmedel för en mer hållbar avfallshantering Styrmedel för en mer hållbar avfallshantering Göran Finnveden Avdelningen för Miljöstrategisk analys fms Institutionen för Samhällsplanering och miljö Skolan för Arkitektur och samhällsbyggnad KTH Delprojekt

Läs mer

Det ska vara lätt att göra rätt

Det ska vara lätt att göra rätt Det ska vara lätt att göra rätt Nedbrutna slutmål för den gemensamma avfallsplanen för dig som bor och arbetar i kommunerna Danderyd, Järfälla, Lidingö, Sollentuna, Solna, Sundbyberg, Täby, Upplands Väsby

Läs mer

Bilaga 5. Uppgifter till länsstyrelsen. Bilaga till Avfallsplan

Bilaga 5. Uppgifter till länsstyrelsen. Bilaga till Avfallsplan Bilaga 5. Uppgifter till länsstyrelsen Bilaga till Avfallsplan 2016-2019 2 1 Administrativa uppgifter Kommun Norrtälje kommun År 2016-2019 Datum när planen antogs Ansvarig nämnd 2016-XX-XX, statistik som

Läs mer

Biogasens möjligheter i Sverige och Jämtland

Biogasens möjligheter i Sverige och Jämtland Biogasens möjligheter i Sverige och Jämtland Anders Mathiasson Svenska Gasföreningen 17 september 2008 Verksamhetsstrukturen Vad är gas och gasbranschen i Sverige? Biogas från vattenslam, gödsel, avfall

Läs mer

Miljödeklaration - Hurts E30E14

Miljödeklaration - Hurts E30E14 Miljödeklaration - Hurts E30E14 Företaget EFG European Furniture Group AB Box 1017 573 28 TRANÅS Org.nr: 556236-7259 ISO 14001 certifikat nr: 194848 FSC-COC certifikat nr: EUR-COC-061003 EFG utvecklar,

Läs mer

Biogas till Dalarna. Torsten Gustafsson Spikgårdarnas Lantbruk

Biogas till Dalarna. Torsten Gustafsson Spikgårdarnas Lantbruk Biogas till Dalarna Torsten Gustafsson Spikgårdarnas Lantbruk Kort historia om Dala BioGas LRF tittar på förutsättningarna att göra en biogasanläggning i södra Dalarna. En förundersökning utförs av SBI

Läs mer

Biobränsle. Biogas. Cirkulär ekonomi. Corporate Social Responsibility (CSR) Cradle to cradle (C2C)

Biobränsle. Biogas. Cirkulär ekonomi. Corporate Social Responsibility (CSR) Cradle to cradle (C2C) Biobränsle X är bränslen som har organiskt ursprung, biomassa, och kommer från de växter som lever på vår jord just nu. Exempel på X är ved, rapsolja, biogas och vissa typer av avfall. Biogas Gas som består

Läs mer

Återvinning. Vår väg till ett bättre klimat.

Återvinning. Vår väg till ett bättre klimat. Återvinning. Vår väg till ett bättre klimat. Våra råvaror måste användas igen. Den globala uppvärmningen är vår tids ödesfråga och vi måste alla bidra på det sätt vi kan. Hur vi på jorden använder och

Läs mer

ÅTERVINNiNg SATT I SYSTEM

ÅTERVINNiNg SATT I SYSTEM ÅTERVINNiNg SATT I SYSTEM Det har hänt mycket på avfallsfronten. Till mitten av 1800-talet slängde människor sina sopor lite varstans utan att någon protesterade. Kanske klagades det på stanken, men annars

Läs mer

Ordlista Utöver dessa definitioner gäller i tillämpliga fall definitioner enligt miljöbalken 15 kap. samt avfallsförordningen (2001:1063).

Ordlista Utöver dessa definitioner gäller i tillämpliga fall definitioner enligt miljöbalken 15 kap. samt avfallsförordningen (2001:1063). Ordlista Utöver dessa definitioner gäller i tillämpliga fall definitioner enligt miljöbalken 15 kap. samt avfallsförordningen (2001:1063). Aerob behandling Anaerob behandling Aska Avfall Avfallshantering

Läs mer

1. Ett nytt kraftvärmeverk för hållbar fjärrvärme 4. Sortering ökar återvinning av både material och energi

1. Ett nytt kraftvärmeverk för hållbar fjärrvärme 4. Sortering ökar återvinning av både material och energi 10 fakta om Lövsta Stockholm Exergi planerar ett kraftvärmeverk i Lövsta. Vad innebär det? Här presenteras 10 fakta om Lövsta och vill du läsa mer, besök gärna vår webbsida, stockholmexergi.se/lovsta 1.

Läs mer

Växthusgasemissioner för svensk pelletsproduktion

Växthusgasemissioner för svensk pelletsproduktion RAPPORT Växthusgasemissioner för svensk pelletsproduktion Jonas Höglund Bakgrund IVL Svenska Miljöinstitutet publicerade 2009 på uppdrag av Energimyndigheten rapporten LCA calculations on Swedish wood

Läs mer

VAD FINNS I SOPPÅSEN? SÖRAB:s

VAD FINNS I SOPPÅSEN? SÖRAB:s VAD FINNS I SOPPÅSEN? SÖRAB:s PLOCKANALYS 2016 En metod för att utvärdera den gemensamma avfallsplanen för Danderyd, Järfälla, Lidingö, Sollentuna, Solna, Sundbyberg, Täby, Upplands Väsby och Vallentuna.

Läs mer

Bilaga 1: Miljökonsekvensbeskrivning

Bilaga 1: Miljökonsekvensbeskrivning Bilaga till avfallsplan 2010-04-22 Bilaga 1: Miljökonsekvensbeskrivning Bakgrund Enligt bestämmelser i miljöbalken (1998:808), kap 6 samt föreskrifter från Naturvårdsverket (NFS 2006:6) ska en miljöbedömning

Läs mer

Bilaga: Beräkningsunderlag

Bilaga: Beräkningsunderlag Bilaga: Beräkningsunderlag Innehållsförteckning Innehållsförteckning... 1 Klimateffekter... 1 Klimateffekt fordonsgas... 1 Klimateffekt Industriell användning... 2 Klimateffekt minskad användning av handelsgödsel...

Läs mer

Livsmedlens miljöpåverkan ur ett livscykelperspektiv. Christel Cederberg Svensk Mjölk Vattendagarna 21 nov 2006

Livsmedlens miljöpåverkan ur ett livscykelperspektiv. Christel Cederberg Svensk Mjölk Vattendagarna 21 nov 2006 Livsmedlens miljöpåverkan ur ett livscykelperspektiv Christel Cederberg Svensk Mjölk Vattendagarna 21 nov 2006 Disposition Kort om livscykelanalys (LCA) Resultat från LCA av livsmedel Svårigheter vid miljöpåverkansanalys

Läs mer

Nya styrmedel för en mer hållbar avfallshantering?

Nya styrmedel för en mer hållbar avfallshantering? Nya styrmedel för en mer hållbar avfallshantering? Göran Finnveden Miljöstrategisk analys fms KTH Exempel på existerande styrmedel Deponiförbud förbud att deponera brännbart och organiskt avfall Deponiskatt

Läs mer

Utredning om konsekvenser av utökad matavfallsinsamling i Stockholm

Utredning om konsekvenser av utökad matavfallsinsamling i Stockholm RAPPORT Utredning om konsekvenser av utökad matavfallsinsamling i Stockholm För Stockholms Stad, Trafikkontoret (Avfall) Jan-Olov Sundqvist 2008-03-25 Arkivnummer: Rapporten godkänd: 2008-04-01 Box 21060,

Läs mer

AVFALLSPLAN Hudiksvalls kommun 2011-2015

AVFALLSPLAN Hudiksvalls kommun 2011-2015 AVFALLSPLAN Hudiksvalls kommun 2011-2015 Kommunal avfallsplan med mål och åtgärdsprogram Kommunfullmäktige 86, 2011-05-02 1 Inledning Avfallsplanen är en kommunal plan för den framtida avfallshanteringen.

Läs mer

Erfarenheter av förbud mot deponering av organiskt och brännbart avfall. Thomas Rihm

Erfarenheter av förbud mot deponering av organiskt och brännbart avfall. Thomas Rihm Erfarenheter av förbud mot deponering av organiskt och brännbart avfall Thomas Rihm EU Strategi skall säkerställa att det nedbrytbara kommunala avfall som går till deponier senast 2016 skall ha nedbringats

Läs mer

Biogas. Förnybar biogas. ett klimatsmart alternativ

Biogas. Förnybar biogas. ett klimatsmart alternativ Biogas Förnybar biogas ett klimatsmart alternativ Biogas Koldioxidneutral och lokalt producerad Utsläppen av koldioxid måste begränsas. För många är det här den viktigaste frågan just nu för att stoppa

Läs mer

Miljö och klimatpåverkan från kärnkraft

Miljö och klimatpåverkan från kärnkraft OKG AB, 2010-01-12 Miljö och klimatpåverkan från kärnkraft Alla former av elproduktion påverkar miljön i någon omfattning. För att få en balanserad bild av olika kraftslags miljöpåverkan, bör hela livscykeln

Läs mer

VAD FINNS I SOPPÅSEN? SÖRAB:s

VAD FINNS I SOPPÅSEN? SÖRAB:s VAD FINNS I SOPPÅSEN? SÖRAB:s PLOCKANALYS 2016 En metod för att utvärdera den gemensamma avfallsplanen för Danderyd, Järfälla, Lidingö, Sollentuna, Solna, Sundbyberg, Täby, Upplands Väsby och Vallentuna.

Läs mer

Bilaga 3 Miljöbedömning av avfallsplanen

Bilaga 3 Miljöbedömning av avfallsplanen Bilaga 3 Miljöbedömning av avfallsplanen Innehåll 1 Inledning...3 1.1 Bakgrund, syfte...3 1.2 Nollalternativ, om planen inte realiseras...3 1.3 Planalternativet...3 2 Nationella, regionala och lokala miljömål

Läs mer

Avfall. Avfall i Sundsvall. Det finns flera anläggningar som är viktiga för att hantera avfall i kommuner. Dessa beskrivs nedan.

Avfall. Avfall i Sundsvall. Det finns flera anläggningar som är viktiga för att hantera avfall i kommuner. Dessa beskrivs nedan. Avfall Senast uppdaterad: 2019-08-23 Avfall i Sundsvall Det finns flera anläggningar som är viktiga för att hantera avfall i kommuner. Dessa beskrivs nedan. Blåberget Vid Blåbergets avfallsanläggning sker

Läs mer

Potential för ökad materialåtervinning av hushållsavfall och industriavfall

Potential för ökad materialåtervinning av hushållsavfall och industriavfall Potential för ökad materialåtervinning av hushållsavfall och industriavfall CHRISTINE AMBELL, ANNA BJÖRKLUND, MARIA LJUNGGREN SÖDERMAN TRITA-INFRA-FMS 2010:4 ISSN 1652-5442 KTH Samhällsplanering och miljö

Läs mer

Avfallsplan för Upplands-Bro kommun 2007 2012

Avfallsplan för Upplands-Bro kommun 2007 2012 Avfallsplan för Upplands-Bro kommun 2007 2012 Det lilla barnets fundering är något som angår oss alla. Hur vi tar hand om vårt avfall är en avgörande fråga när det gäller vår miljö. Upplands-Bro kommun

Läs mer

Från energianvändning till miljöpåverkan. Seminarium IEI LiU 2015-04-09

Från energianvändning till miljöpåverkan. Seminarium IEI LiU 2015-04-09 Från energianvändning till miljöpåverkan Seminarium IEI LiU 2015-04-09 2 Agenda 1 Terminologi en snabbkurs 2 Primärenergi en problematisering 3 Tidsperspektiv vad kan vi lära från LCA? 4 Term Energi Energiform

Läs mer

Bilaga 5 Miljöbedömning

Bilaga 5 Miljöbedömning Beslutad av: Dokumentansvarig: Renhållningsenheten Dokumenttyp: Välj i listan... Giltighetstid: Välj i listan... Gäller från: Diarienr: KS.2017.203 Ändringsförteckning Datum Ändring Bilaga 5 Miljöbedömning

Läs mer

Så hanterar vi tillsammans vårt avfall Avfallsplan 2020

Så hanterar vi tillsammans vårt avfall Avfallsplan 2020 Så hanterar vi tillsammans vårt avfall Avfallsplan 2020 Reviderad 2018 Förebygga Återanvända Återvinna material Återvinna energi Deponera www.umea.se/kommun 2 En strävan efter att vara hållbar Alla kommer

Läs mer

Innovate.on. Bioenergi. störst betydelse för att EUs klimatmål ska uppnås

Innovate.on. Bioenergi. störst betydelse för att EUs klimatmål ska uppnås Innovate.on Bioenergi störst betydelse för att EUs klimatmål ska uppnås Förnybar energi som minskar utsläppen Bioenergi är en förnybar energiresurs som använder som bränsle. Utvecklingen av förnybar energi

Läs mer

Fråga 1. Vad av nedanstående alternativ räknas inte som farligt avfall: 1. Kniv X. Limtub 2. Lågenergilampa

Fråga 1. Vad av nedanstående alternativ räknas inte som farligt avfall: 1. Kniv X. Limtub 2. Lågenergilampa Fråga 1 Vad av nedanstående alternativ räknas inte som farligt avfall: 1. Kniv X. Limtub 2. Lågenergilampa Några av de egenskaper som utmärker farligt avfall är att det kan var giftigt, cancerframkallande,

Läs mer

Källsortering Alskäret

Källsortering Alskäret Källsortering Alskäret Vem tar egentligen ansvar för vad? April 2015 Ann Martinsson Palmbrink Nacka kommun http://www.nacka.se/web/bo_bygga/avfall/inlamning/sidor/default.aspx Vem ansvarar? Kommunerna

Läs mer

Mot framtiden: styrmedel för en mer hållbar avfallshantering

Mot framtiden: styrmedel för en mer hållbar avfallshantering Mot framtiden: styrmedel för en mer hållbar avfallshantering Göran Finnveden Professor Miljöstrategisk analys Vice-rektor för Hållbar utveckling KTH Typer av styrmedel Juridiska (t.ex. lagar, förordningar)

Läs mer

Bilaga 4 Miljömål och lagstiftning

Bilaga 4 Miljömål och lagstiftning Bilaga 4 Miljömål och lagstiftning 1 MILJÖMÅL INOM EU Styrmedel och åtgärder på avfallsområdet utvecklas idag i många fall gemensamt inom EU. Målsättningar och strategier på övergripande europeisk nivå

Läs mer

Min sopbok. Batterier

Min sopbok. Batterier Batterier Batterier finns i många prylar idag. Men vet du att en del av dem är farliga för miljön? De innehåller kvicksilver, kadmium eller bly som är miljöfarliga ämnen. Min sopbok Hur gör jag med mina

Läs mer

Miljöredovisning 2014

Miljöredovisning 2014 Miljöredovisning 2014 Vi är stolta över vår fjärrvärmeproduktion som nu består av nära 100 % återvunnen energi. Hans-Erik Olsson Kvalitetsstrateg vid Sundsvall Energi Miljöfrågorna är viktiga för oss.

Läs mer

SORTERA DINA MATRESTER MED GRÖNA PÅSEN.

SORTERA DINA MATRESTER MED GRÖNA PÅSEN. SORTERA DINA MATRESTER MED GRÖNA PÅSEN. MED GRÖNA PÅSEN BLIR DINA MATRESTER BIOGAS Visste du att nästan hälften av alla sopor du slänger i soptunnan är matrester? Det kan vara matrester som blivit kvar

Läs mer

Klimatbokslut. Greenhouse gas protocol

Klimatbokslut. Greenhouse gas protocol Klimatbokslut för energiföretag Greenhouse gas protocol Framtaget av World Resources Institute (WRI) och World Business Council for Sustainable Development (WBCSD). Mer info på http://www.ghgprotocol.org/)

Läs mer